
Lazy Abstraction with Interpolants for Arrays

Francesco Alberti1, Roberto Bruttomesso2, Silvio Ghilardi2, Silvio Ranise3,
Natasha Sharygina1

1 Università della Svizzera Italiana, Lugano, Switzerland
2 Università degli Studi di Milano, Milan, Italy

3 FBK-Irst, Trento, Italy

Abstract. Lazy abstraction with interpolants has been shown to be
a powerful technique for verifying imperative programs. In presence of
arrays, however, the method shows an intrinsic limitation, due to the
fact that successful invariants usually contain universally quantified vari-
ables, which are not present in the program specification. In this work
we present an extension of the interpolation-based lazy abstraction in
which arrays of unknown length can be handled in a natural manner. In
particular, we exploit the Model Checking Modulo Theories framework,
to derive a backward reachability version of lazy abstraction that em-
beds array reasoning. The approach is generic, in that it is valid for both
parameterized systems and imperative programs. We show by means
of experiments that our approach can synthesize and prove universally
quantified properties over arrays in a completely automatic fashion.

1 Introduction

The automatic verification of software is a long standing scientific challenge. A
promising line of research is that in which Model Checking techniques are em-
ployed to automatically traverse the state-space of a program, and check it with
respect to a user-specified property. Since the problem is undecidable, complete
and fully automatic techniques cannot exist and the programmer must provide
additional annotations describing, for instance, loop invariants. It is well-known
that the task of providing such annotations is far from trivial. In order to sig-
nificantly alleviate the annotation burden, it is crucial to employ abstraction
techniques. For example, Predicate Abstraction [12], the CEGAR approach [3],
or Lazy Abstraction [15] have been shown successful and are nowadays employed
in many state-of-the-art software verification tools. In particular, Lazy Abstrac-
tion is capable of tuning the abstraction by using different degrees of precision for
different parts of the program by keeping track of both the control-flow graph,
which describes how the program locations are traversed, and the data-flow,
which describes what holds at a program location. The control-flow is repre-
sented explicitly, while the data-flow is symbolically encoded with quantifier-free
first-order formulæ and it is subjected to abstraction. The procedure is therefore
based on a CEGAR loop in which the control-flow graph is iteratively unwinded,
and the data in the newly explored locations is overapproximated. When reach-
ing an error location, if the path is spurious—i.e. the quantifier-free formula

representing the manipulations of the data along the path is unsatisfiable, the
abstraction along the path is refined. In state-of-the-art methods, this is done
by means of interpolants [14,20]. The procedure terminates when a non-spurious
path is found, or when reaching an inductive invariant.

When arrays come into the picture the situation is complicated by at least
two problems. First, the need of handling quantified formulæ (as opposed to just
quantifier-free) to take care of meaningful array properties; e.g., a typical post-
condition of a sorting algorithm is the following universally quantified formula:

∀i, j. (0 ≤ i < j ≤ a.length)⇒ a[i] ≤ a[j],

expressing the fact that the array a is sorted, where a.length represents the
symbolic size of a. Second, the difficulty of computing quantifier-free interpolants.
In [17], it is shown that quantifiers must occur in interpolants of quantifier-free
formulæ for the “standard” theory of arrays.

This paper contributes a new verification approach that addresses the above
problems. It redefines the lazy abstraction method based on interpolation (which
is known to be one of the most effective approaches in program verification)
and makes it possible to reason about arrays of unknown length. For that, it
exploits the framework behind the Model Checking Modulo Theory approach
(mcmt) [9, 10]. The reasoning about arrays and the corresponding quantified
formula is performed by means of the symbolic backward reachability algorithm
now extended with the interpolation-based abstraction refinement techniques.
This combination is able to generate the quantified predicates required for the
synthesis of the quantified inductive invariants needed to establish the validity of
the program assertions. Notably, our abstraction-based approach can be applied
to enhance the verification of array-based systems (a wide class of infinite-state
systems currently handled by mcmt). We implemented the new approach and
verified various common-use programs over arrays.

The paper is organized as follows. Section 2 recalls basic notions about array-
based systems as used in MCMT and demonstrates how sequential programs
can be specified using this model. Section 3 introduces the new lazy abstraction
approach and discusses its completeness and termination. Experiments are pre-
sented in Section 4. We conclude in Section 5. Proofs of claims made within the
paper are worked out in the Appendix A.

Related Work. The work described in this paper can be considered as part
of the broad line of research in model-checking for infinite state systems that
makes use of abstraction-refinement techniques to cope with the infinite search
space [3,12,15]. A challenging task in this setting is to find the right predicates
to ensure convergence; these predicates may be extracted, e.g., from the proof
of unsatisfiability of an infeasible abstract path [14,20]. When arrays come into
the picture the situation is complicated by the need of using quantifiers to ex-
press meaningful properties (such as “sortedness”). Earlier work in predicate
abstraction approached this issue by using Skolem constants [7], indexed pred-
icates [23], or range predicates [16]. Approaches based on templates [24] may

synthesize more expressive formulæ, but they require manual specification of
templates and predicates. To the best of our knowledge, the closest related work
to ours is that of [22], where a backward reachability procedure for universally
quantified assertions over arrays is described. As in our approach the procedure
visits backward the set of unsafe states to find an intersection with the initial
ones, by performing the coarsest possible abstraction first. However in [22] the
computed abstraction is then refined with predicates obtained by simulating the
“pre” operator on a spurious trace, and by performing classical predicate ab-
straction (requiring injection of, in the worst case, exponentially many bound
constraints between indexes), whereas in our approach we achieve refinement by
means of interpolants.

Proving properties over arrays has also been extensively studied in the con-
text of abstract domains other than predicate abstraction. The approaches of [4,
5, 11, 13], for example, follow a line of research in which arrays are divided into
segments, based on the access and write operations in the programs. Several
techniques are employed to avoid the combinatorial explosion, e.g., by means of
the introduction of a suitable widening operator. These approaches have been
shown to be useful even at an industrial-scale level [4] to automatically infer a
wide range of properties. The goal of our approach is to automatically verify
that the program satisfy expressive properties.

A further promising direction of research relies on saturation-based theorem-
provers [18, 19] to generate invariants over arrays. These approaches may in
principle produce more expressive invariants than ours, but they require, on the
other hand, to instruct the prover with axioms for handling arithmetic. In our
setting, instead, we use SMT techniques to take care of the necessary arithmetic
operations.

Backward reachability of array-based systems, implemented in the tool mcmt,
has been successfully used for checking the safety of several classes of distributed
algorithms [9]. The work in this paper shows that mcmt combined with Lazy
Abstraction can also be used for verifying expressive properties of sequential pro-
grams manipulating arrays. We also characterize when our method behaves as a
decision procedure for establishing the safety of classes of array-based systems
that cover existing results (e.g., [6]).

2 Background notions on MCMT

We assume the usual syntactic and semantic notions of many-sorted first-order
logic with equality. We use lower-case latin letters x, a, i, e, . . . for free variables;
for tuples of free variables we use underlined letters x, a, i, e, . . . or bold face
letters like a,v, With E(x) we denote that the syntactic expression (term,
formula, tuple of terms or of formulæ) E contains at most the free variables
taken from the tuple x. According to [21], a theory T is a pair (Σ, C), where
Σ is a signature and C is a class of Σ-structures; the structures in C are called
the models of T . A Σ-formula ϕ is T -satisfiable if there exists a Σ-structure M
in C such that ϕ is true in M under a suitable assignment to the free variables

of ϕ (in symbols, M |= ϕ); it is T -valid (in symbols, T |= ϕ) if its negation
is T -unsatisfiable. Two formulæ ϕ1 and ϕ2 are T -equivalent if ϕ1 ↔ ϕ2 is T -
valid; ψ1 T -entails ψ2 (in symbols, ψ1 |=T ψ2) iff ψ1 → ψ2 is T -valid. The
satisfiability modulo the theory T (SMT (T)) problem amounts to establishing
the T -satisfiability of quantifier-free Σ-formulæ. A theory T has quantifier-free
interpolation iff there exists an algorithm that, given two quantifier free formulæ
φ, ψ such that φ∧ψ is T -unsatisfiable, returns a formula θ such that: (i) φ |=T θ;
(ii) θ ∧ ψ is T -unsatisfiable; (iii) only the free variables common to φ and in ψ
occur in θ.

Array-based Transition Systems and their Safety. We briefly recall some of the
notions underlying the framework of mcmt; for an extensive discussion, the
reader is pointed to [9]. Array-based systems are a particular class of guarded
assignment systems whose state variables comprise arrays. They are represented
symbolically using certain classes of formulæ and are endowed with theories spec-
ifying the algebraic structures of the indexes and elements of arrays. Roughly,
the input language of mcmt for specifying array-based systems can be seen as
a parameterized extension of the one used by UCLID (http://www.cs.cmu.
edu/˜uclid). Formally, it is a sub-set of multi-sorted first-order logic extended
with theories. In particular, we assume a (mono-sorted) theory TI = (ΣI , CI) for
indexes of arrays and a multi-sorted theory TE = (ΣE , CE) for the elements of
the arrays. The unique sort of TI is called INDEX and a sort of TE is called ELEM`,
where ` ranges over a given (finite) set. We also assume that the SMT (TI)- and
SMT (TE)-problems are decidable and that TI and TE have quantifier-
free interpolation (further hypotheses will be discussed below in connection
to specific model-checking features).

The theory AEI = (Σ, C), specifying the algebraic structures of the array state
variables manipulated by an array-based system is obtained by “composing” TI
and TE as follows. The sort symbols of AEI are INDEX, ELEM`, and ARRAY`, its
signature Σ contains all the symbols in the (disjoint) union ΣI ∪ ΣE ∪ { []`}`
where []` : ARRAY`×INDEX→ ELEM` are the usual “read” operations of an array
on a given cell, and a structureM is in the class C of the models of AEI when (i)
the restrictions ofM to ΣI , ΣE are models of TI , TE , respectively, (ii) the sorts
ARRAY` are interpreted as (total) functions from INDEXM to ELEMM` , and (iii)
the operations []` are interpreted as function applications. In the following, the
subscript ` will be omitted to simplify notation.

In this paper, to simplify technicalities, we adopt the following variant of the
notion of an array-based system [9]. An array-based system (for TI , TE) is
a pair S = 〈v, {τh}h〉, where v = a, c,d is the tuple of system variables and is
such that

- the tuple a = a0, . . . , as contains variables of sort ARRAY;

- the tuple c = c0, . . . , ct contains variables of sort INDEX (called, counters);

- the tuple d = d0, . . . , du contains variables of sort ELEM (called, simple vari-
ables).

http://www.cs.cmu.edu/~uclid
http://www.cs.cmu.edu/~uclid

All variables are sorted, e.g., for a, this means that to each i = 0, . . . , t is assigned
some ` so that ai is of type ARRAY`. The variable d0 ranges over a finite set
{l0, ..., ln} of program locations and is usually denoted with pc (short for program
counter) instead of d0. Among the program locations, we shall distinguish an
initial location lI and an error location lE . It is assumed that the initial state
of the array-based system S is represented by the formula I(v) := (pc = lI) and
the error state by the formula U(v) := (pc = lE).

It is still possible to specify distributed algorithms considered in [9] using
the notion of array-based systems introduced above. In fact, although using a
program counter may not make sense for such systems, one can nevertheless use
a trivial program counter with three locations only: the initial location lI , the
error location lE , and a “standard” location lS for the body of the distributed
algorithm. Thus, the lazy abstraction technique that we are going to describe be-
low can also be applied, without modifications, to the verification of distributed
systems.

The τh’s are guarded assignments in functional form. To precisely spec-
ify what this means, we need to introduce the following conventions and defini-
tions. The symbols e range over variables of a sort ELEM inΣE while i, j, k, z range
over variables of sort INDEX. Notation a[i] abbreviates a1[i1], . . . , as[i1], . . . , as[in]
for a tuple i ≡ i1, . . . , in of variables of sort INDEX. Expressions of the form
φ(i, e), ψ(i, e) (possibly sub/super-scripted) denote quantifier-free (ΣI ∪ ΣE)-
formulæ in which at most the variables i ∪ e may occur. Furthermore, φ(i, t/e)
(or simply φ(i, t)) abbreviates the substitution of the Σ-terms t for the variables
e. Thus, for instance, φ(i,a[i], c,d) denotes the formula obtained by replacing
e, j, e′ with a[i], c,d respectively in the quantifier-free formula φ(i, e, j, e′). A

formula ∀i. φ(i,a[i], c,d) is a ∀I-formula, one of the form ∃i. φ(i,a[i], c,d) is
an ∃I-formula, and a sentence ∃a ∃c∃d ∃i ∀j. ψ(i, j,a[i],a[j], c,d) is an ∃A,I∀I-
sentence. A guarded assignment in functional form is a formula of the form

∃k
(
φL(k,a[k], c,d) ∧ a′ = λj. G(k,a[k], c,d, j, a[j]) ∧
∧ c′ = H(k,a[k], c,d) ∧ d′ = K(k,a[k], c,d))

)
(1)

where G = G0, . . . , Gs, H = H0, . . . ,Ht, K = K0, . . . ,Ku are tuples of case-
defined functions (roughly, these can be thought of as nested if-then-else expres-
sions, see [9] for a precise definition). As usual, a′, c′,d′ are renamed copies of
the a, c,d, denoting the values of the state variables immediately after the ex-
ecution of the guarded assignment. We assume that the guard φL of a guarded
assignment in functional form (1) always contains a conjunct of the form pc = l
and that the update function K0 is of the form pc = l′. In this way, we have
mappings from guarded assignments and locations: if the guarded assignment is
named τ , the locations l and l′ are called the source and the target locations of
τ and are denoted by src(τ) and trg(τ), respectively.

The array-based system S = 〈v, {τh}h〉 is safe iff the formulæ

I(v(n)) ∧
(∨

h

τh(v(n),v(n−1))

)
∧ · · · ∧

(∨
h

τh(v(1),v(0))

)
∧ U(v(0)) (2)

function find (int a[] , int n) {
1 c = 0;

2 while (c < a.length ∧ a[c] 6= n) c = c + 1;

3 if (c ≥ a.length ∧ ∃x.(x ≥ 0 ∧ x < a.length ∧ a[x] = n))

4 ERROR;

}

Fig. 1. Pseudo-code for the function find.

are AEI -unsatisfiable for n ≥ 0, where v(0), . . . ,v(n) are renamed copies of v
(at time stamps 0, ..., n). (Recall that, by assumption, I(v) := (pc = lI) and
U(v) := (pc = lE).) If there exists a value of n for which (2) is AEI -satisfiable,
then this means that there exists an execution of S starting in an initial state
and ending in an error state.

Notice that, although terms of the form a[c] are not allowed in formula (1),
this is without loss of generality. In fact, any formula ψ(· · ·a[c] · · ·) containing
such terms can be rewritten to ∃j(j = c ∧ ψ(· · ·a[j] · · ·)) by using (fresh) exis-
tentially quantified variables j of sort INDEX. (Below, for the sake of brevity
and only when discussing examples, we will write ψ(· · ·a[c] · · ·) in place of
∃j(j = c∧ψ(· · ·a[j] · · ·)).) Interestingly, this syntactic restriction inherited from
the specification language underlying mcmt inspired us an heuristic to abstract
away counters dereferencing arrays and replace them with universally quantified
variables of sort INDEX so as to synthesize universally quantified candidate in-
variants. Such heuristics, called term abstraction, will be described in Section 4.

Example 1. We illustrate how to encode the function find in Fig. 1 as an array-
based system. The theory TI is linear integer arithmetic (but notice that integer
difference logic suffices), enriched with a constant a.length; the theory TE has
one sort constrained to be linear integer arithmetic enriched with a constant
n (again, a very small fragment suffices) and one sort constrained to be the
enumerated datatype theory of the set of locations {1, 2, 3, 4} (where lI = 1 and
lE = 4). The tuple a of array state variables contains only a, c is the unique
counter, and pc is the only simple variable. The following five transitions specify
the instructions of find (for simplicity, we omit mentioning identical updates):

τ1 ≡ pc = 1 ∧ pc′ = 2 ∧ c′ = 0

τ2 ≡ pc = 2 ∧ c < a.length ∧ a[c] 6= n ∧ c′ = c + 1

τ3 ≡ pc = 2 ∧ c ≥ a.length ∧ pc′ = 3

τ4 ≡ pc = 2 ∧ a[c] = n ∧ pc′ = 3

τ5 ≡ pc = 3 ∧ c ≥ a.length ∧ ∃x. (x ≥ 0 ∧ x < a.length ∧ a[x] = n) ∧ pc′ = 4.

The error location is unreachable iff ∀x. (x ≥ 0 ∧ x < a.length) ⇒ a[x] 6= n

holds when exiting find. a

3 Unwinding array-based systems

We adapt some of the notions in [20] so that they can be easily integrated in
the framework of mcmt. If only simple variables are considered, our approach
closely resembles that in [20]. The main difference is that our technique uses
backward instead of forward reachability to explore the set of reachable states.

If ψ is a quantifier-free formula in which at most the index variables i occur,
we denote by ψ∃ its existential (index) closure, namely the formula ∃i ψ. The
matrix of a guarded assignment in functional form τ(v,v′) of the form (1) is
the formula (1) itself without the existential prefix ∃k; the proper variables of
τ are the k. Below, we shall feel free to apply bounded variables renamings to
formulæ of the form (1) without explicit mention.

Definition 1. A labeled unwinding of S = 〈v; {τh(v,v′)}h〉 is a quadruple
(V,E,ME ,MV), where (V,E) is a finite rooted tree (let ε be the root) and
ME ,MV are labeling functions for edges and vertices, respectively, such that:

(i) for every v ∈ V , if v 6= ε, then MV (v) is a quantifier-free formula of
the kind ψ(i,a[i], c,d) such that MV (v) |=AE

I
pc = l for some location l;

otherwise MV (ε) is pc = lE;
(ii) for every (v, w) ∈ E, ME(v, w) is the matrix of some τ ∈ {τh(v,v′)}h;

the proper variables of τ do not occur in MV (w); moreover, we have that
MV (w) |=AE

I
pc = trg(τ), that MV (v) |=AE

I
pc = src(τ), and that

ME(v, w)(v,v′) ∧MV (w)(v′) |=AE
I
MV (v)(v); (3)

(iii) for each τ ∈ {τh(v,v′)}h and every non-leaf vertex w ∈ V such that
MV (w) |=AE

I
pc = trg(τ), there exist v ∈ V and (v, w) ∈ E such that

ME(v, w) is the matrix of τ .

The intuition underlying the definition is that a vertex v in a labeled unwinding
corresponds to a program location (i) and an edge (v, w) to the execution of
a transition, whose source and target locations match with those of v and w,
respectively (ii and iii). It is interesting to more closely analyze condition (3). To
this end, we recall the definition of pre-image of a formula K(v) with respect to
a transition τ(v,v′), which is one of the key ingredients of backward reachability
(see, e.g., [9]): Pre(τ,K) := ∃v′. (τ(v,v′)∧K(v′)). It is not difficult to see that
condition (3) is equivalent to ∃v′. (ME(v, w)(v,v′)∧MV (w)(v′)) |=AE

I
MV (v)(v)

which, in turn, implies Pre(τ,MV (w)∃) |=AE
I
MV (v)∃, if ME(v, w) is the matrix

of τ . It is now clear that MV (v)∃, i.e. the set of states associated to vertex v,
overapproximates the set of states in the pre-image of MV (w)∃ with respect to τ .
Thus, the disjunction of the (existential index closure of the) formulæ labeling
the nodes of an unwinding is an over-approximation of the set of backward
reachable states and its negation (under suitable completeness conditions, see
Definition 2 below) is an invariant of the system. A set C of vertexes in a labeled
unwinding (V,E,ME ,MV) covers a vertex v ∈ V iff

MV (v)∃ |=AE
I

∨
w∈C

MV (w)∃. (4)

Definition 2. The labeled unwinding (V,E,ME ,MV) is safe iff for all v ∈ V
we have that if MV (v) |= pc = lI , then MV (v) is AEI -unsatisfiable. It is complete
iff there exists a covering, i.e., a set of non-leaf vertexes C containing ε and such
that for every v ∈ C and (v′, v) ∈ E, it happens that C covers v′.

The reader familiar with [20] may have noticed that our notion of covering
involves a set of vertexes rather than a single one as in [20]. Indeed, an efficient
implementation of our notion is delicate and is discussed in Section 4. Here, we
focus on abstract definitions which allow us to prove that safe and complete
labeled unwindings can be seen as safety certificates for array-based systems.

Theorem 1. An array-based system is safe if there exists a safe and complete
labeled unwinding for it.

3.1 Lazy Abstraction with Interpolants in MCMT

We are left with the problem of computing labeled unwindings and checking
for their safety and completeness. Similarly to [20], we design a possibly non-
terminating procedure, called Unwind, that, given an array-based system S,
computes a sequence of (increasingly larger) labeled unwindings. The initial
labeled unwinding of S is the tree containing just the root labeled by pc = lE .
Unwind uses two sub-procedures, called Expand and Refine, which can be
non-deterministically applied to a labeled unwinding to obtain a new one, if
possible. When Refine is applicable but fails, S is unsafe. If none of the two
procedures applies, then the current labeled unwinding is safe and complete;
thus S is safe by Theorem 1.

The core of our procedure is the sub-procedure Refine that performs re-
finement of labelings in presence of spurious unsafety traces. The distinguishing
feature of our method is that, despite the fact that we use quantified formulæ to
represent sets of states and transitions, for refinement we need only quantifier-
free interpolation (even in a restricted form). Technically, this is made possible
because the formulæ describing potentially unsafe traces are equisatisfiable with
quantifier-free formulæ obtained by a restricted form of instantiation (see below
for the technical details). We now describe the two sub-procedures.

Let (V,E,ME ,MV) be the current labeled unwinding of S. From now on, we
assume that the initial location is not a target location, the error location is not
a source location, and that initial and error locations are the only locations that
are not both a source and a target location.
Expand. The applicability condition is that (V,E,ME ,MV) is not complete and
that there exists a leaf vertex v whose location is such that MV (v) 6|=AE

I
pc = lI .

By Definition 1(i), we must have MV (v) |=AE
I
pc = l for some l 6= lI . For each

transition τ ∈ {τh}h whose target is l, add a new leaf wτ , label it by pc = src(τ),
add the edge (wτ , v) to the current tree, and label it by τ . a
Refine. The applicability condition is that (V,E,ME ,MV) is not complete and
there exists a vertex v ∈ V whose location is lI and it is such that MV (v) is

AEI -satisfiable. Consider the path v = v0 → v1 → · · · → vm = ε from v to the
root and let τ1, . . . , τm be the transitions labeling the edges from left to right. If

τ1(v(0),v(1)) ∧ · · · ∧ τm(v(m−1),v(m)) (5)

is AEI -satisfiable (notice that this is decidable, see Lemma 3 of Appendix A for
details), then fail and report the unsafety of S. Otherwise, update the formulæ
labeling v0, . . . , vm by using interpolants as follows. By recalling (1), rewrite (5)
as

m∧
k=1

∃ik

φk(ik,a

(k−1)[ik], c(k−1),d(k−1)) ∧
a(k) = λj. Gk(ik,a

(k−1)[ik], c(k−1),d(k−1), j,a(k−1)[j]) ∧
c(k) = Hk(ik,a

(k−1)[ik], c(k−1),d(k−1)) ∧
d(k) = Kk(ik,a

(k−1)[ik], c(k−1),d(k−1))

 (6)

which, by Skolemizing existentially quantified variables, is transformed to the
equi-satisfiable formula (below, by abuse of notation, we consider the symbols
in ik as Skolem constants):

m∧
k=1

φk(ik,a

(k−1)[ik], c(k−1),d(k−1)) ∧
a(k) = λj. Gk(ik,a

(k−1)[ik], c(k−1),d(k−1), j,a(k−1)[j]) ∧
c(k) = Hk(ik,a

(k−1)[ik], c(k−1),d(k−1)) ∧
d(k) = Kk(ik,a

(k−1)[ik], c(k−1),d(k−1))

 (7)

Now, observe that a(k) = λj Gk(. . .) is equivalent to ∀j. a(k)[j] = Gk(. . . j . . .)
and instantiate the variable j with the Skolem constants in ik+1, ..., im to derive

m∧
k=1

φk(ik,a
(k−1)[ik], c(k−1),d(k−1)) ∧∧

j∈ik+1,...,im

a(k)[j] = Gk(ik,a
(k−1)[ik], c(k−1),d(k−1), j,a(k−1)[j]) ∧

c(k) = Hk(ik,a
(k−1)[ik], c(k−1),d(k−1)) ∧

d(k) = Kk(ik,a
(k−1)[ik], c(k−1),d(k−1))

.

(8)
Formula (8) is AEI -equisatisfiable to (7), (this is proved as Lemma 2 in Ap-
pendix A). Now, (5) was supposed to be AEI -unsatisfiable, hence so are (6), (7)
and finally (8). Let us abbreviate the k-th conjunct in the big conjunction (8)
as

τ̃k(ik, . . . , im,a
(k−1)[ik], . . . ,a(k−1)[im],a(k)[ik+1], . . . ,a(k)[im], c(k−1), c(k),d(k−1),d(k)) ,

(9)
so that (8) is written as τ̃1 ∧ · · · ∧ τ̃m. Finally, let

ψk(ik+1, . . . , im,a[ik+1], . . . ,a[im], c,d) (10)

be the (quantifier-free interpolants) computed in (8) from right-to-left such that

ψ0 ≡ ⊥, ψm ≡ >, (11)

ψk(ik+1, . . . , im,a
(k)[ik+1], . . . ,a(k)[im], c(k),d(k)) ∧ τ̃k |=AE

I

ψk−1(ik, . . . , im,a
(k−1)[ik], . . . ,a(k−1)[im], c(k−1),d(k−1)),

(12)

and update the label of vk as follows:

MV (vk) ≡ MV (vk) ∧ ψk(ik+1, . . . , im,a[ik], . . . ,a[im], c,d). (13)

Notice that, since the matrix of τk entails τ̃k, the condition (3) is preserved and
the vertex v = v0 is labeled by an AEI -unsatisfiable formula. a

Both Expand and Refine prescribe to establish if the current unwinding
is complete. According to Definition 2, this requires to guess a sub-set C of
the set of vertexes in the unwinding and check if C covers v′, for every v ∈ C
and (v′, v) ∈ E. In turn, this may be reduced to repeatedly check the AEI -
unsatisfiability of an ∃A,I∀I -sentence (recall the definition in Section 2), reason-
ing by refutation from (4). These satisfiability checks are decidable under suitable
conditions [9], which will be briefly recalled in Section 3.2 when discussing the
completeness of our technique. However, even when the conditions for decidabil-
ity are not satisfied, it is still possible to use sound but incomplete algorithms
which preserves the soundness of Unwind. Concerning Refine, notice that it
is possible to predict the numbers ek of (implicitly existentially quantified) in-
dex variables occurring in the formulæ labeling the vertex vk of a path of the
form v0 → · · · → vm = ε by simply counting the existentially quantified index
variables in τk+1 ∧ · · · ∧ τm from (5). The number of index variables that will
occur in the formula labeling vk after the update (13) is bounded by ek, be-
cause it is derived from the interpolants computed along the path considered
above. On the other hand, the number of index variables labeling the leaves
may grow very quickly, thereby posing a crucial problem for implementation
(e.g., when instantiating universally quantified variables in covering tests). For-
tunately, heuristics [8, 10] designed to reduce the number of index variables in
pre-images developed for the backward reachability procedure of mcmt can also
be put to productive use in the main loop of Unwind.

The third observation on Refine concerns the computation of the inter-
polants. An easy way to derive ψk−1 from ψk would be to use the pre-image of
ψk−1 with respect to the transition labeling the edge connecting the vertexes
whose label is to be updated by ψk−1 and ψk. However, for Unwind to be truly
an abstraction-based procedure, we need to compute interpolants which do not
necessarily reduce to the precise preimage. This can be done by combining the
available interpolation algorithms for TI and TE . Unrestricted combination is
not always possible in general (there are negative results in the literature show-
ing e.g. that the addition of free function symbols can destroy quantifier-free
interpolation [1]); however, because of the form (9) of the above formulæ τ̃k, it
follows that whenever Unwind needs to compute an interpolant for an unsatis-
fiable quantifier-free formula ψ1 ∧ ψ2, the formulæ ψ1, ψ2 satisfy the hypotheses
of the following positive result:

Theorem 2. Suppose that ψ1∧ψ2 is an AEI -unsatisfiable quantifier-free formula
such that all variables of sort INDEX occurring in ψ2 under the scope of the read
operator [] occur also in ψ1. Then, there exists a quantifier-free formula ψ0

such that: (i) ψ2 |=AE
I
ψ0; (ii) ψ0 ∧ψ1 is AEI -unsatisfiable; (iii) all free variables

occurring in ψ0 occur both in ψ1 and ψ2.

The soundness of Unwind is guaranteed by the following result.

Theorem 3. If neither Expand nor Refine can be applied to a labeled un-
winding P = (V,E,ME ,MV), then P is safe and complete.

Example 2. We briefly discuss how Unwind is applied to the array-based sys-
tem of Example 1. Fig. 2 (without boxed literals) reports an unwinding that,
starting from the error location (MV (ε) |= pc = 4) reaches the initial location
(MV (v25) |= pc = 1). An infeasible trace depicted in Fig. 2. The counterexample
associated to the trace is the following (for the sake of conciseness, we list only
the variables changing their values):

pc(4) = 1 ∧

pc(4) = 1 ∧ pc(3) = 2 ∧ c(3) = 0 ∧

pc(3) = 2 ∧ pc(2) = 2 ∧ a.length > c(3) ∧ c(2) = c(3) + 1 ∧ i1 = c(3) ∧ a(3)[i1] 6= n ∧

pc(2) = 2 ∧ pc(1) = 3 ∧ a.length ≤ c(2) ∧

pc(1) = 3 ∧ pc(0) = 4 ∧ a.length ≤ c(1) ∧ a(1)[i0] = n ∧ a.length > i0 ∧

pc(0) = 4

The counterexample is unsatisfiable and it is thus infeasible in the concrete
system. A set of interpolants computed from the trace above contains

ψ0 ≡ ⊥, ψ1 ≡ ⊥, ψ2 ≡ i0 ≤ c ∧ i0 ≥ 0, ψ3 ≡ i0 ≤ c ∧ i0 ≥ 0,

ψ4 ≡ i0 ≤ a.length ∧ i0 ≥ 0, ψ5 ≡ i0 ≥ 0, and ψ6 ≡ >.

According to (13), the refinement of the infeasible trace is done by adding each
interpolant to the corresponding vertex in the unwinding (see the boxed literals
in Fig. 2). Unwind is then able to generate the invariant

(pc = 3 ∧ c > 0 ∧ a.length ≥ 1)⇒ ∀i. ((i < c ∧ i ≤ a.length)⇒ a[i] 6= n)

as the negation of the label of v1, which states that if the the loop is executed
at least once (antecedent of the main implication), then at every position i (up

εv1v3v8v25

{pc = 4}

pc = 3 ∧
c > 0 ∧ a[i0] = n ∧
i0 < c ∧ a.length ≥ 1

i0 ≤ a.length

pc = 2 ∧
c > 0 ∧
a[i0] = n ∧

i0 ≤ c

pc = 2 ∧

i0 ≤ c

{pc = 1}
{⊥}

τ1τ2τ3τ5

Fig. 2. Counterexample for Example 2. Boxed labels were added by refinement.

to c) of the array is stored a value distinct from n. Notice that the predicates
c > 0, a.length ≥ 1 and i < c (where i is an universally quantified variable) are
new and have been generated by the interpolation algorithm. a

3.2 Completeness and termination

The completeness of Unwind depends on the decidability of checking whether a
labeled unwinding is complete according to Definition 2. We have already argued
(see first observation after the description of Refine in Section 3.1) that this
can be reduced to the AEI -satisfiability of ∃A,I∀I -sentences.

Theorem 4 ([9]). If there are no function symbols in the signature ΣI of TI
and the class CI of models of TI is closed under substructures, then the AEI -
satisfiability of ∃A,I∀I-sentences is decidable.

In [9], the proof of this result1 is constructive by showing a procedure which
first instantiates the universally quantified index variables with the existentially
quantified index variables (considered as Skolem constants) of the sentence in
all possible ways and then invokes a combination (à la Nelson-Oppen) of the
available decision procedures for the SMT (TI)- and SMT (TE)-problems (recall
the assumptions in Section 2). The procedure is still sound but incomplete when
the assumptions on TI in Theorem 4 do not hold. For efficiency, heuristics [8]
have been designed to reduce the number of possible instantiations.

Conditions for the termination of Unwind are much more restrictive. First,
a fair strategy must be used to apply Expand and Refine. Formally, a strategy
is fair if it does not indefinitely delay the application of one of the two pro-
cedures and does not apply Refine infinitely many times to the label of the
same vertex. Notice that the latter holds if there are no infinitely many non-
equivalent formulæ of the form ψ(i,a[i], c,d) for a given i or, alternatively, if a
refinement based on the computation of interpolants through the precise preim-
age is eventually applied when repeatedly refining a node. The second condition
(since adopting a fair strategy alone is not sufficient) for termination concerns
also the theory TE . To formally state such conditions, we need to adapt some
notions from [2, 9]. A wqo-theory is a theory T = (Σ, C) such that C is closed
under substructures and finitely generated models of T are a well-quasi-order
with respect to the relation � that holds between M1 and M2 whenever M1

embeds into M2.

Theorem 5. Let S = 〈v; {τh(v,v′)}h〉 be an array-based system for TI , TE.
Suppose that TI satisfies the hypotheses of Theorem 4 and that the theory ob-
tained from TI ∪ TE by adding it the symbols v (seen as free constants of appro-
priate sorts) is a wqo theory. Then, Unwind terminates when applied to S with
a fair strategy.

1Although in this paper, we have also counters and simple variables in the definition
of array-based systems, that were not considered in [9], this does not interfere with the
correctness of the algorithm in [9] which can be easily extended to cope with them.

As a consequence, Unwind behaves as a decision procedure for those classes of
array-based systems satisfying the conditions of Theorem 5. This is the case,
for example, of broadcast protocols and lossy channels systems (see [9], [2] for
details). A similar result for broadcast protocols is given in [6] within forward
reachability.

4 Implementation and Experiments

We have implemented Unwind on top of a re-engineered version of mcmt2 ; the
following two heuristics are the key ingredients for its practical applicability.

Term Abstraction. While experimenting with our prototype, we realized
that available interpolating procedures seldom permit to refine the abstraction
in the “right” way because some terms are not eliminated. This dramatically
decreases performances or, even worse, prevents to find the inductive invari-
ant, when it exists. To alleviate this problem, the goal of the term abstrac-
tion heuristic is to compute (if possible) an interpolant where a certain term
t does not occur. As briefly explained in Section 2, the term t is usually some
counter which should be eliminated to synthesize (candidate) invariants involv-
ing universally quantified index variables, even when the problem specification
mentions no quantifiers. Term abstraction proceeds as follows. Given an AEI -
unsatisfiable formula of the form ψ1∧ψ2, if ψ1(c1/t)∧ψ2(c2/t) isAEI -unsatisfiable,
for c1 and c2 fresh constants, then term abstraction returns the interpolant
of ψ1(c1/t) ∧ ψ2(c2/t), computed by running the available interpolation proce-
dure. Otherwise, term abstraction returns the interpolant of the original formula
ψ1∧ψ2. Our prototype tool automatically extracts from the problem specification
a list of “relevant” terms, called term abstraction list, which contains candidates
for the term abstraction heuristic (alternatively, the user can provide such a list).

Covering Strategy. We implemented an additional procedure Reduce
which is to be interleaved with Expand so as to reduce as much as possible
the invocations to the latter. Reduce checks, given a vertex v of the unwind-
ing and a set Ṽ of nodes such that every vi ∈ Ṽ is not covered, whether
MV (v) |=AE

I

∨
vi∈Ṽ MV (vi), i.e., it checks if v is covered by a disjunction of

vertexes that share the same value of the program counter. In addition we allow
leaves to be covered by younger vertices (while in [20] a vertex can be covered
only by one older vertex). Reduce agrees with the notion of covering introduced
in Definition 2. Moreover, before expanding a leaf v, we check if there is at least
one v’s ancestor u such that u is covered by its ancestors. If so, a descendant of
u can neither be expanded nor cover other vertices as long as u is covered.

Table 1 reports the results of our experiments (run on an Intel i7 @2.66
GHz, equipped with 4GB of RAM and running OSX 10.7). Our benchmark set
includes simple programs over arrays, e.g., initialization of all elements to 0,
copy of one array into another, etc. They have been taken from other papers

2The executable of the prototype tool and all the input files can be downloaded at
http://www.oprover.org/mcmt_abstraction.html.

http://www.oprover.org/mcmt_abstraction.html

Benchmark Description Time (s) Nodes SMT-calls Iter. Result

find (v1) Find an element 0.3 5 192 3 SAFE
find (v2) (as above, alternative encoding) 0.07 5 48 1 SAFE
initialization Initialize all elements to 0 0.1 5 96 1 SAFE
max in array Find max element 0.9 72 1192 8 SAFE
partition Partition an array 0.08 20 62 0 SAFE
strcmp Compare arrays 0.4 14 329 4 SAFE
strcpy Copy arrays 0.03 3 15 0 SAFE
vararg Search for end of arguments 0.03 5 17 0 SAFE
integers Numerical property 0.02 5 19 0 SAFE

init and test Init. to 0 and tests 0.3 27 375 3 SAFE
binary sort Sorting with binary search 0.3 48 457 2 SAFE

Table 1. Table reports: total verification time, number of nodes of the final unwinding,
number of calls to the SMT-solver, number of CEGAR iterations, final safety result.

(e.g., [16, 18, 22]), or from standard textbooks on algorithms. All benchmarks
diverge if no abstraction is provided.

The last two benchmarks in Table 1 are trickier to verify, as they feature two
loops. In “init and test”, there are two loops in sequence and the safety condition
consists in reaching an error location. Although the property does not contain
quantifiers, the inductive invariant of the program does need quantifiers. The
methodology applied by our tool to introduce extra quantifers is the following:
first, recall from Section 2 that sentences like ψ(..a[c]..) are written as ∃i(i =
c ∧ ψ(..a[i]..)), then term abstraction can get rid of (some of) the c thus letting
(some of) the i be genuine new quantifiers. As for nested loops, “binary sort” is
an encoding of the sorting algorithm based on binary search.

To test the flexibility of our approach, we run the prototype on some ran-
domly generated problems taken from those shipped with the distribution of the
ARMC model-checker (http://www.mpi-sws.org/˜rybal/armc/). They
consists of safety properties of numerical programs without arrays. Our tool can
solve 22 out of 28 benchmarks with abstraction, but only 9 without using it. For
those benchmarks that could be solved even without abstraction, the overhead
of abstraction is generally negligible.

5 Conclusion

We have described Unwind, a verification procedure for safety properties based
on the combination of the backward reachability of mcmt and lazy-abstraction
with interpolants. Lazy-abstraction is enabled to handle (unbounded) arrays
while mcmt is now capable to cope with sequential programs in a uniform way
by using abstraction and refinement. Our experiments show that the improved
version of mcmt is able to prove safety properties in no time for common-use
programs over arrays. As future work, we plan to tune the abstraction and re-
finement mechanisms to other classes of systems, such as distributed algorithms.

http://www.mpi-sws.org/~rybal/armc/

Acknowledgements. The work of the first author was supported by the Hasler
Foundation under project 09047 and that of the fourth author was partially
supported by the “SIAM” project founded by Provincia Autonoma di Trento in
the context of the “team 2009 - Incoming” COFUND action of the European
Commission (FP7).

References

1. A. Brillout, D. Kroening, P. Rümmer, and T. Wahl. An Interpolating Sequent
Calculus for Quantifier-Free Presburger Arithmetic . In IJCAR, 2010.

2. A. Carioni, S. Ghilardi, and S. Ranise. Automated Termination in Model Checking
Modulo Theories. In RP, 2011.

3. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided
Abstraction Refinement. In CAV, pages 154–169, 2000.

4. P. Cousot, R. Cousot, and F. Logozzo. A Parametric Segmentation Functor for
Fully Automatic and Scalable Array Content Analysis. In POPL, 2011.

5. I. Dillig, T. Dillig, and A. Aiken. Fluid Updates: Beyond Strong vs. Weak Updates.
In Programming Languages and Systems. 2010.

6. R. Dimitrova and A. Podelski. Is lazy abstraction a decision procedure for broad-
cast protocols? In VMCAI, pages 98–111, 2008.

7. C. Flanagan and S. Qadeer. Predicate abstraction for software verification. In
POPL, pages 191–202, 2002.

8. S. Ghilardi and S. Ranise. Model Checking Modulo Theory at work: the integration
of Yices in MCMT. In AFM, 2009.

9. S. Ghilardi and S. Ranise. Backward Reachability of Array-based Systems by SMT
solving: Termination and Invariant Synthesis. LMCS, 6(4), 2010.

10. S. Ghilardi and S. Ranise. MCMT: A Model Checker Modulo Theories. In IJCAR,
pages 22–29, 2010.

11. D. Gopan, T. Reps, and M. Sagiv. A Framework for Numeric Analysis of Array
Operations. In POPL’05, pages 338–350, 2005.

12. S. Graf and H. Säıdi. Construction of Abstract State Graphs with PVS. In CAV,
pages 72–83, 1997.

13. N. Halbwachs and Mathias P. Discovering Properties about Arrays in Simple
Programs. In PLDI’08, pages 339–348, 2008.

14. T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from
Proofs. In POPL, pages 232–244, 2004.

15. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction. In
POPL, pages 58–70, 2002.

16. R. Jhala and K. McMillan. Array Abstractions from Proofs. In CAV, 2007.
17. D. Kapur, R. Majumdar, and C. Zarba. Interpolation for Data Structures. In

SIGSOFT’06/FSE-14, pages 105–116, 2006.
18. L. Kovács and A. Voronkov. Interpolation and Symbol Elimination. In CADE,

2009.
19. K. McMillan. Quantified Invariant Generation Using an Interpolating Saturation

Prover. In TACAS, 2008.
20. K. L. McMillan. Lazy Abstraction with Interpolants. In CAV, 2006.
21. S. Ranise and C. Tinelli. The Satisfiability Modulo Theories Library (SMT-LIB).

www.SMT-LIB.org, 2006.

http://www.smt-lib.org

22. M. N. Seghir, A. Podelski, and T. Wies. Abstraction Refinement for Quantified
Array Assertions. In SAS, pages 3–18, 2009.

23. S.Lahiri and R. Bryant. Predicate Abstraction with Indexed Predicates. TOCL,
9(1), 2007.

24. S. Srivastava and S. Gulwani. Program Verification using Templates over Predicate
Abstraction. In PLDI, 2009.

A Proofs

In this Appendix we report the proofs of all the results stated in the paper. Pre-
liminarily, for the sake of completeness, we recall from [9] the precise definition
of the notion of a case-defined function used from Section 2 on.

Given a theory T = (Σ, C) (in our case, T will be AEI), a T -partition is a finite
set C1(x), . . . , Cn(x) of quantifier-free formulæ (with free variables contained in
the tuple x)3 such that T |= ∀x∨ni=1 Ci(x) and T |= ∧

i 6=j ∀x¬(Ci(x) ∧ Cj(x)).
The formulæ C1, . . . , Ck are called the components of the T -partition. A case-
definable extension T ′ = (Σ′, C′) of a theory T = (Σ, C) is obtained from T by
applying (finitely many times) the following procedure: (i) take a T -partition
C1(x), . . . , Cn(x) together with Σ-terms t1(x), . . . , tn(x); (ii) let Σ′ be Σ ∪{F},
where F is a “fresh” function symbol (i.e., F 6∈ Σ) whose arity matches the tuple
x; (iii) take as C′ the class of Σ′-structures M whose Σ-reduct is a model of
T and such that M |= ∧n

i=1 ∀x (Ci(x) → F (x) = ti(x)). Thus a case-definable
extension T ′ of a theory T contains finitely many additional function symbols,
called case-defined functions. By abuse of notation, we shall identify T with its
case-definable extensions T ′; it is not difficult to prove [9] that the decidability
of SMT (T)-problem implies the decidability of SMT (T ′)-problem.

The following lemma proves a statement claimed in Section 3 just after Def-
inition 1:

Lemma 1. Let (u,w) ∈ E be an arc in a labeled unwinding (V,E,ME ,MV); we
have

Pre(τ,MV (w)∃) |=AE
I
MV (v)∃

where τ is the guarded assignment in functional form whose matrix is ME(v, w).

Proof. If we introduce existential quantifiers in both members of (3), we get

∃v′(ME(v, w)(v,v′) ∧MV (w)(v′))∃ |=AE
I
MV (v)(v)∃;

taking into consideration that the proper variables of τ are the only index vari-
ables occurring free in the matrix of τ and that such proper variables do not
occur in ME(v, w), we can move inside index quantifiers and get

∃v′(ME(v, w)(v,v′)∃ ∧MV (w)(v′)∃) |=AE
I
MV (v)(v)∃;

which is the claim because ME(v, w)(v,v′)∃ is τ(v,v′). a

Theorem 1 If there exists a safe and complete labeled unwinding of S, then S
is safe.

Proof. Let (V,E,ME ,MV) be a safe and complete labeled unwinding of S with
covering C. Recall that I(v) is the formula pc = lI and U(v) is the formula pc =
lE . We show that

∨
w∈CMV (w)∃ overapproximates the set of the system states

3 For the purposes of this paper, these formulæ must be of the kind ψ(i,a[i], c,d).

that can reach the error location (notice that
∨
w∈CMV (w)∃ is a disjunction of

∃I -formulæ having the variables in v = a, c,d as free variables). More formally,
we show that for every n the formula(∨

h

τh(v(n),v(n−1))

)
∧ · · · ∧

(∨
h

τh(v(1),v(0))

)
∧ U(v(0))

entails (modulo AEI) the formula
∨
w∈CME(w)∃(v(n)) (this implies also that the

formula (2) cannot be satisfiable because (V,E,ME ,MV) is safe).4 The proof is
by induction on n. The case n = 0 is trivial because ε ∈ C is labeled U(v); so
suppose n > 0. By induction hypothesis, we need to show that∨

h

τh(v(n),v(n−1)) ∧
∨
w∈C

MV (w)∃(v(n−1)) |=AI
E

∨
w∈C

MV (w)∃
I

(v(n))

i.e. that for every τ ∈ {τh}h and for every v ∈ C we have

τ(v(n),v(n−1)) ∧MV (v)∃(v(n−1)) |=AI
E

∨
w∈C

MV (w)∃(v(n)).

By the definition of a labeled unwinding, either there is a location mismatch
and τ(v(n),v(n−1)) ∧ MV (v)∃(v(n−1)) is inconsistent, or according to Defini-
tion 1(iii) there must be a vertex v′ with an edge (v′, v) labeled by the ma-
trix of τ in the tree (V,E) (this is because coverings do not contain leaves,
hence v is not a leaf). We can now get our claim by the definition of a covering
and because τ(v(n),v(n−1))∧MV (v)∃(v(n−1)) entails (modulo AEI) the formula
MV (v′)∃(v(n)) thanks to Lemma 1. a

The fact stated in the next lemmas are used for designing the sub-procedure
Refine.

Lemma 2. Formulae (7) and (8) are AEI -equisatisfiable.

Proof. Clearly (7) entails (8). Vice versa, suppose we are given an AEI -modelM
and a satisfying assignment a for (8): we produce a satisfying assignment ã for (7)
based on the same M. Let us direct call i1, . . . , im,v

(0), . . . ,v(m) the elements
from the support of M assigned by a to the variables i1, . . . , im,v

(0), . . . ,v(m)

occurring free in (7) and (8). The assignment ã will change only the values

4 In more details, if

I(v(n)) ∧

(∨
h

τh(v(n),v(n−1))

)
∧ · · · ∧

(∨
h

τh(v(1),v(0))

)
∧ U(v(0))

is satisfiable and the claim holds, this means that pc(n) = lI ∧
∨

w∈C ME(w)∃(v(n)) is
satisfiable, which can only be if some of the ME(w) is consistent and entails pc = lI ,
i.e. if (V,E,ME ,MV) is not safe.

assigned to v(1), . . . ,v(m) (notice that v(0) is left unchanged). We define ã(vk)
for k > 0 inductively by:

ã(a(k)) = λj Gk(ik, ã(a(k−1))[ik], c(k−1),d(k−1), j, ã(a(k−1))[j])

ã(c(k)) = Hk(ik, ã(a(k−1))[ik], c(k−1),d(k−1))

ã(d(k)) = Kk(ik, ã(a(k−1))[ik], c(k−1),d(k−1))

To show that (7) is true under ã it is sufficient to check by induction on k =
1, . . . ,m that we have ã(c(k−1)) = c(k−1), ã(d(k−1)) = d(k−1) and ã(a(k−1))[j] =
a(k−1)[j] for all j ∈ ik ∪ · · · ∪ im. a

As a corollary of Lemma 2, we derive the decidability of bounded model
checking without further assumptions.

Lemma 3. The AEI -satisfiability of formula 5 is decidable.

Proof. By Lemma 2, it is sufficient to check the decidability of AEI -satisfiability
of quantifier-free formulae. This can be reduced to the separate decidability
of SMT (TI) and SMT (TE) problems, together with general facts on theory
connections, see for instance F. Baader, S. Ghilardi Connecting many-sorted
theories, Journal of Symbolic Logic, vol. 72, n.2, pp. 535-583, (2007). A direct
proof is also easy and follows the general Nelson-Oppen schema (notice that here
only disjunctions of equalities between term of sort INDEX need to be propagated
- in other words, propagation is in one direction only). a

Next Lemma shows that the interpolants required by the sub-procedure Re-
fine exists:

Lemma 4. If the formula (7) is not AEI -satisfiable, then there exists interpolant
formulæ (10) satisfying conditions (11)-(12).

The proof of Lemma 4 is an immediate application of the following combined
interpolation result:

Theorem 2 Suppose that ψ1∧ψ2 is an AEI -unsatisfiable quantifier-free formula
such that all variables of sort INDEX occurring in ψ2 under the scope of the read
operator [] occur also in ψ1. Then, there exists a quantifier-free formula ψ0

such that: (i) ψ2 |=AE
I
ψ0; (ii) ψ0 ∧ψ1 is AEI -unsatisfiable; (iii) all free variables

occurring in ψ0 occur both in ψ1 and ψ2.

Proof. Let us call critical the index variables occurring both in ψ1 and in ψ2

(by assumptions, the index variables occurring in ψ2 under the scope of the read
operator [] are critical). Without loss of generality, we may assume that ψ1, ψ2

are conjunctions of flat literals and that for all critical distinct variables i, j, we
have that ψ1 contains either the literal i = j or the literal i 6= j.5 We can also

5These assumptions can be justified by standard considerations. For instance, once
interpolants for ψ1 ∧ ψ′2 and for ψ1 ∧ ψ′′2 are known, one can combine them to an
interpolant for ψ1∧(ψ′2∨ψ′′2) by taking conjunction. For a general ‘metarules’ framework
covering all this, see R. Bruttomesso, S. Ghilardi, S. Ranise Rewriting-based quantifier-
free interpolation for a theory of arrays, RTA 2011.

assume that, whenever ψ1 contains i = j, then it contains also a[i] = a[j] for
every array variable occurring in ψ1; finally, if i, j are critical variables and i = j
is a conjunct of ψ1, then we assume that ψ2 contains a[i] = a[j] for every array
variable a occurring in ψ2.6 Let ψ1 be of the kind

ψ1(i1, i0, a1[i1], a1[i0], a0[i1], a0[i0], e1, e0)

and ψ2 be of the kind

ψ2(i0, i2, a2[i0], a0[i0], e2, e0),

where the a1, a0, a2 are array variables, e0, e1, e2 are element variables, and
i0, i1, i2 are index variables (the i0 are the critical ones - notice that terms
a0[i2], a2[i2] do not occur in ψ2). We can further separate the literals whose
root predicate symbol has argument of sort INDEX from the literals whose root
predicate has arguments of sort ELEM (from the way AEI is built, there is no
mixed case), thus ψ1 can be rewritten as

ψI1(i1, i0) ∧ ψE1 (a1[i1], a1[i0], a0[i1], a0[i0], e1, e0)

whereas ψ2 as
ψI2(i0, i2) ∧ ψE2 (a2[i0], a0[i0], e2, e0)

for ψIg and ψEg conjunctions of literals whose root predicate symbol have argu-
ment of sort INDEX and ELEM, respectively, and g = 1, 2.

Now, since a complete partition on critical indexes is included in ψ1 and
relevant index equalities have been fully propagated through array variables
(see above), it is easy to see that the inconsistency of ψ1∧ψ2 implies that either

ψI1(i1, i0) ∧ ψI2(i0, i2)

is TI -unsatisfiable or

ψE1 (d′1, d
′′
1 , d
′′′
1 , d0, e1, e0) ∧ ψE2 (d2, d0, e2, e0)

is TE-unsatisfiable, where we used fresh element variables d0, d
′
1, d
′′
1 , d
′′′
1 , d2 in-

stead of the terms a0[i0], a1[i1], a1[i0], a0[i1], a2[i0], respectively. Now it is clear
that we can use the available quantifier-free interpolation algorithms for TI and
TE in order to compute the interpolant ψ0. a
It should be noticed that whenever formulæ labeling vertexes in a labeled un-
winding are maintained in a primitive differentiated form (like in mcmt imple-
mentation), then the heavy partitions enumeration step in the above combined
interpolation algorithm can be avoided at all.

We finally show the soundness of our whole procedure:

Theorem 3 If neither an expansion nor a refinement instruction applies to a
labeled unwinding P = (V,E,ME ,MV), then P is actually a safe and complete
labeled unwinding.

6 In fact, if adding i = j∧a[i] = a[j] to ψ2 one gets the interpolant ψ0, it is possible
to get the interpolant back from ψ2 by taking i = j ∧ ψ0.

Proof. Notice that if leaves are all labeled by unsatisfiable formulæ, non-leaf
vertexes are a covering and the system is complete. On the other hand, if there
is a leaf labeled by a consistent formula, an instruction applies, unless the system
is complete. Thus, if no instruction applies, the system must be complete.

Finally, if P is not safe, there is a consistent vertex v whose location is lI .
Now, since lI is not a target location, v must be a leaf; for the same reason, v is
not covered by non-leaf vertexes (the location of these vertexes is not lI). Thus
the system is not complete and a refinement instruction applies. a

Before proving the termination result, we recall some standard definitions
that were missed in Subsection 3.2. A class C of structures is closed under sub-
structures if for every structureM∈ C, it happens that all the sub-structures of
M are also in C. A structureM is finitely generated iff there exists a finite sub-
set X of the support ofM such that the smallest substructure ofM containing
X is M itself. An embedding is an injective homomorphism that preserves and
reflects relations and operations.

A reflexive-transitive relation � on a set P is a well-quasi-order (wqo) iff
given p0, p1, . . . pn, . . . from P , there are n < m such that pn � pm. Recall that
a wqo-theory is a theory T = (Σ, C) such that C is closed under substructures
and finitely generated models of T are a well-quasi-order with respect to the
relation � that holds between M1 and M2 whenever M1 embeds into M2.

Before proving Theorem 5, we need to state and prove the following lemma.

Lemma 5. Let T = (Σ, C) be a wqo theory and let

K0,K1, . . . ,Kn, . . .

be an infinite sequence of existential Σ-sentences7 such that Kn |=T Kn+1 for
all n ≥ 0. Then, there exists n > 0 such that Kn |=T Kn−1.

Proof. Suppose not: then there are models Mn ∈ C such that Mn |= Kn and
Mn 6|= Kn−1. Since C is closed under substructures and Kn is an existential
formula, we can take Mn to be finitely generated (notice that truth of ¬Kn−1
is preserved by substructures because this is a universal formula). Since Km |=T

Kn−1 for m < n, we have that Mn 6|= Km for every m < n. Consider now the
sequence

M1,M2, . . . ,Mn, . . .

of finitely generated models from C. By the definition of a well-quasi-order, there
are m < n such that Mm embeds in Mn. Then, from Mm |= Km and the fact
that Km is existential, it follows that Mn |= Km, contradiction. a

Theorem 5 Let S = 〈v; {τh(v,v′)}h〉 be an array-based system for TI , TE. Sup-
pose that TI satisfies the hypotheses of Theorem 4 and that the theory obtained
from TI ∪ TE by adding it the symbols v (seen as free constants of appropriate

7 These are sentences (i.e. formulæ without free variables) obtained from quantifier-
free formulæ by prefixing them a list of existential quantifiers.

sorts) is a wqo theory. Then, Unwind terminates when applied to S with a fair
strategy.

Proof. If we view the variables v := a, c,d of an array-based system S =
〈v, {τh}h〉 as free (function or constants) symbols, the existential (index) clo-
sures of the formulæ (and their disjunctions) labeling the vertexes of a labeled
unwinding of S are ∃I -formulæ of the kind ∃i ψ(i,a[i], c,d) and hence they are
existential formulæ of the wqo theory mentioned in the statement of the theorem
(so that Lemma 5 applies to them).

If the fair strategy unrolling the abstraction/refinement loop does not termi-
nate, it generates a sequence of labeled unwindings P0, P1, P2, . . . based on an
increasing sequence of trees (V0, E0) ⊆ (V1, E1) ⊆ · · · ; consider now the union
(V,E) = (

⋃
k Vk,

⋃
k Ek) of such trees. Since nodes are not refined infinitely of-

ten, we can associate with any vertex v ∈ V its ultimate label M(v). Let Kn be
the disjunction of the labels M(v) where v is a vertex of (V,E) of depth at most
n: by Lemma 5, we have that Kn |=AE

I
Kn−1 for some n > 0. This means the

following (let C be the set of vertexes of (V,E) of depth at most n − 1 whose
label is consistent): for every vertex v of (V,E) of depth at most n, we have that
M(v) |=AE

I

∨
w∈CM(w).

Let now i be large enough so that every non-leaf vertex of depth at most
n in (V,E) (together with its ultimate label) is in Pi: we show that our ab-
straction/refinement procedure should have been terminated after Pi has been
produced. In fact, either C is a covering (for all Pj ⊇ Pi) and would cause the
algorithm to terminate or it is not such because C contains a leaf w. However
M(w) is consistent by the definition of C and is the ultimate label of w. Now
we have M(w) |= pc = lI (otherwise our fair strategy would have added son
nodes to w, because locations l 6= lI are target locations), which means that a
refinement step applies to w: since M(w) is consistent and is the ultimate label
of w, this means that such refinement step must have reported unsafety of S. a

The hypotheses of Theorem 5 are quite restrictive. To see a simple example
where they apply (see [9] for more), consider broadcast protocols: here TI is the
pure equality theory, TE is the complete theory of the finite set of locations (the
signature of TE has constants to name each of them), c,d are empty and a con-
tains a single array. Now the finitely generated models of the theory mentioned
in the statement of Theorem 5 are multisets of locations: they are a wqo because
of Dickson lemma.

B Initialization and test example

In order to illustrate the differences between our approach and the one presented
in [7], we analyze in more details the workings of our procedure on the function
“init and test” which was briefly discussed in Section 4. This function (whose

function init test(int a []) {
1 int k = 0; int h = 0; int flag = false;

2 while(k < a.length) { a[k] = 0; k = k + 1; }
3 while(h < a.length) { if (a[h] 6= 0) flag = true; h = h + 1; }
4 if (flag = true)

5 ERROR;

}

Fig. 3. Pseudo-code for the function “init and test”.

code is reported again in Fig.3 with line numberings) is composed of two while-
loops: the former initializes every position of an array to 0 and the latter checks
if every position has been initialized. The ERROR location is reached if at least
one of the array possition has not been set to zero. The function can be encoded
with 7 transitions:

τ1 ≡ pc = 1 ∧ pc′ = 2 ∧ k′ = 0 ∧ h′ = 0 ∧ flag′ = false

τ2 ≡ pc = 2 ∧ k < a.length ∧ a′[k] = 0 ∧ k′ = k + 1

τ3 ≡ pc = 2 ∧ k ≥ a.length ∧ pc′ = 3

τ4 ≡ pc = 3 ∧ h < a.length ∧ a[h] = 0 ∧ h′ = h + 1

τ5 ≡ pc = 3 ∧ h < a.length ∧ a[h] 6= 0 ∧ h′ = h + 1 ∧ flag′ = true

τ6 ≡ pc = 3 ∧ h ≥ a.length ∧ pc′ = 4

τ7 ≡ pc = 4 ∧ flag = true ∧ pc′ = 5

lI = 1 and lE = 5.8

Due to the absence of quantified variables in conditions or assertions, the
approach presented in [7] is not suitable to generate predicates with quantified
variables. Our approach, instead, generates the following invariants:

– Invariant 1: pc = 4⇒ flag = false

– Invariant 2: pc = 3 ∧ (∀i0.h ≤ i0)⇒ flag = false

– Invariant 3: pc = 2 ∧ (∀i0.k ≤ i0)⇒ flag = false

8Notice that transitions τ2, τ4 and τ5 have an implicit quantifier due to the need of
rewriting a[k] and a[h] as explained in Section 2.

– Invariant 4: pc = 3⇒ h < a.length ∧ ¬∃i0, i1.

(i1 < a.length)

(a[i1] 6= 0)

(h < i0)

(h ≤ i1)

(i0 ≥ 1)

(i0 6= i1)

– Invariant 5: pc = 2⇒ ¬∃i0, i1.

(k <= i0)

(a[i1] 6= 0)

(k ≥ 1)

(i0 6= i1)

Here is a counterexample that generates the predicate h ≤ i0 in the second

invariant, i0 ≥ 1 in the forth and k ≥ 1 in the fifth. The infeasible trace is
τ1, τ3, τ5, τ6, τ7, and the counterexample is:

pc(5) = 1 ∧

pc(5) = 1 ∧ pc(4) = 2 ∧ flag(4) = false ∧ h(4) = 0 ∧ k(4) = 0 ∧

pc(4) = 2 ∧ pc(3) = 3 ∧ a.length(4) ≤ k(4) ∧ k(4) = i0 ∧

pc(3) = 3 ∧ pc(2) = 3 ∧ flag(2) = true ∧ h(2) = (h(3) + 1) ∧ flag(2) = 1 ∧

a(3)[i1] 6= 0 ∧ a.length(3) > h(3) ∧ h(3) = i1 ∧

pc(2) = 3 ∧ pc(1) = 4 ∧ a.length(2) ≤ h(2) ∧ h(2) = i0 ∧

pc(1) = 4 ∧ pc(0) = 5 ∧ flag(1) = true ∧

pc(0) = 5

A possible set of interpolants is:

ψ0 ≡ ⊥ ψ1 ≡ ⊥ ψ2 ≡ k(1) ≥ 1

ψ3 ≡ i0 ≥ 1 ψ4 ≡ h(3) ≤ i0 ψ5 ≡ >
ψ6 ≡ > ψ7 ≡ >

	Lazy Abstraction with Interpolants for Arrays
	 Francesco Alberti, Roberto Bruttomesso, Silvio Ghilardi, Silvio Ranise, Natasha Sharygina

