From decision procedures to full model-checking: the MCMT experience

S. Ghilardi

University of Milan, Italy

Dagstuhl Workshop, November 3, 2015
Aim of the talk

Since about 2010, I am developing and maintaining a logic-based models checker (called MCMT, ‘Model Checker Modulo Theories’). In this talk, I shall briefly report my experience and some case studies. During past years, many people contributed to implementation, theoretical advances as well as experiments; among them, let me mention S. Ranise, A. Carioni, R. Bruttomesso, F. Alberti, E. Pagani, A. Orsini.
Aim of the talk

Since about 2010, I am developing and maintaining a logic-based models checker (called MCMT, ‘Model Checker Modulo Theories’). In this talk, I shall briefly report my experience and some case studies.

During past years, many people contributed to implementation, theoretical advances as well as experiments; among them, let me mention S. Ranise, A. Carioni, R. Bruttomesso, F. Alberti, E. Pagani, A. Orsini.
Aim of the talk

Since about 2010, I am developing and maintaining a logic-based models checker (called MCMT, ‘Model Checker Modulo Theories’). In this talk, I shall briefly report my experience and some case studies.

During past years, many people contributed to implementation, theoretical advances as well as experiments; among them, let me mention S. Ranise, A. Carioni, R. Bruttomesso, F. Alberti, E. Pagani, A. Orsini.
Aim of the talk

Main features of MCMT:

- declarative approach;
- use of decision procedures for combined theories;
- quantifier handling through instantiation;
- quantifier handling through quantifier elimination;
- large expressivity;
- flexibility and possibility of integrating old and new techniques (acceleration, abstraction, invariant synthesis,...);
- large applications spectrum (distributed, timed, fault tolerant, but also sequential systems).
Aim of the talk

Main features of MCMT:

- declarative approach;
- use of decision procedures for combined theories;
- quantifier handling through instantiation;
- quantifier handling through quantifier elimination;
- large expressivity;
- flexibility and possibility of integrating old and new techniques (acceleration, abstraction, invariant synthesis, ...);
- large applications spectrum (distributed, timed, fault tolerant, but also sequential systems).
Aim of the talk

Main features of MCMT:
- declarative approach;
- use of decision procedures for combined theories;
- quantifier handling through instantiation;
- quantifier handling through quantifier elimination;
- large expressivity;
- flexibility and possibility of integrating old and new techniques (acceleration, abstraction, invariant synthesis,...);
- large applications spectrum (distributed, timed, fault tolerant, but also sequential systems).
Aim of the talk

Main features of MCMT:

- declarative approach;
- use of decision procedures for combined theories;
- quantifier handling through instantiation;
- quantifier handling through quantifier elimination;
- large expressivity;
- flexibility and possibility of integrating old and new techniques (acceleration, abstraction, invariant synthesis,...);
- large applications spectrum (distributed, timed, fault tolerant, but also sequential systems).
Aim of the talk

Main features of MCMT:
- declarative approach;
- use of decision procedures for combined theories;
- quantifier handling through instantiation;
- quantifier handling through quantifier elimination;
- large expressivity;
- flexibility and possibility of integrating old and new techniques (acceleration, abstraction, invariant synthesis,...);
- large applications spectrum (distributed, timed, fault tolerant, but also sequential systems).
Aim of the talk

Main features of MCMT:

- declarative approach;
- use of decision procedures for combined theories;
- quantifier handling through instantiation;
- quantifier handling through quantifier elimination;
- large expressivity;
- flexibility and possibility of integrating old and new techniques (acceleration, abstraction, invariant synthesis, ...);
- large applications spectrum (distributed, timed, fault tolerant, but also sequential systems).
Aim of the talk

Main features of MCMT:

- declarative approach;
- use of decision procedures for combined theories;
- quantifier handling through instantiation;
- quantifier handling through quantifier elimination;
- large expressivity;
- flexibility and possibility of integrating old and new techniques (acceleration, abstraction, invariant synthesis,...);
- large applications spectrum (distributed, timed, fault tolerant, but also sequential systems).
Aim of the talk

Main features of MCMT:

- declarative approach;
- use of decision procedures for combined theories;
- quantifier handling through instantiation;
- quantifier handling through quantifier elimination;
- large expressivity;
- flexibility and possibility of integrating old and new techniques (acceleration, abstraction, invariant synthesis,...);
- large applications spectrum (distributed, timed, fault tolerant, but also sequential systems).
Aim of the talk

From a logical point of view:

- MCMT handles quantified formulae to represent set of states (this is a distinguishing feature of the tool);
- prominent role is played by array fragments;
- a parallel investigation on decidability/complexity of $\exists^*\forall^*$-fragments of array theories have been carried out;
- for a survey on this (covering various fragments: Bradley-Manna, flat, SIL, acceleratable, etc.) see my slides at Dagstuhl seminar 15381.
Aim of the talk

From a logical point of view:

- MCMT handles quantified formulae to represent set of states (this is a distinguishing feature of the tool);
- prominent role is played by array fragments;
- a parallel investigation on decidability/complexity of $\exists^*\forall^*$-fragments of array theories have been carried out;
- for a survey on this (covering various fragments: Bradley-Manna, flat, SIL, acceleratable, etc.) see my slides at Dagstuhl seminar 15381.
Aim of the talk

From a logical point of view:

- MCMT handles quantified formulae to represent set of states (this is a distinguishing feature of the tool);
- prominent role is played by array fragments;
- a parallel investigation on decidability/complexity of $\exists^*\forall^*$-fragments of array theories have been carried out;
- for a survey on this (covering various fragments: Bradley-Manna, flat, SIL, acceleratable, etc.) see my slides at Dagstuhl seminar 15381.
Aim of the talk

From a logical point of view:

- MCMT handles quantified formulae to represent set of states (this is a distinguishing feature of the tool);
- prominent role is played by array fragments;
- a parallel investigation on decidability/complexity of $\exists^*\forall^*$-fragments of array theories have been carried out;

for a survey on this (covering various fragments: Bradley-Manna, flat, SIL, acceleratable, etc.) see my slides at Dagstuhl seminar 15381.
Aim of the talk

From a logical point of view:

- MCMT handles quantified formulae to represent set of states (this is a distinguishing feature of the tool);
- prominent role is played by array fragments;
- a parallel investigation on decidability/complexity of $\exists^*\forall^*$-fragments of array theories have been carried out;
- for a survey on this (covering various fragments: Bradley-Manna, flat, SIL, acceleratable, etc.) see my slides at Dagstuhl seminar 15381.
Outline

1. The core: a brief review on WSTS
2. The Declarative Perspective
3. The tool MCMT
4. Software Model Checking Applications
Outline

1. The core: a brief review on WSTS
2. The Declarative Perspective
3. The tool MCMT
4. Software Model Checking Applications
Outline

1. The core: a brief review on WSTS
2. The Declarative Perspective
3. The tool MCMT
4. Software Model Checking Applications
Outline

1. The core: a brief review on WSTS
2. The Declarative Perspective
3. The tool MCMT
4. Software Model Checking Applications
1. The core: a brief review on WSTS

2. The Declarative Perspective

3. The tool MCMT

4. Software Model Checking Applications
Verification of Parameterised Systems

- **Parameterised system** = bunch of concurrent processes *(topology may vary, can be e.g., set-like, linear-like, tree-like, ring-like, ...)*
- **Process** = instance of the same state-machine
- **Configuration** = state of a parameterised system
- **Transition** = either a process changing its locations/data or several processes simultaneously changing their respective locations/data (e.g., broadcast) *[interleaving semantics]*
- **CHALLENGE**: automatically verify a property regardless of the number of processes
- A state machine has *finitely many control locations* and can manipulate *finitely many variables* over possibly unbounded domains
Verification of Parameterised Systems

- **Parameterised system** = bunch of concurrent processes (topology may vary, can be e.g., set-like, linear-like, tree-like, ring-like, ...)
- **Process** = instance of the same state-machine
- **Configuration** = state of a parameterised system
- **Transition** = either a process changing its locations/data or several processes simultaneously changing their respective locations/data (e.g., broadcast) [interleaving semantics]
- **CHALLENGE**: automatically verify a property regardless of the number of processes
- A state machine has finitely many control locations and can manipulate finitely many variables over possibly unbounded domains
Verification of Parameterised Systems

- **Parameterised system** = bunch of concurrent processes (topology may vary, can be e.g., set-like, linear-like, tree-like, ring-like, ...)
- **Process** = instance of the same state-machine
- **Configuration** = state of a parameterised system
- **Transition** = either a process changing its locations/data or several processes simultaneously changing their respective locations/data (e.g., broadcast) [interleaving semantics]
- **CHALLENGE**: automatically verify a property regardless of the number of processes
- **A state machine has finitely many control locations and can manipulate finitely many variables over possibly unbounded domains**
Verification of Parameterised Systems

- Parameterised system = bunch of concurrent processes (topology may vary, can be e.g., set-like, linear-like, tree-like, ring-like, ...)
- Process = instance of the same state-machine
- Configuration = state of a parameterised system
- Transition = either a process changing its locations/data or several processes simultaneously changing their respective locations/data (e.g., broadcast) [interleaving semantics]

CHALLENGE: automatically verify a property regardless of the number of processes

A state machine has finitely many control locations and can manipulate finitely many variables over possibly unbounded domains
Verification of Parameterised Systems

- **Parameterised system** $= \text{bunch of concurrent processes (} \text{topology may vary, can be e.g., set-like, linear-like, tree-like, ring-like, ...)}$
- **Process** $= \text{instance of the same state-machine}$
- **Configuration** $= \text{state of a parameterised system}$
- **Transition** $= \text{either a process changing its locations/data or several processes simultaneously changing their respective locations/data (e.g., broadcast)}$ [interleaving semantics]
- **CHALLENGE**: automatically verify a property regardless of the number of processes
- A state machine has finitely many control locations and can manipulate finitely many variables over possibly unbounded domains
Verification of Parameterised Systems

- **Parameterised system** = bunch of concurrent processes (topology may vary, can be e.g., set-like, linear-like, tree-like, ring-like, ...)
- **Process** = instance of the same state-machine
- **Configuration** = state of a parameterised system
- **Transition** = either a process changing its locations/data or several processes simultaneously changing their respective locations/data (e.g., broadcast) [interleaving semantics]
- **CHALLENGE**: automatically verify a property regardless of the number of processes
- A state machine has **finitely many control locations** and can manipulate **finitely many variables** over possibly unbounded domains
Well-Structured Transition Systems

Seminal paper [ACJT - LICS96]

\((S, \tau, \preceq)\)

- **S**: set of states;
- \(\tau = \{\rightarrow_\lambda \subseteq S \times S\}_\lambda\): labelled directed graph;
- \(\preceq\): well quasi ordering\(^1\) (wqo) on \(S\);
- each \(\tau_\lambda\) is monotonic:

\[
\begin{array}{ccc}
S_1 & \preceq & S_2 \\
\downarrow_\lambda & & \downarrow_\lambda \\
S_3 & \preceq & \exists & S_4
\end{array}
\]

\(^1\)Reflexive, transitive binary relation that neither contains infinite strictly decreasing sequences nor infinite sequences of pairwise incomparable elements.
Well-Structured Transition Systems

Seminal paper [ACJT - LICS96]

\((S, \tau, \preceq)\)

- **S**: set of states;
- **\(\tau = \{\rightarrow_\lambda \subseteq S \times S\}_\lambda\)**: labelled directed graph;
- **\(\preceq\)**: well quasi ordering\(^1\) (wqo) on S;
- each **\(\tau_\lambda\)** is monotonic:

\[
\begin{align*}
S_1 & \preceq S_2 \\
\downarrow_\lambda & \preceq \exists \downarrow_\lambda \\
S_3 & \preceq S_4
\end{align*}
\]

\(^1\)Reflexive, transitive binary relation that neither contains infinite strictly decreasing sequences nor infinite sequences of pairwise incomparable elements.
Well-Structured Transition Systems

Seminal paper [ACJT - LICS96]

\[(S, \tau, \preceq)\]

- **S**: set of states;
- \(\tau = \{\rightarrow_\lambda \subseteq S \times S\}_\lambda\): labelled directed graph;
- \(\preceq\): well quasi ordering\(^1\) (wqo) on \(S\);
- each \(\tau_\lambda\) is monotonic:

```
S_1 \preceq S_2
\downarrow_\lambda \quad \downarrow_\lambda
S_3 \preceq \exists S_4
```

\(^1\)Reflexive, transitive binary relation that neither contains infinite strictly decreasing sequences nor infinite sequences of pairwise incomparable elements
Well-Structured Transition Systems

Seminal paper [ACJT - LICS96]

$$(S, \tau, \preceq)$$

- S: set of states;
- $\tau = \{\lambda \subseteq S \times S\} \lambda$: labelled directed graph;
- \preceq: well quasi ordering\(^1\) (wqo) on S;
- each τ_λ is monotonic:

\[
\begin{array}{ccc}
S_1 & \preceq & S_2 \\
\downarrow_\lambda & & \downarrow_\lambda \\
S_3 & \preceq & S_4
\end{array}
\]

\(^1\)Reflexive, transitive binary relation that neither contains infinite strictly decreasing sequences nor infinite sequences of pairwise incomparable elements.
Well-Structured Transition Systems

Seminal paper [ACJT - LICS96]

(S, τ, \preceq)

- S: set of states;
- $\tau = \{\rightarrow_\lambda \subseteq S \times S\}_\lambda$: labelled directed graph;
- \preceq: well quasi ordering\(^1\) (wqo) on S;
- each τ_λ is monotonic:

```
s_1 \preceq s_2
\downarrow_\lambda \downarrow_\lambda
s_3 \preceq \exists s_4
```

\(^1\)Reflexive, transitive binary relation that neither contains infinite strictly decreasing sequences nor infinite sequences of pairwise incomparable elements.
Well-Structured Transition Systems
Seminal paper [ACJT - LICS96]

\[(S, \tau, \preceq)\]

- \(S\): set of states;
- \(\tau = \{\rightarrow_\lambda \subseteq S \times S\}_\lambda\): labelled directed graph;
- \(\preceq\): well quasi ordering\(^1\) (wqo) on \(S\);
- each \(\tau_\lambda\) is monotonic:

\[
\begin{align*}
S_1 \preceq S_2 \\
\downarrow_\lambda \preceq \exists \\
S_3 \preceq S_4
\end{align*}
\]

\(^1\)Reflexive, transitive binary relation that neither contains infinite strictly decreasing sequences nor infinite sequences of pairwise incomparable elements
Well-Structured Transition Systems

- Set of **unsafe** states represented by an upset K:

$$s \in K \land s \preceq s' \to s' \in K$$

- Monotonicity implies that the **pre-image of an upset is still an upset**

$$\text{Pre}(\tau, K) := \{ s \mid \exists \lambda \exists s' (s \xrightarrow{\lambda} s') \land s' \in K \}$$

- Since \preceq is a wqo, **upsets can be finitely represented by their finitely many minimal elements**

- Since \preceq is a wqo, a backward search algorithm terminates.

- Extensions to cases in which \preceq is not a wqo often terminate ‘in practice’.
Monotonic Abstraction

But ... what to do if a transition τ_λ is not monotonic?
We may have $s \xrightarrow{\tau_\lambda} s'$ but $\tilde{s} \xrightarrow{\tau_\lambda} s'$ for some $\tilde{s} \preceq s$.
In this case, monotonic abstraction allows τ_λ to fire: roughly, the system may change its status from s to \tilde{s} to allow this.

Monotonic abstraction may introduce spurious runs (intuitively: runs in which some processes ‘crash and disappear’), but if a safety certification is obtained for the abstract system, the certification holds for the original system too.

Lot of success for the verification of safety properties of a variety of systems: broadcast protocols, cache coherence protocols, lossy channels systems, parameterized timed automata, etc.
Monotonic Abstraction

But ... what to do if a transition $\tau\lambda$ is not monotonic?
We may have $s \xrightarrow{\tau}\lambda s'$ but $\tilde{s} \xrightarrow{\tau}\lambda s'$ for some $\tilde{s} \preceq s$.
In this case, monotonic abstraction allows $\tau\lambda$ to fire: roughly, the system may change its status from s to \tilde{s} to allow this.

Monotonic abstraction may introduce spurious runs (intuitively: runs in which some processes ‘crash and disappear’), but if a safety certification is obtained for the abstract system, the certification holds for the original system too.

Lot of success for the verification of safety properties of a variety of systems: broadcast protocols, cache coherence protocols, lossy channels systems, parameterized timed automata, etc.
Monotonic Abstraction

But ... what to do if a transition τ^λ is not monotonic? We may have $s \xrightarrow{\tau^\lambda} s'$ but $\tilde{s} \xrightarrow{\tau^\lambda} s'$ for some $\tilde{s} \preceq s$. In this case, monotonic abstraction allows τ^λ to fire: roughly, the system may change its status from s to \tilde{s} to allow this.

Monotonic abstraction may introduce spurious runs (intuitively: runs in which some processes ‘crash and disappear’), but if a safety certification is obtained for the abstract system, the certification holds for the original system too.

Lot of success for the verification of safety properties of a variety of systems: broadcast protocols, cache coherence protocols, lossy channels systems, parameterized timed automata, etc.
Monotonic Abstraction

But ... what to do if a transition τ_λ is not monotonic? We may have $s \xrightarrow{\tau_\lambda} s'$ but $\tilde{s} \xrightarrow{\tau_\lambda} s'$ for some $\tilde{s} \preceq s$. In this case, *monotonic abstraction* allows τ_λ to fire: roughly, the system may change its status from s to \tilde{s} to allow this.

Monotonic abstraction may introduce spurious runs (intuitively: runs in which some processes ‘crash and disappear’), but if a safety certification is obtained for the abstract system, the certification holds for the original system too.

Lot of success for the verification of safety properties of a variety of systems: broadcast protocols, cache coherence protocols, lossy channels systems, parameterized timed automata, etc.
Monotonic Abstraction

But ... what to do if a transition τ^λ is not monotonic? We may have $s \xrightarrow{\tau^\lambda} s'$ but $\tilde{s} \xrightarrow{\tau^\lambda} s'$ for some $\tilde{s} \preceq s$. In this case, *monotonic abstraction* allows τ^λ to fire: roughly, the system may change its status from s to \tilde{s} to allow this.

Monotonic abstraction may introduce spurious runs (intuitively: runs in which some processes ‘crash and disappear’), but *if a safety certification is obtained for the abstract system, the certification holds for the original system too.*

Lot of success for the verification of safety properties of a variety of systems: broadcast protocols, cache coherence protocols, lossy channels systems, parameterized timed automata, etc.
1. The core: a brief review on WSTS

2. The Declarative Perspective

3. The tool MCMT

4. Software Model Checking Applications
Array-based Systems

GOAL: to get a declarative formulation of all this and to obtain an efficient backward reachability analysis by using state-of-the-art SMT solving for both safety and fix-point checking.

By a *theory* we mean here a pair $T = (\Sigma, C)$, where Σ is a first-order signature and C is a class of Σ-structures (called the models of T). Satisfiability of at least quantifier-free formulae in C should be decidable.

We need a theory T_I for describing processes and a theory T_E for data. We combine these two theories in a 3-sorted theory A^E_I.
Array-based Systems

GOAL: to get a declarative formulation of all this and to obtain an efficient backward reachability analysis by using state-of-the-art SMT solving for both safety and fix-point checking.

By a *theory* we mean here a pair $T = (\Sigma, \mathcal{C})$, where Σ is a first-order signature and \mathcal{C} is a class of Σ-structures (called the models of T). Satisfiability of at least quantifier-free formulae in \mathcal{C} should be decidable.

We need a theory T_I for describing processes and a theory T_E for data. We combine these two theories in a 3-sorted theory A_{IE}.
GOAL: to get a declarative formulation of all this and to obtain an efficient backward reachability analysis by using state-of-the-art SMT solving for both safety and fix-point checking.

By a theory we mean here a pair \(T = (\Sigma, \mathcal{C}) \), where \(\Sigma \) is a first-order signature and \(\mathcal{C} \) is a class of \(\Sigma \)-structures (called the models of \(T \)). Satisfiability of at least quantifier-free formulae in \(\mathcal{C} \) should be decidable.

We need a theory \(T_I \) for describing processes and a theory \(T_E \) for data. We combine these two theories in a 3-sorted theory \(A^E_I \).
Array-based Systems

GOAL: to get a declarative formulation of all this and to obtain an efficient backward reachability analysis by using state-of-the-art SMT solving for both safety and fix-point checking.

By a *theory* we mean here a pair $T = (\Sigma, \mathcal{C})$, where Σ is a first-order signature and \mathcal{C} is a class of Σ-structures (called the models of T). Satisfiability of at least quantifier-free formulae in \mathcal{C} should be decidable.

We need a theory T_I for describing processes and a theory T_E for data. We combine these two theories in a 3-sorted theory A^E_I.
Array-Based Systems

- The sort `INDEX` is constrained by `T_I`;
- The sort `ELEM` is constrained by `T_E`;
- The sort `ARRAY` represents arrays of `ELEM` defined on `INDEX`;
- The ‘read’ operation `_[]` is added to `Σ_I ∪ Σ_E`;
- The class of models of `A_I^E` consists of the three-sorted structures whose reducts are models of `T_I, T_E` and the sort `ARRAY` is interpreted as the set of total functions from indexes to elements and the read operation is interpreted as function application.
Array-Based Systems

- An array-based system on A^E_I with array state variable a is the following pair of formulae:

$$S = \langle I(a), \tau(a, a') \rangle.$$

- A state of an array-based system is an assignment to the variable a in a model of A^E_I.

- A safety problem for S is the following: given a formula $K(a)$, is A^E_I-satisfiable for some n?

$$I(a_0) \land \tau(a_0.a_1) \land \cdots \land \tau(a_{n-1}, a_n) \land K(a_n)$$
Array-Based Systems

- An array-based system on A^E_I with array state variable a is the following pair of formulae:

$$S = \langle I(a), \tau(a, a') \rangle.$$

- A state of an array-based system is an assignment to the variable a in a model of A^E_I.

- A safety problem for S is the following: given a formula $K(a)$, is A^E_I-satisfiable for some n?

$$I(a_0) \land \tau(a_0.a_1) \land \cdots \land \tau(a_{n-1}, a_n) \land K(a_n)$$
Array-Based Systems

- An array-based system on A_E^I with array state variable a is the following pair of formulae:

$$S = \langle I(a), \tau(a, a') \rangle.$$

- A state of an array-based system is an assignment to the variable a in a model of A_E^I.

- A safety problem for S is the following: given a formula $K(a)$, is A_E^I-satisfiable for some n?

$$l(a_0) \land \tau(a_0.a_1) \land \cdots \land \tau(a_{n-1}, a_n) \land K(a_n)$$
Revisiting Backward Reachability

Idea: recast symbolically the backward reachability algorithm

```
function BReach(K)
    i ← 0; BR^0(τ, K) ← K; K^0 ← K
    if A^E_check(BR^0(τ, K) ∧ I) = sat then return unsafe
repeat
    K^{i+1} ← Pre(τ, K^i)
    BR^{i+1}(τ, K) ← BR^i(τ, K) ∨ K^{i+1}
    if A^E_check(BR^{i+1}(τ, K) ∧ I) = sat then return unsafe
    else i ← i + 1
until A^E_check(¬(BR^{i+1}(τ, K) → BR^i(τ, K))) = unsat
return safe
end
```

But this is problematic... unless right formats for I, τ, K are found!
Format for initialization formulae

Format for \(I \): \(\forall^I \)-formulae

\[
\forall i \phi(i, a[i])
\]

where \(i \) is a tuple of variables of sort \(\text{INDEX} \) and \(\phi \) is a quantifier-free \(\Sigma_I \cup \Sigma_E \)-formula\(^2\)

For instance, the formula \(\forall i. a[i] = \text{idle} \) says that all processes are in state \(\text{idle} \).

\(\forall^I \)-formulae can also be used to express invariants

\(^2\)If \(i = i_1, \ldots, i_n \), then \(a[i] \) is the tuple of terms \(a[i_1], \ldots, a[i_n] \) having sort \(\text{ELEM} \).
Format for initialization formulae

Format for \(I \): \(\forall^I \)-formulae

\[
\forall i \phi(i, a[i])
\]

where \(i \) is a tuple of variables of sort \(\text{INDEX} \) and \(\phi \) is a quantifier-free \(\Sigma_I \cup \Sigma_E \)-formula\(^2\)

For instance, the formula \(\forall i. a[i] = \text{idle} \) says that all processes are in state \(\text{idle} \).

\(\forall^I \)-formulae can also be used to express invariants

\(^2\) If \(i = i_1, \ldots, i_n \), then \(a[i] \) is the tuple of terms \(a[i_1], \ldots, a[i_n] \) having sort \(\text{ELEM} \).
The Declarative Perspective

Format for initialization formulae

Format for \(I \): \(\forall^I \)-formulae

\[
\forall i \phi(i, a[i])
\]

where \(i \) is a tuple of variables of sort \(\text{INDEX} \) and \(\phi \) is a quantifier-free \(\Sigma_I \cup \Sigma_E \)-formula\(^2\)

For instance, the formula \(\forall i. a[i] = \text{idle} \) says that all processes are in state \(\text{idle} \).

\(\forall^I \)-formulae can also be used to express invariants

\(^2\)If \(i = i_1, \ldots, i_n \), then \(a[i] \) is the tuple of terms \(a[i_1], \ldots, a[i_n] \) having sort \(\text{ELEM} \).
The Declarative Perspective

Format for unsafety problems formulae

Proposed format for K: \exists^I-formulae

$$\exists i \phi(i, a[i])$$

where i is a tuple of variables of sort INDEX and ϕ is a quantifier-free $\Sigma_I \cup \Sigma_E$-formula.

For instance, the formula

$$\exists i_1 \exists i_2. (i_1 \neq i_2 \land a[i_1] = \text{use} \land a[i_2] = \text{use})$$

expresses that mutual exclusion is violated.
Format for unsafety problems formulae

Proposed format for K: \exists^{-}-formulae

$$\exists i \phi(i, a[i])$$

where i is a tuple of variables of sort INDEX and ϕ is a quantifier-free $\Sigma_I \cup \Sigma_E$-formula.

For instance, the formula

$$\exists i_1 \exists i_2. (i_1 \neq i_2 \land a[i_1] = \text{use} \land a[i_2] = \text{use})$$

expresses that mutual exclusion is violated.
Format for transitions formulae

Proposed format for τ: we use disjunctions of formulae of the kind

$$\exists i \left(\phi_L(i, a[i]) \land a' = \lambda j F(i, a[i], j, a[j]) \right)$$ \hspace{1cm} (1)

where F is a case-defined function (cases are described by quantifier-free formulae).

For instance, the formula

$$\exists i. \left(a[i] = \text{use} \land a' = \lambda j \left(\text{if } j = i \text{ then idle } \text{ else } a[j] \right) \right)$$

is one of the disjunctions of the transition of the ‘bakery’ algorithm.
Format for transitions formulae

Proposed format for τ: we use disjunctions of formulae of the kind

$$\exists i \left(\phi_L(i, a[i]) \land a' = \lambda j F(i, a[i], j, a[j]) \right)$$ (1)

where F is a case-defined function (cases are described by quantifier-free formulae).

For instance, the formula

$$\exists i. \left(a[i] = \text{use} \land a' = \lambda j (\text{if } j = i \text{ then } \text{idle} \text{ else } a[j]) \right)$$

is one of the disjunctions of the transition of the ‘bakery’ algorithm.
Format for transitions formulae

Extended format for τ: results below apply also in case we use disjunctions of formulae in the more liberal format

$$\exists i \exists e \left(\phi_L(e, i, a[i]) \land a' = \lambda j F(e, i, a[i], j, a[j]) \right)$$

(2)

Existentially quantified data variables $\exists e$ are now allowed, but a quantifier elimination algorithm must be available for T_E - crucial for modeling timed systems.

An even more liberal format is obtained by replacing F with a serial relation - crucial for modeling nondeterminism in updates.
Format for transitions formulae

Extended format for τ: results below apply also in case we use disjunctions of formulae in the more liberal format

$$\exists i \exists e \left(\phi_L(e, i, a[i]) \land a' = \lambda j F(e, i, a[i], j, a[j]) \right)$$ (2)

Existentially quantified data variables $\exists e$ are now allowed, but a quantifier elimination algorithm must be available for T_E - crucial for modeling timed systems.

An even more liberal format is obtained by replacing F with a serial relation - crucial for modeling nondeterminism in updates.
Format for transitions formulae

Universal quantifiers in guards

\[\exists i \left(\phi_L(i, a[i]) \land \forall j \psi(i, j, a[i], a[j]) \land a' = \lambda j F(i, a[i], j, a[j]) \right) \]

(3)

can be eliminated by recasting monotonic abstraction.

In this declarative context, monotonic abstraction is simulated by syntactic trasformations.

Roughly speaking, these syntactic trasformations consist in adding a Boolean flag (crashed/active) and in relativizing quantifiers to active processes. [See our [JSAT 2013] paper for details]
Format for transitions formulae

Universal quantifiers in guards

\[\exists i \left(\phi_L(i, a[i]) \land \forall j \psi(i, j, a[i], a[j]) \land a' = \lambda j F(i, a[i], j, a[j]) \right) \]

(3)

can be eliminated by recasting monotonic abstraction.

In this declarative context, monotonic abstraction is simulated by syntactic transformations.

Roughly speaking, these syntactic transformations consist in adding a Boolean flag (crashed/active) and in relativizing quantifiers to active processes. [See our [JSAT 2013] paper for details]
Format for transitions formulae

Universal quantifiers in guards

$$\exists i \left(\phi_L(i, a[i]) \land \forall j \psi(i, j, a[i], a[j]) \land a' = \lambda j F(i, a[i], j, a[j]) \right)$$ (3)

can be eliminated by recasting monotonic abstraction.

In this declarative context, monotonic abstraction is simulated by syntactic trasformations.

Roughly speaking, these syntactic trasformations consist in adding a Boolean flag (crashed/active) and in relativizing quantifiers to active processes. [See our [JSAT 2013] paper for details]
Format for transitions formulae

Universal quantifiers in guards

\[
\exists i \left(\phi_L(i, a[i]) \land \forall j \psi(i, j, a[i], a[j]) \land a' = \lambda j F(i, a[i], j, a[j]) \right)
\]

(3)

can be eliminated by recasting monotonic abstraction.

In this declarative context, monotonic abstraction is simulated by syntactic transformations.

Roughly speaking, these syntactic transformations consist in adding a Boolean flag (crashed/active) and in relativizing quantifiers to active processes. [See our [JSAT 2013] paper for details]
Key points

- **Clusure:** if $H(a)$ is an \exists^l-formula, the formula
 \[Pre(\tau, H) := \exists a' (\tau(a, a') \land H(a')) \]
 is A^E_l-equivalent to an effectively computable \exists^l-formula: trivial and computationally very cheap!

- Safety tests are effective: generally true (e.g. under mild assumptions on the shape of the initial formula).

- Fixpoint tests are effective: true under certain assumptions (but good - still incomplete - algorithms available in general).

- Termination: true under strong assumptions (e.g. embeddability of finitely generated models is a wqo).

See our [LMCS 2010] paper.
Key points

- Clusure: if $H(a)$ is an \exists^I-formula, the formula
 \[Pre(\tau, H) := \exists a' (\tau(a, a') \land H(a')) \]
 is A^E_I-equivalent to an effectively computable \exists^I-formula: trivial and computationally very cheap!

- Safety tests are effective: generally true (e.g. under mild assumptions on the shape of the initial formula).

- Fixpoint tests are effective: true under certain assumptions (but good - still incomplete - algorithms available in general).

- Termination: true under strong assumptions (e.g. embeddability of finitely generated models is a wqo).

See our [LMCS 2010] paper.
Key points

- Clusure: if $H(a)$ is an \exists^I-formula, the formula
 \[\text{Pre}(\tau, H) := \exists a' (\tau(a, a') \land H(a')) \]
 is A_I^E-equivalent to an effectively computable \exists^I-formula: trivial and computationally very cheap!

- Safety tests are effective: generally true (e.g. under mild assumptions on the shape of the initial formula).

- Fixpoint tests are effective: true under certain assumptions (but good - still incomplete - algorithms available in general).

- Termination: true under strong assumptions (e.g. embeddability of finitely generated models is a wqo).

See our [LMCS 2010] paper.
Key points

- Clusure: if $H(a)$ is an \exists^I-formula, the formula $Pre(\tau, H) := \exists a' (\tau(a, a') \land H(a'))$ is A^E_I-equivalent to an effectively computable \exists^I-formula: trivial and computationally very cheap!

- Safety tests are effective: generally true (e.g. under mild assumptions on the shape of the initial formula).

- Fixpoint tests are effective: true under certain assumptions (but good - still incomplete - algorithms available in general).

- Termination: true under strong assumptions (e.g. embeddability of finitely generated models is a wqo).

See our [LMCS 2010] paper.
Key points

- Clusure: if $H(a)$ is an \exists^I-formula, the formula
 $\text{Pre}(\tau, H) := \exists a' (\tau(a, a') \land H(a'))$ is A^E_I-equivalent to an effectively computable \exists^I-formula: trivial and computationally very cheap!

- Safety tests are effective: generally true (e.g. under mild assumptions on the shape of the initial formula).

- Fixpoint tests are effective: true under certain assumptions (but good - still incomplete - algorithms available in general).

- Termination: true under strong assumptions (eg embeddability of finitely generated models is a wqo).

See our [LMCS 2010] paper.
1. The core: a brief review on WSTS

2. The Declarative Perspective

3. The tool MCMT

4. Software Model Checking Applications
The tool MCMT

- [link] http://users.mat.unimi.it/users/ghilardi/mcmt/
- Obvious client-server architecture
- Client generates proof obligations (satisfiability modulo theories problems)
- Server = state-of-the-art SMT solver (invoked via API)\(^3\)
- Various heuristics implemented (including array acceleration and some interpolation-like abstraction/refinement loops).
- More than 100 problems (from various sources) included in the current distribution 2.5.2.

\(^3\)Yices is the SMT-solver employed in MCMT.
A case study: fault tolerant protocols

We analyzed a classical solution to the reliable broadcast problem (joint work with F. Alberti, E. Pagani, G. P. Rossi).

T. D. Chandra and S. Toueg.

Time and message efficient reliable broadcasts.

A case study: fault tolerant protocols

Paper Overview

1. First Protocol for *Stopping-failure* model.
 ⇒ This model is refined to *Send-Omission* model.
2. First Protocol is unsafe for this model.
4. Third modified version: now safe for *Send-Omission* model!
A case study: fault tolerant protocols

MCMT confirms all that! In the last case, a little proof plan was needed (we asked the tool to first prove some lemmas suggested by us and then to attack the main task).

<table>
<thead>
<tr>
<th>Problem</th>
<th>result</th>
<th>depth</th>
<th>#nodes</th>
<th>#deleted</th>
<th>#vars</th>
<th>#SMT calls</th>
<th>#inv.</th>
<th>time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crash</td>
<td>SAFE</td>
<td>13</td>
<td>113</td>
<td>21</td>
<td>4</td>
<td>1731</td>
<td>0</td>
<td>0.75</td>
</tr>
<tr>
<td>Send_Omission (1)</td>
<td>UNSAFE</td>
<td>12</td>
<td>464</td>
<td>26</td>
<td>3</td>
<td>16253</td>
<td>0</td>
<td>14.16</td>
</tr>
<tr>
<td>Send_Omission (2)</td>
<td>UNSAFE</td>
<td>34</td>
<td>9679</td>
<td>770</td>
<td>6</td>
<td>1118959</td>
<td>0</td>
<td>30m 18.15s</td>
</tr>
<tr>
<td>Send_Omission (3)</td>
<td>SAFE</td>
<td>32</td>
<td>571</td>
<td>72</td>
<td>4</td>
<td>547054</td>
<td>94 (+7)</td>
<td>6m 57.19s</td>
</tr>
</tbody>
</table>
Algorithm 1 Pseudo-code for Algorithms 1, 2, and 3

Initialization:
if \(p \) is the sender
 then \(\text{estimate}_p \leftarrow m; \text{coord}_id_p \leftarrow 0; \)
 else \(\text{estimate}_p \leftarrow \bot; \text{coord}_id_p \leftarrow -1; \)
 \(\text{state}_p \leftarrow \text{undecided}; \)
End Initialization

for \(c \leftarrow 1, 2, \ldots \) do // Process \(c \) becomes coordinator for four rounds
 Round 1:
 All undecided processes \(p \) send request \((\text{estimate}_p, \text{coord}_id_p)\) to \(c \);
 if \((c \) does not receive any request) then it skips rounds 2 to 4;
 else \(\text{estimate}_c \leftarrow \text{estimate}_p \) with largest \(\text{coord}_id_p \);
 Round 2:
 \(c \) multicasts \(\text{estimate}_c \);
 All undecided processes \(p \) that receive \(\text{estimate}_c \) do
 \(\text{estimate}_p \leftarrow \text{estimate}_c \) and \(\text{coord}_id_p \leftarrow c; \)
 Round 3:
 All undecided processes \(p \) that do not receive \(\text{estimate}_c \) send(NACK) to \(c \);
 Round 4:
 if \((c \) does not receive any NACK) then \(c \) multicasts \textit{Decide}; else \(c \) HALTS;
 All undecided processes \(p \) that receive \textit{Decide} do
 \(\text{decision}_p \leftarrow \text{estimate}_p; \)
 \(\text{state}_p \leftarrow \text{DECIDED}; \)
end for
Further case studies: simulations via counter abstractions

Further fault-tolerant protocols require resilience guards. This is the case of the ‘General Omission’ from the above paper or of byzantine broadcast primitive from

T.K. Srikanth and S. Toueg.
Simulating authenticated broadcasts to derive simple fault-tolerant algorithms.

Further case studies: simulations via counter abstractions

In principle, array-based formalisms support reasoning on resilience guards: one uses suitable transitions loops like

```c
int I, J = 0;
for(I = 0; I ≤ N; I ++){if(received_from[I] == 1) J ++;}
```

and then uses the value of \(J \) in resilience guards.

In practice, the actual heuristics for preventing non-termination implemented in MCMT may fail to succeed when such solutions are adopted. Some success can be nevertheless obtained by specifying ad hoc abstraction parameters.
Further case studies: simulations via counter abstractions

In principle, array-based formalisms support reasoning on resilience guards: one uses suitable transitions loops like

```plaintext
int I, J = 0;
for (I = 0; I ≤ N; I++)
{  if (received_from[I] == 1) J++;
}
```

and then uses the value of \(J \) in resilience guards.

In practice, the actual heuristics for preventing non-termination implemented in MCMT may fail to succeed when such solutions are adopted. Some success can be nevertheless obtained by specifying ad hoc abstraction parameters.
Further case studies: simulations via counter abstractions

While waiting for implementation of required additional features (some cardinality constraint reasoning, two-dimensional arrays handling, more support for decidable $\exists^+ \forall^*$-fragments), we made the following experiment, leading to somewhat surprising results (joint work with F.Alberti, E.Pagani, A.Orsini).

We manually built counter abstraction simulations of the above verification problems and run both MCMT and some well-established IC3-based model-checkers on the resulting specifications.

Despite the fact that MCMT only have at its disposal basic acceleration techniques for handling numerical problems (i.e. problems where arrays are not involved, this is the case of counting abstractions), the tool was nevertheless able to solve them.
Further case studies: simulations via counter abstractions

<table>
<thead>
<tr>
<th>File</th>
<th>MCMT Depth</th>
<th>Nodes</th>
<th>MCMT Time</th>
<th>Z3 (μZ) Time</th>
<th>nuXmv Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>crash.mcmt</td>
<td>8</td>
<td>39</td>
<td>0.19”</td>
<td>0.69”</td>
<td>0.36”</td>
</tr>
<tr>
<td>sndom.mcmt</td>
<td>21</td>
<td>1772</td>
<td>77”</td>
<td>846”</td>
<td>22”</td>
</tr>
<tr>
<td>genom.mcmt</td>
<td>42</td>
<td>10102</td>
<td>6175”</td>
<td>t.o.</td>
<td>t.o.</td>
</tr>
<tr>
<td>byz_unforg.mcmt</td>
<td>7</td>
<td>51</td>
<td>0.42”</td>
<td>0.19”</td>
<td>0.04”</td>
</tr>
<tr>
<td>byz_corr.mcmt</td>
<td>7</td>
<td>131</td>
<td>6.16”</td>
<td>0.13”</td>
<td>0.24”</td>
</tr>
<tr>
<td>byz_relayA.mcmt</td>
<td>6</td>
<td>38</td>
<td>0.23”</td>
<td>0.07”</td>
<td>0.13”</td>
</tr>
<tr>
<td>byz_relayB.mcmt</td>
<td>8</td>
<td>185</td>
<td>5.21”</td>
<td>0.05”</td>
<td>0.16”</td>
</tr>
</tbody>
</table>
1. The core: a brief review on WSTS
2. The Declarative Perspective
3. The tool MCMT
4. Software Model Checking Applications
Monotonic Abstraction via Instantiation

Let us examine syntactic monotonic abstraction from another point of view. If we take an existential formula K and a transition τ_h containing a universal guard, the preimage $\text{Pre}(\tau_h, K)$ has the form

$$\exists i \forall k \psi(i, k, a[i], a[k]), \quad (4)$$

where ψ is quantifier-free.

Instead of modifying syntactically τ_h in order to eliminate from it the universal guard, we could over-approximate (4) via an existential formula at runtime (i.e. during backward search).
Monotonic Abstraction via Instantiation

Let us examine syntactic monotonic abstraction from another point of view. If we take an existential formula K and a transition τ_h containing a universal guard, the preimage $\text{Pre}(\tau_h, K)$ has the form

$$\exists i \forall k \psi(i, k, a[i], a[k]),$$

(4)

where ψ is quantifier-free. Instead of modifying syntactically τ_h in order to eliminate from it the universal guard, we could over-approximate (4) via an existential formula at runtime (i.e. during backward search).
Monotonic Abstraction via Instantiation

The proposed overapproximation is the existential formula

$$\exists i \bigwedge_{t} \psi(i, t, a[i], a[t]), \quad (5)$$

varying t among a set of terms X. We may call (5) a **syntactic monotonic abstraction of the formula** (4) (notice that this notion is relative to X).

If one take the obvious choice $X := i$, we do not get in the end anything different from syntactic monotonic abstraction applied to transitions. But the situation becomes different (we have more flexibility), when there is some arithmetics on indexes.
Monotonic Abstraction via Instantiation

The proposed overapproximation is the existential formula

$$\exists i \bigwedge_t \psi(i, t, a[i], a[t]),$$

(5)

varying t among a set of terms X. We may call (5) a **syntactic monotonic abstraction of the formula** (4) (notice that this notion is relative to X).

If one take the obvious choice $X := i$, we do not get *in the end* anything different from syntactic monotonic abstraction applied to transitions. But the situation becomes different (we have more flexibility), when there is some arithmetics on indexes.
Array Acceleration

This observation can be exploited in software model checking when dealing with programs for arrays of unbounded length. We show the technique by an example.

The following ‘initialize-and-test’ simple example is considered problematic for CEGAR techniques:

```c
for(I=0; I!= a_length; I++) a[I]=0;
for(J=0; J!= a_length; J++) assert(a[J]==0);
```
Array Acceleration

This observation can be exploited in software model checking when dealing with programs for arrays of unbounded length. We show the technique by an example.

The following ‘initialize-and-test’ simple example is considered problematic for CEGAR techniques:

```c
for(I=0; I!= a_length; I++) a[I]=0;
for(J=0; J!= a_length; J++) assert(a[J]==0);
```
Array Acceleration

Indeed backward search trivially diverges here:

\[
p = 2 \land J \neq a_length \land a[J] \neq 0 \\
p = 2 \land J + 1 \neq a_length \land a[J + 1] \neq 0 \land a[J] = 0 \\
\ldots
\[
p = 2 \land J + n \neq a_length \land a[J + n] \neq 0 \land \bigwedge_{k=J}^{J+n-1} a[k] = 0 \\
\ldots
\]
Array Acceleration

Indeed backward search trivially diverges here:

\[p = 2 \land J \neq a_{\text{length}} \land a[J] \neq 0 \]
\[p = 2 \land J + 1 \neq a_{\text{length}} \land a[J + 1] \neq 0 \land a[J] = 0 \]
\[\ldots \]

\[p = 2 \land J + n \neq a_{\text{length}} \land a[J + n] \neq 0 \land \bigwedge_{k=J}^{J+n-1} a[k] = 0 \]
\[\ldots \]
Array Acceleration

To stop divergence, we need to re-introduce quantifiers. One possible solution is to summarize the effect of n executions of a loop into a single transition, representing transitive closure. This technique is known as *acceleration* in model-checking and has been extensively investigated for fragments of Presburger arithmetic.

In the example above, we can accelerate the two loops, resulting in:

\[
\exists n > 0 \left(p = 1 \land \forall k \ (l \leq k < l + n \rightarrow k \neq a_length) \land p' = 1 \land l' = l + n \land J' = J \land a' = \text{wr}(a, [l, l + n - 1], 0) \right)
\]

\[
\exists n > 0 \left(p = 2 \land \forall k \ (J \leq k < J + n \rightarrow k \neq a_length \land a[k] = 0) \land p' = 2 \land l' = l \land J' = J + n \land a' = a \right)
\]
Array Acceleration

To stop divergence, we need to re-introduce quantifiers. One possible solution is to summarize the effect of n executions of a loop into a single transition, representing transitive closure. This technique is known as *acceleration* in model-checking and has been extensively investigated for fragments of Presburger arithmetic.

In the example above, we can accelerate the two loops, resulting in

$$
\exists n > 0 \left(p = 1 \land \forall k \ (l \leq k < l + n \rightarrow k \neq a_length) \land p' = 1 \land l' = l + n \land J' = J \land a' = wr(a, [l, l + n - 1], 0) \right);
$$

$$
\exists n > 0 \left(p = 2 \land \forall k \ (J \leq k < J + n \rightarrow k \neq a_length \land a[k] = 0) \land p' = 2 \land l' = l \land J' = J + n \land a' = a \right).
$$
Array Acceleration

The plan is now clear: we got existential transitions with universal guards, so let us apply monotonic abstraction to them!

The idea is quite successful indeed in the applications: a lot of benchmarks are easily solved.
Array Acceleration

The plan is now clear: we got existential transitions with universal guards, so let us apply monotonic abstraction to them!

The idea is quite successful indeed in the applications: a lot of benchmarks are easily solved.
Monotonic Abstraction for Arrays

There are however remarkable differences in the use of abstraction here wrt the distributed case.

- Monotonic abstraction here is just an abstraction technique among many others (we lose intuitive justifications in terms of crash failures).
- Monotonic abstraction can produce spurious traces, but here we can ignore such spurious traces: no refinement is needed, one simply drops unsafe traces containing accelerations (if the system is unsafe, unsafety should be discovered without acceleration!)
- Our monotonic abstraction is purely syntactic, hence it can be used in combination with other abstraction techniques (in MCMT it is combined with predicate abstraction via interpolants).
Monotonic Abstraction for Arrays

There are however remarkable differences in the use of abstraction here wrt the distributed case.

- Monotonic abstraction here is just an abstraction technique among many others (we lose intuitive justifications in terms of crash failures).

- Monotonic abstraction can produce spurious traces, but here we can *ignore* such spurious traces: no refinement is needed, one simply drops unsafe traces containing accelerations (if the system is unsafe, unsafety should be discovered without acceleration!)

- Our monotonic abstraction is purely syntactic, hence it can be used *in combination with other abstraction techniques* (in MCMT it is combined with predicate abstraction via interpolants).
Monotonic Abstraction for Arrays

There are however remarkable differences in the use of abstraction here wrt the distributed case.

- Monotonic abstraction here is just an abstraction technique among many others (we lose intuitive justifications in terms of crash failures).

- Monotonic abstraction can produce spurious traces, but here we can ignore such spurious traces: no refinement is needed, one simply drops unsafe traces containing accelerations (if the system is unsafe, unsafety should be discovered without acceleration!)

- Our monotonic abstraction is purely syntactic, hence it can be used in combination with other abstraction techniques (in MCMT it is combined with predicate abstraction via interpolants).
Monotonic Abstraction for Arrays

There are however remarkable differences in the use of abstraction here wrt the distributed case.

- Monotonic abstraction here is just an abstraction technique among many others (we loose intuitive justifications in terms of crash failures).
- Monotonic abstraction can produce spurious traces, but here we can **ignore** such spurious traces: no refinement is needed, one simply drops unsafe traces containing accelerations (if the system is unsafe, unsafety should be discovered without acceleration!)
- Our monotonic abstraction is purely syntactic, hence it can be used **in combination with other abstraction techniques** (in MCMT it is combined with predicate abstraction via interpolants).
The **BOOSTER Tool**

An acceleration-based software model-checker

F. Alberti, S. Ghilardi, and N. Sharygina.
Booster: an acceleration-based verification framework for array programs
BOOSTER: Experiments

<table>
<thead>
<tr>
<th>FILENAME</th>
<th>STATUS</th>
<th>ACC+ABS</th>
<th>ABS</th>
<th>ACC</th>
</tr>
</thead>
<tbody>
<tr>
<td>data_structures/set_multi_proc.c</td>
<td>SAFE</td>
<td>1.600</td>
<td>TO</td>
<td>TO</td>
</tr>
<tr>
<td>data_structures/set_multi_proc_trivial.c</td>
<td>SAFE</td>
<td>0.208</td>
<td>0.208</td>
<td>0.314</td>
</tr>
<tr>
<td>data_structures/set_multi_proc_unsafe.c</td>
<td>UNSAFE</td>
<td>1.946</td>
<td>1.257</td>
<td>2.102</td>
</tr>
<tr>
<td>sanfoundry/06.c</td>
<td>SAFE</td>
<td>0.016</td>
<td>TO</td>
<td>0.016</td>
</tr>
<tr>
<td>sanfoundry/07.c</td>
<td>SAFE</td>
<td>4.623</td>
<td>TO</td>
<td>TO</td>
</tr>
<tr>
<td>sanfoundry/08.c</td>
<td>SAFE</td>
<td>2.926</td>
<td>TO</td>
<td>TO</td>
</tr>
<tr>
<td>sanfoundry/09.c</td>
<td>SAFE</td>
<td>8.447</td>
<td>TO</td>
<td>TO</td>
</tr>
<tr>
<td>sanfoundry/10.c</td>
<td>SAFE</td>
<td>0.157</td>
<td>TO</td>
<td>TO</td>
</tr>
<tr>
<td>sanfoundry/24.c</td>
<td>SAFE</td>
<td>0.101</td>
<td>0.071</td>
<td>0.085</td>
</tr>
<tr>
<td>sanfoundry/27.c</td>
<td>SAFE</td>
<td>0.066</td>
<td>0.076</td>
<td>108.724</td>
</tr>
<tr>
<td>sanfoundry/28.c</td>
<td>SAFE</td>
<td>0.676</td>
<td>0.151</td>
<td>63.932</td>
</tr>
<tr>
<td>sanfoundry/39.c</td>
<td>SAFE</td>
<td>1.832</td>
<td>TO</td>
<td>TO</td>
</tr>
<tr>
<td>sorting/bubblesort.c</td>
<td>SAFE</td>
<td>0.233</td>
<td>0.107</td>
<td>0.407</td>
</tr>
<tr>
<td>sorting/bubblesort_unsafe.c</td>
<td>UNSAFE</td>
<td>0.090</td>
<td>0.090</td>
<td>0.135</td>
</tr>
<tr>
<td>sorting/selectionsort.c</td>
<td>SAFE</td>
<td>85.326</td>
<td>TO</td>
<td>TO</td>
</tr>
<tr>
<td>sorting/selectionsort_unsafe.c</td>
<td>UNSAFE</td>
<td>1.500</td>
<td>1.658</td>
<td>1.629</td>
</tr>
<tr>
<td>standard/allDiff_safe.c</td>
<td>SAFE</td>
<td>0.010</td>
<td>0.044</td>
<td>0.010</td>
</tr>
<tr>
<td>standard/allDiff_unsafe.c</td>
<td>UNSAFE</td>
<td>0.007</td>
<td>0.036</td>
<td>0.006</td>
</tr>
<tr>
<td>svcomp/loops/array_false-unreach-label.c</td>
<td>UNSAFE</td>
<td>0.135</td>
<td>0.039</td>
<td>0.094</td>
</tr>
<tr>
<td>svcomp/loops/array_true-unreach-label.c</td>
<td>SAFE</td>
<td>0.169</td>
<td>0.057</td>
<td>TO</td>
</tr>
<tr>
<td>svcomp/loops/compact_false-unreach-label.c</td>
<td>UNSAFE</td>
<td>0.010</td>
<td>0.051</td>
<td>0.010</td>
</tr>
<tr>
<td>svcomp/loops/heavy_false-unreach-label.c</td>
<td>SAFE</td>
<td>0.363</td>
<td>0.277</td>
<td>TO</td>
</tr>
<tr>
<td>svcomp/loops/heavy_true-unreach-label.c</td>
<td>UNSAFE</td>
<td>0.296</td>
<td>0.217</td>
<td>0.393</td>
</tr>
<tr>
<td>svcomp/loops/linear_search_false-unreach-label.c</td>
<td>UNSAFE</td>
<td>0.154</td>
<td>0.053</td>
<td>0.062</td>
</tr>
<tr>
<td>svcomp/loops/linear_search_true-unreach-label.c</td>
<td>SAFE</td>
<td>0.016</td>
<td>0.101</td>
<td>TO</td>
</tr>
<tr>
<td>svcomp/loops/nec11_false-unreach-label.c</td>
<td>UNSAFE</td>
<td>0.053</td>
<td>0.040</td>
<td>0.75</td>
</tr>
<tr>
<td>svcomp/loops/nec40_true-unreach-label.c</td>
<td>SAFE</td>
<td>0.010</td>
<td>0.607</td>
<td>0.16</td>
</tr>
<tr>
<td>svcomp/loops/string_true-unreach-label.c</td>
<td>SAFE</td>
<td>0.860</td>
<td>0.781</td>
<td>1.04</td>
</tr>
<tr>
<td>svcomp/loops/sum_array_false-unreach-label.c</td>
<td>UNSAFE</td>
<td>0.068</td>
<td>0.059</td>
<td>0.104</td>
</tr>
<tr>
<td>svcomp/loops/sum_array_true-unreach-label.c</td>
<td>SAFE</td>
<td>0.070</td>
<td>0.080</td>
<td>TO</td>
</tr>
</tbody>
</table>
BOOSTER: Comparisons (?)

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>COMPASS</th>
<th>Z3 HORN</th>
<th>ARMC</th>
<th>DUALITY</th>
<th>BOOSTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>init</td>
<td>0.01</td>
<td>0.06</td>
<td>0.15</td>
<td>0.72</td>
<td>0.01</td>
</tr>
<tr>
<td>init_non_constant</td>
<td>0.02</td>
<td>0.08</td>
<td>0.48</td>
<td>6.60</td>
<td>0.01</td>
</tr>
<tr>
<td>init_partial</td>
<td>0.01</td>
<td>0.03</td>
<td>0.14</td>
<td>2.60</td>
<td>0.01</td>
</tr>
<tr>
<td>init_partial_buggy</td>
<td>0.02</td>
<td>0.01</td>
<td>0.07</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>init_even</td>
<td>0.04</td>
<td>TO</td>
<td>?</td>
<td>TO</td>
<td>0.02</td>
</tr>
<tr>
<td>init_even_buggy</td>
<td>0.04</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.01</td>
</tr>
<tr>
<td>copy</td>
<td>0.01</td>
<td>0.04</td>
<td>0.20</td>
<td>1.40</td>
<td>0.01</td>
</tr>
<tr>
<td>copy_partial</td>
<td>0.01</td>
<td>0.04</td>
<td>0.21</td>
<td>1.80</td>
<td>0.01</td>
</tr>
<tr>
<td>copy_odd</td>
<td>0.04</td>
<td>TO</td>
<td>?</td>
<td>4.50</td>
<td>TO</td>
</tr>
<tr>
<td>copy_odd_buggy</td>
<td>0.05</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.07</td>
</tr>
<tr>
<td>reverse</td>
<td>0.03</td>
<td>0.12</td>
<td>2.28</td>
<td>8.50</td>
<td>0.02</td>
</tr>
<tr>
<td>reverse_buggy</td>
<td>0.04</td>
<td>0.01</td>
<td>0.08</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>swap</td>
<td>0.12</td>
<td>0.41</td>
<td>3.0</td>
<td>40.60</td>
<td>0.12</td>
</tr>
<tr>
<td>swap_buggy</td>
<td>0.11</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.03</td>
</tr>
<tr>
<td>double_swap</td>
<td>0.16</td>
<td>1.37</td>
<td>4.4</td>
<td>TO</td>
<td>0.34</td>
</tr>
<tr>
<td>check_strcpy</td>
<td>0.07</td>
<td>0.05</td>
<td>0.15</td>
<td>0.62</td>
<td>0.02</td>
</tr>
<tr>
<td>check_memcpy</td>
<td>0.04</td>
<td>0.04</td>
<td>0.20</td>
<td>16.30</td>
<td>0.02</td>
</tr>
<tr>
<td>find</td>
<td>0.02</td>
<td>0.01</td>
<td>0.08</td>
<td>0.38</td>
<td>0.26</td>
</tr>
<tr>
<td>find_first_nonnull</td>
<td>0.02</td>
<td>0.01</td>
<td>0.08</td>
<td>0.39</td>
<td>0.09</td>
</tr>
<tr>
<td>array_append</td>
<td>0.02</td>
<td>0.04</td>
<td>1.76</td>
<td>1.50</td>
<td>0.02</td>
</tr>
<tr>
<td>merge_interleave</td>
<td>0.09</td>
<td>0.04</td>
<td>?</td>
<td>1.50</td>
<td>0.15</td>
</tr>
<tr>
<td>merge_interleave_buggy</td>
<td>0.11</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Conclusions

- Monotonic abstraction is a technique originated in model checking parameterized distributed systems.
- In a declarative context, monotonic abstraction can be turned to a syntactic operation.
- This syntactic reformulation can be combined with acceleration in other applications domains (e.g., model checking sequential array programs).
- The resulting technique turns out to be simple, easily implementable and quite effective.
- It can also be integrated in a natural way with other abstraction methodologies.
Conclusions

- Monotonic abstraction is a technique originated in model checking parameterized distributed systems.
- In a declarative context, monotonic abstraction can be turned to a **syntactic** operation.
- This syntactic reformulation can be combined with acceleration in other applications domains (e.g., model checking sequential array programs).
- The resulting technique turns out to be **simple**, **easily implementable** and quite **effective**.
- It can also be **integrated** in a natural way with other abstraction methodologies.
Conclusions

- Monotonic abstraction is a technique originated in model checking parameterized distributed systems.
- In a declarative context, monotonic abstraction can be turned to a **syntactic** operation.
- This syntactic reformulation can be combined with acceleration in other applications domains (e.g., model checking sequential array programs).
- The resulting technique turns out to be **simple, easily implementable and quite effective**.
- It can also be **integrated** in a natural way with other abstraction methodologies.
Conclusions

- Monotonic abstraction is a technique originated in model checking parameterized distributed systems.
- In a declarative context, monotonic abstraction can be turned to a syntactic operation.
- This syntactic reformulation can be combined with acceleration in other applications domains (e.g., model checking sequential array programs).
- The resulting technique turns out to be simple, easily implementable and quite effective.
- It can also be integrated in a natural way with other abstraction methodologies.
Conclusions

- Monotonic abstraction is a technique originated in model checking parameterized distributed systems.
- In a declarative context, monotonic abstraction can be turned to a syntactic operation.
- This syntactic reformulation can be combined with acceleration in other applications domains (e.g., model checking sequential array programs).
- The resulting technique turns out to be simple, easily implementable and quite effective.
- It can also be integrated in a natural way with other abstraction methodologies.