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These notes cover the content of a basic course in propositional alge-
braic logic given by the author at the italian School of Logic held in Cesena,
September 18-23, 2000. They are addressed to people having few background
in Symbolic Logic and they are mostly intended to develop algebraic methods
for establishing basic metamathematical results (like representation theory
and completeness, finite model property, disjunction property, Beth defin-
ability and Craig interpolation). For the sake of simplicity, only the case
of propositional intuitionistic logic is covered, although the methods we are
explaining apply to other logics (e.g. modal) with minor modifications. The
purity and the conceptual clarity of such methods is our main concern; for
these reasons we shall feel free to apply basic mathematical tools from cate-
gory theory.

The choice of the material and the presentation style for a basic course are
always motivated by the occasion and by the lecturer’s taste (that’s the only
reason why they might be stimulating) and these notes follow such a rule.
They are expecially intended to provide an introduction to category theoretic
methods, by applying them to topics suggested by propositional logic.

Unfortunately, time was not sufficient to the author to include all material
he planned to include; for this reason, important and interesting develope-
ments are mentioned in the final Section of these notes, where the reader
can however only find suggestions for further readings. Lack of time is also
responsible of the fact that sometimes only key points of proofs are provided,
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so that the reader is assumed to cooperate ‘with pencil and paper’ to fill the
missed (hopefully not difficult) details.

The categorical background required for these notes is rather limited: stu-
dents need only the definitions of category, functor, natural transformation,
monomorphism, epimorphism, (co)equalizer, pullback, pushout and adjoint
functors. All this can be found e.g. in [CWM], [Ro] (or in the more com-
prehensive handbook [Bo]). First definitions from universal algebra (like
congruences, etc.) are also needed and can be found e.g. in [BS]. Notice
however that, for the pourposes of these notes, such textbooks should be
used just for consultation, whenever basic unknown notions must be intro-
duced. Although not needed for comprehension, some more information on
intuitionistic logic could be useful: this is provided e.g. in [vD] or in [Dr].

Sections 1 and 2 are propaedeutic; in a first reading, students should
however concentrate only on key points of Section 2, leaving out details.
Section 3 is not needed for the remaining ones; on the contrary, Sections 4
and 5 bring essential information for the final Sections, which contain more
interesting developements of the theory (still at a basic introductory level).

One word about notation. We indicate the composition of two arrows

A
f−→ B

g−→ C in a category simply as fg. This has the advantage of
directly following pictures, the disadvantage is that, in case such arrows are
functions among sets and we want to apply fg to an element a ∈ A, we need
to use the rule (fg)(a) = g(f(a)).

1 Posets, Lattices and Heyting Algebras

In this Section we recall the main algebraic structures which will be inves-
tigated within these notes. They are structures that provide an algebraic
conceptualization of propositional logics and they are usually obtained by
enriching posets by some algebraic operations. We are mainly interested in
Heyting algebras i.e. those algebras that provide algebraic counterparts of
intuitionistic propositional theories.

A partially oredered set (poset, for short) is a set P equipped with a
reflexive, transitive and antisymmetric binary relation ≤. For such a poset,
the infimum (resp. supremum) of a family {ai}i∈I of elements of P is an
element (it may or may not exists, but if it exists it is unique)

∧
i ai ∈ P

2



(resp.
∨

i ai ∈ P ) such that for all b ∈ P , we have

(∀i ∈ I b ≤ ai) iff b ≤ ∧

i

ai

(or
(∀i ∈ I ai ≤ b) iff

∨

i

ai ≤ b,

respectively). In case the index I is empty, the above conditions say that the
infimum of the empty set is the maximum element of P and the supremum
of the empty set is just the minimum.

We recall some facts about adjoints among posets; although they can be
deduced from the general results about categories, it is worth having a direct
knowledge of what happens in this special case. The right adjoint f∗ (resp.
left adjoint f ∗) to an order-preserving map f : P → Q among posets, is an
order-preserving map in the opposite direction, satisfying

f(a) ≤ b iff a ≤ f∗(b)

(or
b ≤ f(a) iff f ∗(b) ≤ a

respectively) for all a ∈ P, b ∈ Q. Such a right (left) adjoint may not exists,
but if it exists it is unique. It is easily seen that left adjoints preserve existing
suprema and right adjoints existing infima: the latter, for instance, is shown
by an easy chain of equivalences as follows

a ≤ f∗(
∧

i bi)
f(a) ≤ ∧

i bi

∀i f(a) ≤ bi

∀i a ≤ f∗(bi)
a ≤ ∧

i f∗(bi)

yieldying f∗(
∧

i bi) =
∧

i f∗(bi) as a is arbitrary. If P is complete (i.e. iff all
suprema -or equivalently all infima- exist), then any order-preserving map
f : P → Q has a right adjoint iff it preserves suprema and has a left adjoint
iff it preserves infima. Such adjoints are easily seen to be given by the
following formulas:

f∗(b) =
∨

f(a)≤b

a f ∗(b) =
∧

b≤f(a)

a
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for all b ∈ Q.
A (meet) semilattice is a commutative idempotent monoid, i.e. a structure

(M,∧,>) satisfying the equations

a ∧ b = b ∧ a, a ∧ > = a, a ∧ a = a, a ∧ (b ∧ c) = (a ∧ b) ∧ c (1)

for all a, b, c ∈ M . Putting

a ≤ b iff a ∧ b = a

we can define a partial order in any semilattice; the operation ∧ turns out
to be the infimum (also called meet) of the set {a, b} and > turns out to be
the maximum element. In fact, one can equivalently define a semilattice as
a partially ordered set in which infima exist for all finite families of elements
(this includes the maximum element, seen as the infimum over the empty
family).

Many important further operations can be characterized with respect to
the partial order so introduced: in order to obtain the notion of a lattice1 one
simply has to require that also suprema (called joins as well) exist for all finite
families; equivalently, a lattice is a semilattice with another binary operation
∨ and another constant ⊥ satisfying equations (1) (with ∧,> replaced by
∨,⊥ respectively) and moreover the following absorption laws

a ∧ (a ∨ b) = a, a ∨ (a ∧ b) = a.

A lattice is said to be distributive iff it satisfies one of the two (equivalent)
equations

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c), a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

In a given semilattice M it may happens that for a, b ∈ M the supremum
of the set {c | a∧c ≤ b} exists; such an element is called the pseudocomplement
of a relative to b (or the implication of a and b, using logical terminology)
and is written as a → b. Otherwise said, a → b, if it exists, it is the unique
element satisfying the condition

a ∧ c ≤ b iff c ≤ a → b

1Notice that we always require the presence of ⊥ and > in a lattice (this is different
from some common literature).
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for all c. A Brouwerian semilattice is a semilattice in which all implications
among pairs of elements exist and a Heyting algebra is a Brouwerian semilat-
tice which is also a distributive lattice. Brouwerian semilattices (hence also
Heyting algebras) may be equivalently introduced for instance through the
equations

a ∧ (a → b) = a ∧ b b ∧ (a → b) = b

a → (b ∧ c) = (a → b) ∧ (a → c) a → a = >.

An important example of a Heyting algebra is given by the open sets O(T )
of a topological space T ; here the partial order is inclusion, finite meets and
joins are intersections and unions, whereas implication of the open subsets a
and b is the interior of a′ ∪ b (where a′ is the complement of a). The most
important example for us is given by the downward closed subsets P ∗ of a
poset P (a ⊆ P is downward closed iff p ∈ a and q ≤ p imply q ∈ a): here the
partial order, joins and meets are again inclusion, intersections and unions,
respectively, whereas the implication of a and b is

a → b = {p ∈ P | ∀q ≤ p (q ∈ a ⇒ q ∈ b)}.

Localizations provide a general method to build new Heyting algebras from
a given one. A Lawvere local operator on a semilattice M is a function

‡ : M −→ M

satisfying the equations

a ≤ ‡a ‡ a = ‡ ‡ a ‡ (a ∧ b) = ‡a ∧ ‡b.

It turns out that ‡M = {a ∈ M | a = ‡a} is a subsemilattice of M ; in case M
is a Brouwerian semilattice, so is ‡M and in case M is a distributive lattice
so is ‡M (however, in this case, ‡M is not a sublattice of M because join of
{a1, . . . , an} ⊆ ‡M is ‡(a1 ∨ · · · ∨ an), not just a1 ∨ · · · ∨ an which may not
belong to ‡M). Consquently, if M is a Heyting algebra, so is ‡M .

A finite distributive lattice is always a Heyting algebra, because a finite
distributive lattice is complete and, thanks to distributivity, for any element
a, the order preserving map a∧ (−) preserves suprema, so that it has a right
adjoint a → (−). For the same reason, a finite Brouwerian semilattice is
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always a Heyting algebra: in fact joins exists and are distributive as a∧ (−)
preserves them (being a left adjoint).

In a Heyting algebra H, negation is introduced through

¬a = a → ⊥;

such operation satisfies many usual laws, but not all of them (for instance,
only three of the four De Morgan identities hold). A Boolean algebra is a
Heyting algebra in which we have ¬¬a = a (or, equivalently, a∨¬a = >) for
all a.

Distributive lattices and Boolean algebras (also Brouwerian semilattices,
but this fact is less trivial) are locally finite varieties, namely varieties in
which finitely generated algebras are finite; this is easily seen, e.g. in the case
of Boolean algebras, from the fact that if the set G generates the algebra B,
then every element of B admits a representation of the kind

∧
i

∨
j xij where

i, j range over finite sets of indices and where xij is either g or ¬g for some
g ∈ G. Local finiteness is not true for Heyting algebras, since even an one-
element generated Heyting algebra can be infinite.

Let us mention how to describe quotients in Heyting algebras. The central
notion to this respect is the notion of a filter, which makes sense at the level
of a semilattice R (although it becomes fully operative only when there are
implications): this is a subset F of R satisfying the following requirements

• > ∈ F ;

• if a1, a2 ∈ F , then a1 ∧ a2 ∈ F ;

• if a1 ∈ F and a1 ≤ a2, then a2 ∈ F .

Given a subset S ⊆ R, there exists the minimum filter [S] containing S,
which is given by

[S] = {b ∈ R | ∃n ≥ 0, ∃a1, . . . , an ∈ S s.t. a1 ∧ · · · ∧ an ≤ b}.
In particular, the minimum (or principal) filter containing an element a is
just [a] = {b | a ≤ b}.

In Heyting algebras, the lattice of filters and the lattice of congruences are
isomorphic; given a congruence ', we can associate to it the filter {a | a ' >}
and given a filter F we can associate to it the congruence given by

a ' b iff a ↔ b ∈ F
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(where a ↔ b is (a → b) ∧ (b → a)). The two correspondences are inverse
each other.

Given that congruences can be replaced by filters, we shall call kernel of
a morphism f : A −→ B among Heyting algebras directly the filter {a ∈
A | f(a) = >} (and not - as it is in the general case of universal algebra -
the congruence given by a ' b iff f(a) = f(b)). Also, notice that in order to
check that a morphism f : A −→ B among Heyting algebras is injective, it
is sufficient to show that [>] is its kernel (i.e. that f(a) = > implies a = >
for all a ∈ A).

The correspondence between filters and congruences can be used to
get easily the so-called congruence extension property for Heyting algebras,
namely the fact that the pushout of a monomorphism along a quotient is
again a monomorphism. In fact, if m : A −→ A′ is mono and F is a filter
of A with quotient map q : A −→ A/F , we can build a pushout square as
follows

A/F A′/F ′-
m′

A A′-m

?

q

?

q′

where F ′ is the filter {b ∈ A′ | ∃a ∈ F s.t. m(a) ≤ b}. As F is precisely the
kernel of mq′, the morphism m′ : A/F −→ A′/F ′ exists and is mono.2

2We take this occasion to recall the following simple but very important universal
property of quotients. Given algebras A,B, C and morphisms f : A −→ B, q : A −→ C
such that q is a quotient (i.e. it is surjective), we have that there exists a (necessarily
unique) morphism f̄ : C −→ B making the triangle

A B-f

C
??

q f̄

¡
¡

¡
¡¡µ

to commute iff the kernel of q is included in the kernel of f . Moreover f̄ is injective iff the
kernel of q coincides with the kernel of f .
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A key notion is the notion of a prime filter in a distributive lattice D: it
is just a filter p satisfying the further two requirements:

• ⊥ 6∈ p;

• if a1 ∨ a2 ∈ p, then either a1 ∈ p or a2 ∈ p.

Prime filters can be equivalently defined as the preimages of 1 along mor-
phisms D −→ 2 (here 2 = {1, 0} is the two-element Boolean algebra). Prime
filters in Boolean algebras are usually called ultrafilters and can equivalently
be introduced as maximal proper filters.

Existence of enough prime filters is guaranteed by the following very
important extension/exclusion Lemma, whose proof depends in an essential
way on the axiom of choice. If S, T are subsets of a distributive lattice,
notation S ≤ T means that there are a1, . . . , an ∈ S (n ≥ 0) and b1, . . . , bm ∈
T (m ≥ 0) such that a1 ∧ · · · ∧ an ≤ b1 ∨ · · · ∨ bm.

Lemma 1.1 Let D be a distributive lattice and let S, T be subsets of its such
that S 6≤ T . Then there is a prime filter p such that S ⊆ p and p ∩ T = ∅.

Proof. First notice that we can suppose that T is closed under finite joins
(otherwise we simply close it, without loosing the condition S 6≤ T ). We take
the family F of filters including S and disjoint from T (this is not empty as
it contains [S]). We order such family by set-theoretic inclusion; now the
union of a chain of filters disjoint from T is also a filter disjoint from T ,
hence we are in the good conditions to apply Zorn lemma. We show that if
M is maximal in F , then it is prime. If not, there are a1, a2 6∈ M such that
a1∨a2 ∈ M . Take Fi = [M ∪{ai}] (i = 1, 2); by maximality, these two filters
cannot be in F hence they are not disjoint from T . It follows that there are
m1,m2 ∈ M and b1, b2 ∈ T such that

m1 ∧ a1 ≤ b1 and m2 ∧ a2 ≤ b2.

Taking m = m1 ∧m2 ∈ M and b = b1 ∨ b2 ∈ T , we get

m ∧ a1 ≤ b and m ∧ a2 ≤ b,

hence also (by the distributivity law)

m ∧ (a1 ∨ a2) ≤ b,
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that is M is not disjoint from T , contradiction. 2

We shall use the above extension/exclusion Lemma quite often; notice
that the condition S 6≤ T appearing in it has obvious simplifications in case,
say, S is closed under finite meets and T is closed under finite joins (in such
a case S 6≤ T holds iff for no a ∈ S and b ∈ T we have a ≤ b). This and
similar obvious simplifications will be tacitly adopted whenever possible.

2 Lindenbaum Algebras

The content of this Section is not needed for the subsequent formal devel-
opments, which rely only on the definitions from Section 1 and on general
facts from category theory. For this reason, we shall omit or merely sketch
proofs of the basic facts we are going to establish, thus avoiding dispersive
not really deep details.

On the other hand, this Section is quite crucial for the correct under-
standing of the logical meaning of all the results we shall establish in these
notes.

We briefly recall the syntax of intutionistic propositional calculus (IPC).
Given a set X, we can introduce the set Form(X) of well formed formu-
las over the alphabet X (of propositional letters) in the standard way (we
use ∧,∨,→ as connectives and an additional constant symbol ⊥).3 Letters
ϕ, ψ, . . . denote such formulas and letters Γ, ∆, . . . denote sets of formulas.
We sometimes write ϕ(X) (resp. Γ(X)) to emphasize the fact that the for-
mula ϕ (resp. the set of formulas Γ) is built up from X (i.e. it does not
contain propositional letters other than those belonging to X).

To make the presentation quick, we use a Hilbert-style calculus for IPC.
We take as logical axioms the following schemata:

ϕ → (ψ → ϕ)

(ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ))

ϕ → (ψ → (ϕ ∧ ψ))

ϕ ∧ ψ → ϕ

ϕ ∧ ψ → ψ

(ϕ → χ) → ((ψ → χ) → (ϕ ∨ ψ → χ))

3> stands for ⊥ → ⊥, ¬ϕ stands for ϕ → ⊥ and ϕ ↔ ψ stands for (ϕ → ψ)∧ (ψ → ϕ).
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ϕ → ϕ ∨ ψ

ψ → ϕ ∨ ψ

⊥ → ϕ

Modus ponens
ϕ ϕ → ψ

ψ

is the only inference rule.
Given a theory (i.e. a set of formulas) Γ and given a formula ϕ, the

notation
`Γ ϕ

means that there is a Γ-derivation of ϕ, i.e. that there is a list of formulas
ϕ0, ϕ1, . . . , ϕn = ϕ such that for each i

• either ϕi is a logical axiom (i.e. it is an instance of one of the above
axiom schemata);

• or ϕi is a proper axiom (i.e. it belongs to Γ);

• or, finally, there are i1, i2 < i such that ϕi1 is ϕi2 → ϕi (i.e. ϕi is
obtained from previous formulas in the derivation by applying modus
ponens).

By
ψ `Γ ϕ

we mean that `Γ ψ → ϕ (or, equivalently, by the deduction theorem, that
`Γ∪{ψ} ϕ). What is important in the sequel is the following fact:

Proposition 2.1 Let Γ be a theory (an alphabet X is supposed to be fixed);
for formulas ϕ(X), ψ(X) define the equivalence relation

ϕ ∼Γ ψ iff `Γ ϕ ↔ ψ.

Then Form(X)/∼Γ is a Heyting algebra with respect to the obvious operations

> = [>]
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⊥ = [⊥]

[ϕ] ∧ [ψ] = [ϕ ∧ ϕ]

[ϕ] ∨ [ψ] = [ϕ ∨ ϕ]

[ϕ] → [ψ] = [ϕ → ϕ]

Such an algebra is denoted F(X)/Γ and called the Lindenbaum algebra over
X and Γ. 2

In case Γ is empty, we shall write ` ϕ, ψ ` ϕ, ∼, F(X), etc. instead of `∅ ϕ,
ψ `∅ ϕ, ∼∅, F(X)/∅, respectively.

For an alphabet X, we have an (injective) set-theoretic map

ηX : X −→ U(F(X))

associating with x ∈ X the equivalence class [x] in F(X) (here U is the
forgetful functor from the category H of Heyting algebras into the category
Set of sets). The universal property of (ηX ,F(X)) is explained in next
Theorem, saying that F(X) is the free Heyting algebra over X:

Theorem 2.2 Given an alphabet X and given a set-theoretic function

I : X −→ U(A)

(where A is any Heyting algebra), there is a unique morphism

[Ie] : F(X) −→ A

such that the following triangle

U(F(X)) U(A)-
U([Ie])

X

ηX

¡
¡

¡
¡¡ª

I

@
@

@
@@R

commutes.
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Proof. (Sketch) We first extend I to a set-theoretic function

Ie : Form(X) −→ U(A)

as follows

Ie(x) = I(x), for x ∈ X

Ie(⊥) = ⊥
Ie(ϕ ∧ ψ) = Ie(ϕ) ∧ Ie(ψ)

Ie(ϕ ∨ ψ) = Ie(ϕ) ∨ Ie(ψ)

Ie(ϕ → ψ) = Ie(ϕ) → Ie(ψ).

By induction on IPC-derivations, one easily shows that

` ϕ ⇒ Ie(ϕ) = >.

Consequently, if ϕ ∼ ψ, then Ie(ϕ) = Ie(ψ). This means that the map

[Ie] : F(X) −→ A

given by
[Ie]([ϕ]) = Ie(ϕ)

is well-defined. It is indeed the unique Heyting algebras morphism making
the above triangle commutative. 2

The above data, namely the functions ηX : X −→ U(F(X)), can be used
to define a functor

F : Set −→ H

(which turns out to be left adjoint to the forgetful functor U) by the following
purely categorical standard procedure. We already know the value of F on
objects (i.e. on sets); for a function f : X −→ Y , we let F(f) to be the
unique morphism such that the square

U(F(X)) U(F(Y ))-
U(F(f))

X Y-f

?

ηX

?

ηY
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commutes. The fact that F is left adjoint to U means that we have natural
bijections between the following entities:

X −→ U(A)
F(X) −→ A.

We shall establish now a suitable universal property for an arbitrary Lin-
denbaum algebra F(X)/Γ. Suppose that IΓ : X −→ U(A) is a function such
that Ie

Γ(ϕ) = > holds for all ϕ ∈ Γ; we call such a function a Γ-model (in
A).4

By Theorem 2.2 and the related proof, such an IΓ uniquely extends to a
morphism

[Ie
Γ] : F(X) −→ A

such that [Ie
Γ]([ϕ]) = > holds for all ϕ such that `Γ ϕ. Now the kernel of the

surjective morphism
qΓ : F(X) −→ F(X)/Γ

is precisely formed by all [ϕ] such that `Γ ϕ: this is again by Theorem
2.2 and its proof, because qΓ can be defined as the unique extension of
the set-theoretic map X −→ U(F(X)/Γ) asssociating with x ∈ X the
equivalence class [x] in F(X)/Γ (consequently we have qΓ([ϕ]) = [ϕ] for
all ϕ ∈ Form(X)). By the universal property of quotients, we have a unique
morphism α(IΓ) such that the triangle

F(X)/Γ A-
α(IΓ)

F(X)

qΓ

¡
¡

¡
¡¡ª

[Ie
Γ]

@
@

@
@@R

commutes.5 Thus Γ-models in a Heyting algebra A

IΓ : X −→ U(A)

4Notice that by induction on IPC-derivations, we easily get that Ie
Γ(ϕ) = > is true for

all ϕ such that `Γ ϕ.
5Notice that α(IΓ) is given by α(IΓ)([ϕ]) = Ie

Γ(ϕ); moreover, IΓ can be recovered from
α(IΓ) by IΓ(x) = α(IΓ)([x]).
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bijectively corresponds to morphisms

α(IΓ) : F(X)/Γ −→ A.

This bijective correspondence α is natural in A, in the sense that for g :
A −→ A′ we have6

(α(IΓ))g = α(IΓU(g)).

The existence of such a natural bijection between Γ-models in A and mor-
phisms F(X)/Γ −→ A characterizes the Heyting algebra F(X)/Γ uniquely
up to isomorphism.

As a first application of this fact, let us show that any Heyting algebra B
is the Lindenbaum algebra of an intuitionistic theory (in a suitable language).
Let in fact I : X −→ U(B) be a function whose image I(X) generates B as
a Heyting algebra (we may take e.g. as I the identity function U(B) −→
U(B)). As usual, such a function extends to a map

Ie : Form(X) −→ U(B)

which is surjective (the fact that Ie is surjective may be taken as a syn-
onimous of the fact that I(X) generates B). Let Γ be the theory {ϕ ∈
Form(X) | Ie(ϕ) = >}. We have that

B ' F(X)/Γ

because it is possible to find a natural bijective correspondence between mor-
phisms B −→ A and Γ-models in A for every Heyting algebra A (we leave
the details to the reader).

The fact that every Heyting algebra is a Lindenbaum algebra says that
Heyting algebras must be regarded essentially as syntactic objects. Better,
they are invariant syntactic objects, in the sense that, when considering
them, conventional linguistic choices have been forgotten as irrelevant: notice
that, from this point of view, given a Heyting algebra B, the choice of a
presentation for B (i.e. of X and Γ such that B ' F(X)/Γ) is not univocally
determined.

The previous remark, however, does not prevent us from regarding specific
kinds of Heyting algebras as semantic universes (where models are taken
into). More precisely:

6This naturality may be equivalently stated by the equation (α−1(f))U(g) = α−1(fg),
for g : A −→ A′ and f : F(X)/Γ −→ A.
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• Heyting algebras of the kind P ∗, for a poset P , are called Kripkean
semantic universes;

• Heyting algebras of the kind O(T ), for a topological space T , are called
topological semantic universes;

• Heyting algebras of the kind ‡P ∗, for a poset P and a local operator
‡ : P ∗ −→ P ∗, are called Beth-Grothendieck semantic universes.

Thus, for a Heyting algebra B, we may define a Kripke model for B as a
morphism of the kind

B −→ P ∗.

Analogously, topological models for B are morphisms of the kind

B −→ O(T )

and Beth-Grothendieck models for B are morphisms of the kind

B −→ ‡P ∗.

This terminology coincides with the standard terminology from textbooks
in logic. Let us illustrate this in the case of Kripke models B −→ P ∗. If
B ' F(X)/Γ, we know that Kripke models corresponds to Γ-models I :
X −→ U(P ∗) such that Ie(ϕ) = > holds for all ϕ ∈ Γ. Now functions
I : X −→ U(P ∗) are standard Kripke evaluations (they associate with each
propositional letter x ∈ X a downward closed subset of P ).7 The extension
Ie : Form(X) −→ U(P ∗) of I to all formulas is nothing but the usual
extension of Kripke forcing from propositional letters to all formulas. In
fact, if we write I |= ϕ for p ∈ Ie(ϕ), we have (taking into account the
definition of Ie and the way the Heyting algebras operations are defined in
P ∗):

I |=p x iff p ∈ I(x)

I |=p >
I 6|=p ⊥
I |=p ϕ1 ∧ ϕ2 iff I |=p ϕ1 and I |=p ϕ2

7Most textbooks prefer to consider upward closed subsets.
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I |=p ϕ1 ∨ ϕ2 iff I |=p ϕ1 or I |=p ϕ2

I |=p ϕ1 → ϕ2 iff ∀q ≤ p (I |=q ϕ1 ⇒ I |=q ϕ2).

Now the fact that, if B ' F(X)/Γ, any morphism B −→ P ∗ corresponds to
a Γ-model I : X −→ U(P ∗), means in term of forcing that we must have for
such an I

I |=p ϕ for all ϕ ∈ Γ and p ∈ P

(because this is the same as the Γ-model condition Ie(ϕ) = > for all ϕ ∈ Γ).
Thus we are justified in calling a morphism B −→ P ∗ a Kripke model for
(any theory giving a presentation of) B.

The same observations apply to topological and Beth-Grothendieck mod-
els, where however the truth clauses for forcing are changed according to the
new Heyting algebras operations. For topological models, only truth clause
for implication is changed; the new one is

I |=p ϕ1 → ϕ2 iff ∃N ∈ N (p) s.t. ∀q ∈ N (I 6|=q ϕ1 or I |=q ϕ2)

(here N (p) is the set of neighborhoods of the point p).
For Beth-Grothendieck models, only clauses for ⊥ and disjunction are

changed; the new ones are

I |= p iff ∅ covers p

and

I |=p ϕ1 ∨ ϕ2 iff {q ≤ p | Iq |= ϕ1 or Iq |= ϕ2} covers p

(here we say that a downward set S covers a point p iff p ∈ ‡S).
We have seen the logical meaning of a single Heyting algebra B (it is

a theory) and of a morphism with domain B and codomain specific kinds
of Heyting algebras (it is a model of a suitable kind). It remains to give a
logical meaning to any morphism

f : B −→ A

among Heyting algebras (such a meaning will be purely syntactical, as B and
A are themselves syntactic objects). Suppose that B ' F(X)/Γ and A '
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F(Y )/∆; then we know that f is the same as a Γ-model I : X −→ F(Y )/∆.
Given such a Γ-model, let us pick for every x ∈ X a formula x̂ ∈ Form(Y )
such that [x̂] = I(x). The function x 7→ x̂ can be inductively extended to all
formulas in Form(X) in the obvious way (i.e. we put (ϕ1 ∗ϕ2)

ˆ = ϕ̂1 ∗ ϕ̂2 for
every connective ∗) so that we have [ϕ̂] = Ie(ϕ) for all ϕ. In this way (taking
into consideration the definition of a Γ-model) we get that

ϕ ∈ Γ ⇒ `∆ ϕ̂.

This is what in logic is commonly called a syntactic interpretation of the
theory Γ into the theory ∆. Notice that the syntactic interpretation (−̂) is
conservative (that is, `∆ ϕ̂ implies `Γ ϕ for all ϕ ∈ Form(X)) precisely
when f is a monomorphism. Moreover f is surjective iff we can arrange the
presentations in such a way that X = Y , Γ ⊆ ∆ and ϕ̂ = ϕ for all ϕ. Thus:

• morphisms correspond to syntactic interpretations (in invariant sense);

• monomorphisms correspond to conservative syntactic interpretations
(or, to put it in a slightly different way, to enlargements of the original
theory into a theory in a bigger language not proving new theorems in
the old language);

• quotients correspond to strenghtening of the original theory with new
axioms within the same language.

It should be noticed that it is always possible, given a morphism

f : B −→ A,

to arrange a presentation

F(X)/Γ −→ F(Y )/∆

[ϕ] 7−→ [ϕ̂]

for it in such a way that we have X ⊆ Y , Γ ⊆ ∆ and ϕ̂ = ϕ for all
ϕ ∈ Form(X).8 This is achieved e.g. in the following way, starting from
any presentation F(X)/Γ of the domain algebra B. First, let Y to be X ∪

8This is not surprising, syntactic interpretations are subject to conventions, including
the conventions used to build the source and the target theory.
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(U(A)\Im(f)) and let J be the function J : Y −→ U(A) associating f([x])
to x ∈ X and x itself to any x ∈ U(A)\Im(f). Let finally ∆ be the theory
{ϕ ∈ Form(Y ) | Je(ϕ) = >}. Now the following triangle

F(Y )/∆ A-
α(J)

B ' F(X)/Γ

α(IX)
¡

¡
¡

¡¡ª

f
@

@
@

@@R

commutes (here IX is the Γ-model associating [x] with x ∈ X) and α(J) is
injective and surjective (i.e. an isomorphism).9 In this way ∆ is a theory
in a language larger than the language of Γ, however ∆ needs not to be a
conservative extension of Γ (unless f is injective).

The above observation for presentations can be often used in order to un-
derstand the logical meaning of certain algebraic constructions. For Sections
6 and 7, a crucial construction is that of a pushout

A2 A-

A0 A1
-f1

?

f2

?

Using the above schema for presentations, we can present A0, A1, A2 as (let
us write F(Y0, Yi) instead of F(Y0 ∪ Yi))

A0 ' F(Y0)/Γ0, A1 ' F(Y0, Y1)/Γ1 A0 ' F(Y0, Y2)/Γ2

in such a way that fi (for i = 1, 2) is the morphism associating the equivalence
class [ϕ(Y0)] with [ϕ(Y0)] itself (seen as an equivalence class in F(Y0, Yi)/Γi).
Now, provided we keep Y1 and Y2 disjoint, a presentation for the pushout
algebra A can be achieved by observing that the square

9For the involved verifications, just previously observe that f([ϕ]) = Je(ϕ) holds for
all ϕ ∈ Form(X).
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F(Y0, Y2)/Γ2 F(Y0, Y1, Y2)/Γ1 ∪ Γ2
-

F(Y0)/Γ F(Y0, Y1)/Γ1
-

? ?

is indeed a pushout. So taking pushout of two theories (over a given one)
means putting together languages and axioms.

Presentations like the above one for pushouts are not useful for proofs
(proofs should only rely on universal properties), however they are indis-
pensable to get the correct logical intuition and to give logical meaning to
algebraic constructions (in the relevant cases, there always is such a mean-
ing).

3 The Glueing Construction

One of the most important properties of intuitionistic logic is disjunction
property, saying that a disjunction of two formulas is provable iff one of the
two disjuncts is provable. In algebraic terms this means that free Heyting
algebras are prime (we say that a Heyting algebra A is prime iff for all
a, b ∈ A, we have that > = a ∨ b implies that either > = a or > = b).

Let A1, A2 be Heyting algebras and let f : A1 −→ A2 be a morphism of
the underlying semilattices. Consider the set

γ(f) = {(a1, a2) ∈ A1 × A2 | a2 ≤ f(a1)}.

Notice that if (a1, a2), (a
′
1, a

′
2) ∈ γ(f), then the pairs

(a1 ∧ a′1, a2 ∧ a′2), (a1 ∨ a′1, a2 ∨ a′2), (>,>), (⊥,⊥)

belongs to γ(f) too. With these operations, γ(f) is easily seen to be a
distributive lattice. More is true indeed:

Proposition 3.1 γ(f) is a Heyting algebra and the first projection (re-
stricted in its domain) is a Heyting algebra morphism p : γ(f) −→ A1.
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Proof. We take
(a1 → a′1, (a2 → a′2) ∧ f(a1 → a′1))

as implication of (a1, a2) and (a′1, a
′
2). For (a, b) ∈ γ(f) we have the following

chain of equivalences:

(a, b) ∧ (a1, a2) ≤ (a′1, a
′
2)

a ∧ a1 ≤ a′1 & b ∧ a2 ≤ a′2
a ≤ a1 → a′1 & b ≤ a2 → a′2

We claim that last two inequations are equivalent to

a ≤ a1 → a′1 & b ≤ (a2 → a′2) ∧ f(a1 → a′1).

One side is trivial, for the other one, just notice that b ≤ f(a) and f(a) ≤
f(a1 → a′1) immediately imply that b ≤ f(a1 → a′1). 2

Lemma 3.2 Let A be a Heyting algebra and let cA : A −→ 2 be the charac-
teristic function of {>}; then the Heyting algebra γ(cA) is prime.

Proof. γ(cA) contains all pairs (a, 0); it contains (a, 1) iff a = >. It is then
clear that γ(cA) has a penultimate element (namely (>, 0)), so it is prime. 2

Theorem 3.3 Free Heyting algebras are prime.

Proof. Let F(X) be a free Heyting algebra and let ˆ(−) be the unique
morphism from F(X) into γ(cF(X)) such that x̂ = (x, 0) holds for all x ∈ X.
We have a commutative triangle

F(X) γ(cF(X))-
ˆ(−)

F(X)

id

@
@

@
@@R

p
¡

¡
¡

¡¡ª
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showing that ˆ(−) is injective. For a, b ∈ F(X) we then have the following
chain of equivalences

> ≤ a ∨ b

> = >̂ ≤ â ∨ b̂

>̂ ≤ â or >̂ ≤ b̂
> ≤ a or > ≤ b

where in last two passages we used the previous Lemma and the injectivity
of ˆ(−). 2

4 Basic Adjunction

In Section 2 we saw how to give logical meaning to our algebras; in this and in
next Section we see how to get appropriate geometric intuition about them,
by representing them as suitable ‘spaces’. We first begin with distributive
lattices and connect them to posets.

Given a poset (P,≤) (to be indicated as usual simply as P ), we can form
the distributive lattice P ∗ of sieves (i.e. of downward closed subsets) of P ,
as mentioned in Section 1. We recall that Joins and Meets (i.e. suprema
and infima) in P ∗ are just set-theoretical unions and intersections. Given an
order-preserving map µ : Q −→ P among posets, we define µ∗ : P ∗ −→ Q∗

by taking inverse image (i.e. for a ∈ P ∗, µ∗(a) is the sieve {q |µ(q) ∈ a}).
Notice that µ∗ preserves all Joins and Meets. As this definition is clearly
functorial, we have in fact a functor

(−)∗ : Pop −→ D

where P is the category of posets and order-preserving maps and D is the
category of distributive lattices and related morphisms.

There is a kind of reverse correspondence, given by the spectrum con-
struction. For a distributive lattice D, let D∗ be the poset of prime fil-
ters of D, ordered by reverse inclusion. For a distributive lattice morphism
f : E −→ D, we can define f ∗ : D∗ −→ E∗ by taking inverse image once
again, i.e. we have for p ∈ D∗

f ∗(p) = {a ∈ E | f(a) ∈ p}.
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Notice that f ∗(p) is a prime filter, moreover f ∗ triviallly preserves partial
order. Thus we have a functor

(−)∗ : D −→ Pop

(we give it the same name as the previous one).

Theorem 4.1 Functors (−)∗ are adjoints.

Proof. We need a natural bijection between entities of the following kinds

D
f−→ P ∗

D∗ µ←− P

In fact, given f : D −→ P ∗, define µ : P −→ D∗ by

µ(p) = {a ∈ D | p ∈ f(a)}.

Conversely, given µ : P −→ D∗, define f : D −→ P ∗ by

f(a) = {p | a ∈ µ(p)}.

Bijectivity and naturality of this correspondence are easy. 2

For a distributive lattice D, let us call D∗ the dual space of D. It should
be noticed that it is impossible in general to recover the distributive lattice
D from its dual space (in particular, D∗∗ is quite larger than D itself). To do
this, one should enrich D∗ with a topological structure (suitably connected
with the partial order relation), leading to the notion of a Priestley space.10

The above functors (−)∗ can be described in a slightly different but sug-
gestive way. Notice that the Boolean algebra 2 can be considered both as a
poset and as a distributive lattice. Prime filters of a distributive lattice D
are just distributive lattice morphisms D −→ 2. On the other hand, sieves
of a poset P are just order-preserving maps P −→ 2. Thus for a distributive
lattice D, D∗ (as a set) is just HomD(D,2) and for a poset P , P ∗ (as a set)

10A Priestley space is a compact topological space T endowed with a partial order
relation ≤ such that whenever we have p 6≤ q (for p, q ∈ T ), then there is a clopen sieve
S containing q and not containing p. The category of Prietley spaces and continuous
order-preserving maps is dual to D.
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is just HomP(P,2). The same observation applies to arrows (i.e. to distribu-
tive lattices morphisms and to order-preserving maps), hence our functors
(−)∗ are, in a sense, both represented by 2; due to this double role it plays,
2 is called a schizophrenic object.

The natural bijection of Theorem 4.1, applied to identity maps D∗ −→
D∗, gives distributive lattices morphisms

ηD : D −→ D∗∗

(which are the components of a natural transformation, more precisely of the
unity of the adjointness).

Proposition 4.2 ηD is an injective distributive lattice morphism for every
D.

Proof. We recall that ηD is so defined

ηD(a) = {p | a ∈ p}.
If a 6≤ b, by the extension/exclusion Lemma, there is p ∈ D∗ such that a ∈ p
and b 6∈ p, that is we have ηD(a) 6⊆ ηD(b). 2

Notice that the above Proposition (as the extension/exclusion Lemma)
depends on choice axiom.

Next, we characterize a subcategory of D which is dual to P via (−)∗.
An element a of a distributive lattice D is said to be Join-irreducible iff for
every family {bi}i∈I of elements from D such that

∨
i∈I bi exists in D, we have

that
a ≤ ∨

i

bi ⇒ ∃i ∈ I s.t. a ≤ bi

(notice that this implies a 6= ⊥, taking as I the empty set of indices). We
let J(D) to be the poset of Join-irreducible elements of D. A distributive
lattice D is said to be J-generated iff for every c ∈ D we have that

c =
∨

a∈J(D),a≤c

a.

Let DcJg be the subcategory of D formed by complete and J-generated dis-
tributive lattices with complete morphisms (a morphism is complete iff it
preserves all Joins and Meets).
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Clearly, for every poset P , we have that P ∗ is complete and J-generated
(Join-irreducible elements are just cones, i.e. sieves of P of the kind ↓ p =
{q ∈ P | q ≤ p} for some p ∈ P ). Moreover, for an order-preserving map
µ : Q −→ P , we have that µ∗ : P ∗ −→ Q∗ is a complete morphism. We
can so restrict the functor (−)∗ to DcJg in the codomain (we shall call this
restriction (−)∗ again).

Proposition 4.3 The functor

(−)∗ : Pop −→ DcJg

establishes an equivalence of categories.

Proof. For simplicity, we prove that (−)∗ is full, faithful and essentially
surjective (leaving the reader to determine explicitly, if he likes so, the ap-
propriate functor in the opposite direction).

Let f : P ∗ −→ Q∗ be a complete morphism; as such, it has a left adjoint
∃f : Q∗ −→ P ∗. ∃f maps Join-irreducible elemets to Join-irreducible ele-
ments, because if a ∈ Q∗ happens to be Join-irreducible, we have for every
family {bi}i from P ∗:

∃f (a) ≤ ∨
i bi

a ≤ f(
∨

i bi)
a ≤ ∨

i f(bi)
∃i a ≤ f(bi)
∃i ∃f (a) ≤ bi.

Given that Join-irreducible elements are just cones, we have that for every
q ∈ Q there is p ∈ P such that ∃f (↓q) =↓p (such p is indeed unique because
↓p =↓p′ implies p = p′ by antisymmetry). Thus we can define µ : Q −→ P
in such a way that ∃f (↓q) =↓µ(q). This is order-preserving, as q ≤ q′ implies
∃f (↓ q) ⊆ ∃f (↓ q′), thus ↓ µ(q) ⊆↓ µ(q′) and finally µ(q) ≤ µ(q′). Moreover
µ∗ = f , because for q ∈ Q and a ∈ P ∗ we have

q ∈ µ∗(a)
µ(q) ∈ a
↓µ(q) ⊆ a
∃f (↓q) ⊆ a
↓q ⊆ f(a)
q ∈ f(a).
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This proves that (−)∗ is full. For faithfulness, consider µ1 : Q −→ P and
µ2 : Q −→ P such that µ∗1 = µ∗2. We have for q ∈ Q

µ1(q) ≤ µ2(q)
µ1(q) ∈↓µ2(q)
q ∈ µ∗1(↓µ2(q))
q ∈ µ∗2(↓µ2(q))
µ2(q) ∈↓µ2(q)
µ2(q) ≤ µ2(q)

which holds trivially. Similarly, we have µ2(q) ≤ µ1(q), hence µ1 = µ2.
Essential surjectivity is reduced to the fact that if D is complete and

J-generated, then D ' J(D)∗. Indeed we have maps

α : D −→ J(D)∗ and β : J(D)∗ −→ D

given by (for a ∈ D and c ∈ J(D)∗):

α(a) = {b ∈ J(D) | b ≤ a} and β(c) =
∨

b∈c

b.

α and β are both order-preserving, so in order to prove that they establish
an isomorphism of complete lattices, it is sufficient to observe that they are
inverse each other. In fact, for a ∈ D, we have (thanks to the fact that D is
J-generated)

β(α(a)) =
∨{b ∈ J(D) | b ≤ a} = a

and for c ∈ J(D)∗ we have

α(β(c)) = {d ∈ J(D) | d ≤ ∨

b∈c

b} = {d ∈ J(D) | ∃b ∈ c d ≤ b} = c.

This completes the proof of the Proposition. 2

By restricting (−)∗ to finite posets, we get the following finite duality
Theorem:

Theorem 4.4 The category of finite posets and order-preserving maps is
dual to the category of finite distributive lattices.

25



Proof. Clearly every finite distributive lattice D is complete, hence it is
sufficient to show that it is also J-generated. This is proved by well-founded
induction on the strict part < of the partial order relation associated with
D. Let a ∈ D; if a is itself Join-irreducible, it is clearly the Join of all Join-
irreducible elements below it. Otherwise, we have a family {bi}i (necessarily
finite) such that a ≤ ∨

i bi but a 6≤ bi for every i. Taking meet with a and
applying distributivity, we can suppose that bi ≤ a holds for every i (thus,
in particular, a =

∨
i bi). Hence we have bi < a for all i and so, by induction

hypothesis, there are cij ∈ J(D) such that bi =
∨

j cij; we conclude that
a =

∨
ij cij, as wanted. 2

Notice that in this Section we gave the same name (−)∗ to three different
kinds of functors, namely to the dual space functor

D −→ Pop,

to its adjoint
Pop −→ D

and to the restriction of the latter in the codomain

Pop −→ DcJg.

We believe that this apparent notational confusion is harmless, because the
context always clarifies which functor we are currently talking about.

5 Representation Theory

We now analyze what happens when passing from D to the category H of
Heyting algebras.

Theorem 5.1 For every Heyting algebra A, the distributive lattices injective
morphism

ηA : A −→ A∗∗

is a Heyting algebras morphism.

Proof. First notice that any distributive lattices morphism f : B −→ C
among Heyting algebras semi-preserves implications, namely we always have
that the inequality

f(a → b) ≤ f(a) → f(b)
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holds for all a, b ∈ B. Thus in our case we only need to show that

ηA(a) → ηA(b) ⊆ ηA(a → b)

holds for all a, b ∈ A. In other words, given p ∈ A∗ such that a → b 6∈ p,
we have to find q ∈ A∗ such that p ⊆ q, a ∈ q and b 6∈ q. By the
extension/exclusion Lemma it is sufficient to observe that

p ∪ {a} 6≤ {b}

(in fact, if c∧ a ≤ b holds for some c ∈ p, then we have c ≤ a → b, yieldying
a → b ∈ p, contradiction). 2

In terms of Lindenbaum algebras (i.e. giving A a presentation of the kind
F(X)/Γ), we have shown that there is a Kripke model for every theory Γ
which is generic for Γ (in the sense that if Γ 6` ϕ, then there is a point of the
model not forcing ϕ - this corresponds to the injectivity of ηA). We really
proved a little more; if ∆ is a set of formulas closed under disjunctions and
such that Γ 6` ϕ holds for all ϕ ∈ ∆, then there is a point in the model for Γ
we just built which does not force all formulas in ∆ simoultaneously (to see
it, just apply the extension/exclusion Lemma once again). In this form, what
we actually proved is called in the literature a strong completeness theorem
with respect to Kripke semantics (for intuitionistic logic).

Let us now consider the functor

(−)∗ : Pop −→ D

from the previous Section. Given µ : Q −→ P in P, when does it happens
that µ∗ : P ∗ −→ Q∗ preserves implications?

Proposition 5.2 For µ as above, we have that µ∗ is a morphism in H iff µ
is open,11 that is iff it satisfies the following condition, for all q ∈ Q, p ∈ P :

p ≤ µ(q) ⇒ ∃q′ ≤ q s.t. µ(q′) = p.

11The choice of the name is due to the fact that if we consider posets as topological
spaces having sieves as open sets, then open maps (in the topological sense) between them
are just open maps in our sense.
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Proof. Let us first observe that any a ∈ P ∗ can be represented as

a =
⋃
p∈a

↓ p

as well as
a =

⋂

p6∈a

pc

(where pc = {q ∈ P | p 6≤ q}). Moreover, implication in Heyting algebras
satisfies the following identities

(
∨

i

ci) → d =
∧

i

(ci → d)

c → (
∧

i

di) =
∧

i

(c → di)

whenever the mentioned Joins and Meets exist (and in our case they surely
exist as we are dealing with complete Heyting algebras). Consequently, µ∗

preserves implications iff the following identity holds for all p1, p2 ∈ P

µ∗(↓ p1) → µ∗(pc
2) ⊆ µ∗(↓ p1 → pc

2).

This means that µ∗ preserves implications iff for all p1, p2 ∈ P, q ∈ Q we have
that

• if there is p ≤ µ(q) such that p ≤ p1 and p2 ≤ p, then there is also
q′ ≤ q such that µ(q′) ≤ p1 and p2 ≤ µ(q′).

This condition is certainly true in case µ is open and it actually implies
openness of µ (taking p = p1 = p2). 2

If we call OP the category of posets and open maps and HcJg the cate-
gory of complete J-generated Heyting algebras and complete morphisms, we
immediately get the following refinements of Proposition 4.3 and Theorem
4.4:

Theorem 5.3 OP is dual to HcJg; moreover the category of finite Heyting
algebras is dual to the category of finite posets and open maps. 2

Let us now investigate the dual space functor (−)∗ : D −→ Pop and prove
that it restricts to a functor from H into OPop:
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Proposition 5.4 If f : A −→ B is a Heyting algebras morphism, then
f ∗ : B∗ −→ A∗ is an open map.

Proof. Suppose that f ∗(p) ⊆ q holds, for p ∈ B∗ and q ∈ A∗. We must
find p′ ⊇ p such that f ∗(p′) = q. This is achieved by applying exten-
sion/exclusion Lemma to p ∪ {f(a) | a ∈ q} and {f(b) | b 6∈ q}. In fact, we
cannot have

c ∧ f(a) ≤ f(b)

for c ∈ p, a ∈ q, b 6∈ q, otherwise we would get c ≤ f(a → b), i.e. a → b ∈
f ∗(p) ⊆ q, contradiction. 2

To sum up: we have two functors

(−)∗ : H −→ OPop

(−)∗ : OPop −→ H

obtained from the restriction of the corresponding functors for distributive
lattices and posets. They are not adjoint anymore, however (from Theorem
5.1 and Propositions 5.2 and 5.4) we know that

η : Id −→ (−)∗∗

is still a natural transformation,12 which means that the following commu-
tative squares

A∗∗ B∗∗-
f ∗∗

A B-f

?

ηA

?

ηB

entierely lie in H. These data should be kept in mind for the subsequent
Sections.

We notice that, even if we have lost adjointness, we have now a better
correspondence between injective/surjective morphisms. It can be shown

12On the contrary, it is easily seen that the components P −→ P ∗∗ of the counity may
not be open maps.
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indeed (and we leave it as an exercice to the reader) that any morphism
f : A −→ B in H is injective (resp. surjective) iff f ∗ : B∗ −→ A∗ in OP is
surjective (resp. injective); moreover µ : Q −→ P in OP is injective (resp.
surjective) iff µ∗ : P ∗ −→ Q∗ in H is surjective (resp. injective). Not all
these properties, on the other hand, hold in the original case of D and P.
Of course, injectivity and surjectivity are not categorical conditions (at least
by themselves), however there is a categorical point not far from all that:
we shall see in next Section that monos and epis are all regular in H (a fact
which is easily seen to fail in D).

We conclude this Section by proving a finite model property of IPC with
respect to Kripke semantics: this property says that whenever a formula is
not provable, it fails in a finite Kripke model. In view of the above Theorem
5.3 (saying in particular that all finite Heyting algebras are of the kind P ∗

for a finite poset P ), finite model property follows immediately provided we
show that any free Heyting algebra embeds into a product of finite Heyting
algebras. We first need a Lemma:

Lemma 5.5 Let A,B be Heyting algebras such that A is a sublattice of B.
For a, b ∈ A, if the implication of a and b (taken in B) is equal to an element
c ∈ A, then c is also the implication of a and b (taken in A).

Proof. This is trivial: ’c is the implication of a and b’ is equivalent to the
statement

∀d (a ∧ d ≤ b ⇔ d ≤ c).

If this statement is true with the quantifier ’for all d’ ranging over B, then it
is certainly true with the quantifier ’for all d’ ranging only over A ⊆ B. 2

Theorem 5.6 Every free Heyting algebra F(X) embeds into a product of
finite Heyting algebras.

Proof. We need to prove that for every formula ϕ(X) such that in F(X) we
have [ϕ] 6= >, there exists a morphism f : F(X) −→ A such that A is finite
and f([ϕ]) 6= >. Let A be the distributive sublattice of F(X) generated by
elements of the kind [ψ(X)], where ψ is a subformula of ϕ. This is certainly
finite and consequently it is a Heyting algebra (we saw why in Section 1).
Consider now the function

I : X −→ U(A)
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associating [x] with any x ∈ X occurring in ϕ (we leave I(x) to be arbitrary
for propositional letters not occurring in ϕ). Using notation from the proof
of Theorem 2.2 and keeping in mind the previous Lemma, we have that
Ie(ψ) = [ψ] holds for all subformulas ψ of ϕ, hence in particular Ie(ϕ) 6= >.
Thus [Ie] : F(X) −→ A is the desired morphism. 2

Notice that the statement of last Theorem easily extends to all finitely
presented Heyting algebras (but not to arbitrary Heyting algebras).

6 Coregular Factorizations

In this and in the next Section we study the opposite Hop of the category
of Heyting algebras. We prefer not to develop a heavy duality theory in the
style of Priestley duality for distributive lattices, however we should take in
mind that reversing direction of arrows is not a purely formal operation: to
get the right intuition, we shall think now of Hop as a category of spaces.
For spaces, it makes sense to speak of good factorization properties, similar
to the image factorization we have in Set. The fact that image factorization
is good in sets is expressed by the fact that Set is a regular category. We
recall that a category C is regular iff

• C has finite limits.

• Every kernel pair13 in C has a coequalizer.

13The parallel pair of arrows

-g

-
h

C A

is a kernel pair iff there is a morphism f such that the diagram

A B-
f

C A-g

?
h

?
f

is a pullback.
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• Regular epis (i.e. arrows that happen to be coequalizers of some pair
of parallel arrows) in C are pullback stable, i.e. pullback of a regular
epi along any morphism is a regular epi.

It can be shown that in a regular category every arrow A
f−→ B factors as a

regular epi followed by a mono; this factorization (called the regular or the
image factorization of f)

A
q−→ Q

m−→ B

is obtained by taking as q the coequalizer of the kernel pair of f (then the
arrow m given by the universal property of coequalizers can be proved to be
mono by using the axioms of regular category, see [Bo]).

H trivially is regular, this is not a very interesting fact. However, as H
has colimits and limits, we can reproduce the kernel pair/quotient procedure
in Hop (thus getting what we call the coregular factorization of a morphism).
Do we still get a regular category? Surprisingly, this fact is strictly related
to purely logical properties of intuitionistic logic, as we shall see.

Let Γ(X, Y ) be a set of formulas and let ϕ(X,Y ) be a single formula.
Beth’s Definability Theorem says that whenever we have

Γ(X, Y ) ∪ Γ(X, Y ′) ` ϕ(X,Y ) ↔ ϕ(X, Y ′) (2)

we also have that

there exists ψ(X), such that Γ(X,Y ) ` ϕ(X, Y ) ↔ ψ(X) (3)

(here Y ′ is a disjoint copy of Y ).14

In order to find the appropriate algebraic conceptualization of Beth’s
Theorem, let us take any morphism f : A −→ B among Heyting algebras.
In order to get its coregular factorization, we first consider the pushout of f
with itself

A B-f -i1
-

i2
B +A B

14Strictly speaking, standard Beth’s Theorem requires such property only for the case in
which Y = {y} is a singleton set and ψ(X,Y ) is the formula y itself. In such a weak form,
Beth’s Theorem corresponds algebraically to the fact that epimorphisms among finitely
presented Heyting algebras are regular, i.e. onto.
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and then the equalizer E
e−→ B of i1, i2; by the universal property of equal-

izers there is a unique q such that the diagram

A B-f

E

q

@
@

@
@

@@R

e

¡
¡

¡
¡

¡¡µ

commutes. Let us now take a suitable presentation of the morphism f :
A −→ B in terms of Lindenbaum algebras associated to theories; recall from
Section 2 that we can present A as F(X)/∆(X) and B as F(X,Y )/Γ(X,Y ),
in such a way that the morphism f corresponds to the map associating the
equivalence class of each x ∈ X with itself (more precisely, with the equiva-
lence class of x in B ' F(X, Y )). In this way, B +A B gets the presentation
F(X,Y, Y ′)/Γ(X,Y ) ∪ Γ(X, Y ′) and the map i1 (resp. i2) associates the
equivalence classes of x ∈ X, y ∈ Y with the equivalence classes of x and y
(resp. with the equivalence classes of x and y′). The equalizer E turns out to
be the B-subalgebra of (equivalence classes of) sentences ϕ(X, Y ) satisfying
(2); the image of f is on the other hand the B-subalgebra formed by (the
equivalence classes of) sentences satisfying (3). The latter is clearly smaller,
they coincide just in case Beth’s Theorem holds, i.e. when the morphism q
is onto. Thus Beth’s Theorem holds iff the coregular factorization (q, e) is
nothing but the usual image (or regular) factorization in H.

Our aim is to prove that it is indeed so. First we need a Lemma:

Lemma 6.1 Let f : A −→ B be a Heyting algebras morphism and let b be
an element not belonging to the image of f . Then there are prime filters
pb,qb ∈ B∗ such that b ∈ pb, b 6∈ qb and f ∗(pb) = f ∗(qb).

Proof. We need two applications of extension/exclusion Lemma. By the
first application we can find qb such that b 6∈ qb and qb ⊇ {f(a) | b ≤ f(a)}.
Now notice that

{b} ∪ {f(a) | f(a) ∈ qb} 6≤ {f(a) | f(a) 6∈ qb}
(otherwise there are a1, a2 such that f(a1) ∈ qb, f(a2) 6∈ qb and b ∧ f(a1) ≤
f(a2), yeldying b ≤ f(a1 → a2), contradiction because f(a1) → f(a2) cannot
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belong to qb).
15 By a second application of extension/exclusion Lemma we

find pb such that b ∈ pb and f ∗(qb) = f ∗(pb). 2

Lemma 6.2 The pullback in P of an open map along any map is open (also,
the pullback in P of an open surjective map along any map is open surjective).

Proof. Easy. 2

Theorem 6.3 The coregular factorization of a morphism f : A −→ B in H
coincides with its image factorization.

Proof. Take the cokernel pair

A B-f -i1
-

i2
B +A B

We need to prove that if b is not in the image of f , then i1(b) 6= i2(b) (that is,
b is not in the equalizer of i1 and i2). By the universal property of pushouts,
it is sufficient to show that g1(b) 6= g2(b), where g1, g2 is a pair of parallel
morphisms having domain B whose composites with f are equal. Applying
(−)∗ and taking pullbacks in the category of posets, we get a commutative
square:

B∗ A∗-
f ∗

B∗×A∗B
∗ B∗-p1

?

p2

?

f ∗

where we recall that B∗×A∗B
∗ is the set of pairs of prime filters (q1,q2) such

that f ∗(q1) = f ∗(q2) and p1, p2 are the two projections (restricted in their
domains). As f ∗ is open, so are p1, p2 (by Lemma 6.2) hence we can come
back to H and get the commutative diagram

15Notice that this argument does not work for distributive lattices, as it requires exis-
tence and preservation of implications.
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A∗∗ B∗∗-f ∗∗ -p∗1
-

p∗2
(B∗×A∗B

∗)∗

The naturality of η ensures that the square

A∗∗ B∗∗-
f ∗∗

A B-f

?

ηA

?

ηB

commutes, hence the diagram

A B-f -ηBp∗1
-

ηBp∗2
(B∗×A∗B

∗)∗

commutes too. Now unravelling the definitions, we have for i = 1, 2 that
p∗i (ηB(b)) = {(q1,q2) ∈ B∗×A∗B

∗ | b ∈ qi}, consequently p∗1(ηB(b)) 6= p∗2(ηB(b))
by Lemma 6.1. 2

The following Corollary is an immediate consequence:

Corollary 6.4 Monomorphisms are all regular and epimorphisms are also
all regular in H.

Proof. For a monomorphism f , just observe that the first component of
the coregular factorization of f is both onto (by the previous Theorem) and
mono (as a first component of a mono), hence it is an isomorphism. Thus f
equalizes its cokernel pair.

For an epimorphism f , the second component of its regular factorization
is a regular mono (we just saw why) and also an epi (as second component of
an epi), hence it is an isomorphism. Thus f coincides (up to an isomorphism)
with the first component of its regular factorization. 2
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7 Regularity of Hop

We have seen in the previous Section that every epimorphism in Hop is reg-
ular. Thus, in order to establish that Hop is a regular category, we need to
show that epis are pullback stable. We first have an easy Lemma:

Lemma 7.1 If a morphism m : A −→ B in D is injective, then m∗ is a
surjective map. If an order-preserving map µ : Q −→ P in P is surjective,
then µ∗ is injective.

Proof. The second part of the claim is easy, being a purely set-theoretical
fact. For the first part, given a prime filter p ∈ A∗, it is sufficient to observe
that

{f(a) | a ∈ p} 6≤ {f(b) | b 6∈ p}
and to apply extension/exclusion Lemma in order to get q such that f ∗(q) =
p. 2

Theorem 7.2 The pushout of a monomorphism in H along any morphism
is again a monomorphism.

Proof. By the universal property of pushouts and by the fact that the
first component of a mono is mono, it is enough, given a monomorphism
m : A −→ B and an arbitrary morphism f : A −→ C, to find a commutative
square

B D-
f ′

A C-f

?

m

?

m′

such that m′ is a monomorphism. Taking pullback in P of m∗ along f ∗, we
get a commutative square
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C∗ A∗-
f ∗

B∗×A∗C
∗ B∗-p

?

q

?

m∗

entierely formed by open maps in which q is also surjective (by Lemmas 7.1
and 6.2). Dualizing again, we get a commutative square in H

B∗∗ (B∗×A∗C
∗)∗-

p∗

A∗∗ C∗∗-f ∗∗

?

m∗∗

?

q∗

in which q∗ is mono (by Lemma 7.1 again). It is now sufficient to glue
the above square with the following commutative squares (provided by the
naturality of η)

A∗∗ B∗∗-
f ∗∗

A C-f

?

ηA

?

ηC

A∗∗ B∗∗-
m∗∗

A B-m

?

ηA

?

ηB

in order to obtain the square
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B (B∗×A∗C
∗)∗-

ηBp∗

A C-f

?

m

?

ηCq∗

in which ηCq∗ is mono, as required. 2

We now ask for the logical meaning of the previous Theorem. This
is the well-known Craig’s Interpolation Theorem, saying that for formulas
ϕ(X,Y ), ψ(Y, Z), we have

• if ϕ(X, Y ) ` ψ(Y, Z), then there is a formula θ(Y ) such that (ϕ(X, Y ) `
θ(Y ) and θ(Y ) ` ψ(Y, Z)).

Craig’s Theorem is proved from stability of monomorphisms under pushouts
as follows:

Theorem 7.3 Let

A2 A-
g2

A0 A1
-f1

?

f2

?

g1

be a pushout square in H. If, for a1 ∈ A1, a2 ∈ A2, we have g1(a1) ≤ g2(a2),
then there exists a0 ∈ A0 such that a1 ≤ f1(a0) and f2(a0) ≤ a2.

Proof. We first observe that Craig’s Theorem follows from this Theorem,
by considering the special case concerning the pushouts squares obtained by
applying the free algebra functor to the set-theoretic pushouts of the kind

Y +Z X+Y +Z-

Y X+Y-

? ?
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(recall that left adjoints preserve colimits).
In order to prove the Theorem, let us introduce filters F0 in A0, F1 in A1,

F2 in A2 as follows:

• F1 is the filter generated by a1;

• F0 is the filter {b0 | a1 ≤ f1(b0)};
• F2 is the filter {b2 | ∃a0 ∈ F0 s.t. f2(a0) ≤ b2}.

Let A′
0, A

′
1, A

′
2 be the quotient algebras A0/F0, A1/F1, A2/F2 and let

q0 : A0 −→ A′
0, q1 : A1 −→ A′

1, q2 : A2 −→ A′
2

be the canonical quotient maps. By the universal property of quotients, we
can form commutative squares

A′
0 A′

1
-

f̄1

A0 A1
-f1

?

q0

?

q1

A′
0 A′

2
-

f̄2

A0 A2
-f2

?

q0

?

q2

Notice also that f̄1 is mono, as F0 is precisely the kernel of f1q1. This means
that, taking pushout of f̄1 along f̄2

A′
1 B-

h

A′
0 A′

2
-f̄2

?

f̄1

?

k
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we have that k is mono, by Theorem 7.2. As we have

f1q1h = q0f̄1h = q0f̄2k = f2q2k

by the universal property of pushouts, there is s : A −→ B such that g1s =
q1h and g2s = q2k. Hence from s(g1(a1)) ≤ s(g2(a2)) and from h(q1(a1)) =
h(>) = >, we get > = s(g2(a2)) = k(q2(a2)). As k is mono, we have
> = q2(a2), which means that a2 ∈ F2. From the definitions of F0 and F2,
we realize that there exists a0 ∈ A0 such that f2(a0) ≤ a2 and a1 ≤ f1(a0),
as wanted. 2.

To finish, let us make a couple of observations. First, the condition
“monos are stable under pushouts” of Theorem 7.2, is equivalent to amalga-
mation property in case we have the congruence extension property (which
is our case, see Section 1): this is because we can take image factorization
and compose pushouts. We recall that amalgamation property says that any
pair of monomorphisms m1 : A0 −→ A1 and m2 : A0 −→ A2 fills into a
commutative square

A2 A-

A0 A1
-m1

?

m2

?

entierely formed by monomorphisms; notice that, as pushouts always exist
for our algebras and as, once again, first component of a monomorphism is
a monomorphism, amalgamation property simply says that the pushout of a
monomorphism along a monomorphism is a monomorphism.

Second, we have seen that amalgamation property entails Craig’s Inter-
polation Theorem. The proof we gave is completely general, e.g. it works
by replacing H by any subvariety of its. Conversely, if we know that Craig’s
Theorem holds (e.g. in any variety of Heyting algebras), then amalgamation
property follows. To see this, given ‘inclusions’ monomorphisms

A0 ↪→ A1 A0 ↪→ A2

give them the following presentations in terms of Lindenbaum algebras (see
Section 2)

A0 ↪→ A1 ' F(X0)/Γ0 −→ F(X0, X1)/Γ1
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A0 ↪→ A2 ' F(X0)/Γ0 −→ F(X0, X2)/Γ2

(where the monomorphisms to the right send the equivalence class of a for-
mula ψ(X0) into the equivalence class of ψ itself and where Γi is conservative
over Γ0). The pushout of the two inclusions A0 ↪→ A1 and A0 ↪→ A2 can
thus be presented as

F(X0, X1, X2)/Γ1 ∪ Γ2.

To see that e.g. F(X0, X1)/Γ1 −→ F(X0, X1, X2)/Γ1 ∪ Γ2 is mono, notice
that if for ϕ(X0, X1) there are (for i = 1, 2) formulas ψi(X0, Xi) such that
`Γi

ψi(X0, Xi) and such that

ψ1(X0, X1) ∧ ψ2(X0, X2) ` ϕ(X0, X1),

then the statement of the Interpolation Theorem (together with conservativ-
ity of Γ2 over Γ0) applied to

ψ2(X0, X2) ` ψ1(X0, X1) → ϕ(X0, X1)

shows that `Γ1 ϕ.

8 Final Remarks and Further Readings

We make here some comments about the content of the present notes, trying
to give some relevant credits and to suggest at the same time some further
readings (sometimes going in very different directions with respect to the
topics we covered in the previous Sections).

The material presented in Sections 1 and 2 is quite standard (see some
classical textbook like [RS], [Ra] or also [BD], from the purely lattice-
theoretic side); it should be noticed however that we followed the categorical
logic point of view rather than the algebraic logic tradition. According to
the former, theories are seen as (small) categories with structure, models
are structure preserving functors into some special (large) categories, mor-
phisms among models are natural transformations, etc. (see e.g. the text-
book [MR1]). In the propositional case, most things simplify, however we
followed the above schema when introducing Lindenbaum algebras and mod-
els. For a discussion about the invariant point of view in algebra and logic,
see [La].
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The glueing construction is due to P. Freyd; it should be noticed that
this is a quite powerful technique, going much beyond propositional logic
(see [LS]).

Sections 4 and 5 also cover more or less standard topics; we followed
the presentation of [GM1], where basic adjunction is emphasized and ex-
tended to modal logic through the notion of weak (or continuous) morphism,
drawn from topology (where inverse image along a continuous map only semi-
preserves the interior operation). Representation Theorem 5.1 through the
canonical model method (i.e. through Stone embedding η) extends to many
subvarieties of Heyting algebras: a syntactic sufficient condition is given in
[GM2], where Sahlqvist-style results [Sa], [SV2] are extended to intermediate
logics by a new “constructive” technique. It should be noticed that tools
from Sections 4 and 5 can also be used to get negative results about exis-
tence of a Representation Theorem for subvarieties of Heyting algebras (this
is done in [GMi]).

Priestley Duality (adapting to distributive lattices the standard Stone
duality for Boolean algebras) is explained in [Pr], its extension to Heyting al-
gebras is common folklore; duality for modal logic is thoroughly investigated
in [SV1]. For a deep duality theory in the context of first order classical logic,
see [M1].

Finite model property immediately entails solvability of word problem for
Heyting algebras, however the algorithm it suggests is impracticable. Good
results can be achieved for instance by tableaux methods (see e.g. [MMO],
where a duplication-free calculus is introduced). It should be noticed however
that word problem for Heyting algebras is highly complex, being PSPACE-
complete [St]; recent improvements on space complexity can be found in
[Hu].

Finite model property can be used to refine the Representation Theorem
5.1 in the special case of finitely generated free algebras; this gives rise to
the so-called effective (or definable) embeddings investigated in [Be] and in
various papers from the russian school. The related construction have been
conceptualized from the categorical point of view (in a general context) in
[Gh2]. There is also a direct description of finitely generated free Heyting
algebras in [Ur] (see [Gh1] for some simplifications and for a proof of the fact
that the opposite lattice of a finitely generated free Heyting algebra is also a
Heyting algebra). For free Brouwverian semilattices, see [Kö].

The strong Beth property considered in Section 6 and its categorical con-
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ceptualization are due, as far as we know, to M. Makkai. Quite recently,
such a strong Beth property has been reconsidered (in an equivalent formu-
lation) by L.L. Maksimova in [Ma4], where the few subvarieies of Heyting
algebras enjoying it are determined. It sould be noticed that, on the con-
trary, standard Beth property holds in all intermediate logics (by a nice trick
suggested by G. Kreisel in [K]). The topics we studied in Section 6, once
suitably reformulated in the appropriate two-dimensional context, give rise
in the case of first order logic to the so-called descent theory [M2], [Z] (both
papers originated from the important descent theorem for toposes of [JT]).
Relevant problems in the area concerning Heyting pretoposes (i.e. first order
intuitionistic theories) are still open. Conceptual completeness for Heyting
pretoposes is investigated in [Pi3].

Equivalence of amalgamability and interpolation is first established in
the classical paper [Ma1], where it is proved the remarkable fact that there
are only 8 subvarities of Heyting algebras enjoying it. The key point in the
amalgamation proof for H we gave in Section 7 is the same as Maksimova’s
one; the general context, however, is rather different. There is also another
quite interesting proof in [Pi1], which is constructive in the sense that it works
in any topos. For an extension of these proofs to first order intuitionistic
logic, see [Pi2], [M3]. Of course, interpolation (as well as other relevant
metamathematical properties like disjunction property from Section 3) can
be obtained also by proof-theoretic techniques like in [Gi]. For deep results
on interpolation, amalgamation and superamalgamation in modal logic, see
[Ma2], [Ma3]. Notice that interpolation implies the strong Beth property
we considered in Section 6 (but is not equivalent to it, see [Ma4]) in all
intermediate logics, as the reader may see by himself ; nevertheless, the two
properties have a different algebraic status, so we prefered to deal with them
separately.

There are basically two directions in which the material contained in
these notes can be developed. There is first the non-classical logics tradition,
where intermediate and also modal logics are investigated and classified with
respect to the various metamathematical properties we met. The recom-
mended reading for these problems is the recent book [CZ], covering large
part of the relevant literature on the subject (an alternative recent reference
for modal logic is [Kr]).

The second direction is the topos theoretic tradition. In [Jo] the theory
of locales (i.e. of complete Heyting algebras) is developed and compared
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with standard theory of topological spaces. For the relevance of Heyting
algebras to topos theory, we recommend the comprehensive graduate level
textbook [CWL]. It should be expecially remarked (because it is not widely
appreciated) that also modal S4-logic has a very nice interpretation in terms
of geometric morphisms among toposes, see [MR2]. Paper [RZ] contains a
first analysis of these aspects in propositional logic.

Let us finally mention that research concerning propositional intuition-
istic logic itself is far from being concluded. We just mention two recent
developements in which the author of the present notes is involved. Inter-
polation Theorem can be strenghtened to uniform interpolation, saying that
there are the greatest and the smallest interpolants among formulas ϕ(X,Y )
and ψ(Y, Z) such that ϕ ` ψ. This turns out to be an immediate consequence
of a surprising theorem by Pitts saying that second order propositional in-
tuitionistic logic can be interpreted into ordinary intuitionistic propositional
logic. Pitts’ theorem was first established by proof-theoretic techniques in
[Pi4] and later on obtained through semantic methods in [GZ1] and [Vi].
In categorical terms, Pitts’ theorem says that the opposite of the category
of finitely presented Heyting algebras is a Heyting category; there is also a
model-theoretic version of its, saying that the first order theory of Heyting
algebras admits a model completion [GZ2]. Such topics are all addressed (and
extended to modal logic, where however Pitts’ theorem often fails [GZ2]) in
the book [GZ4], where still open problems on the subject are mentioned.

The second recent developement concerns unification theory for Heyting
(and also modal) algebras [Gh3], [Gh4]. This topic is suggested by automated
deduction, however it has both logical relevance (for it gives a new solution
to the problem of effectiveness of admissible inference rules [Ry1], [Ry2] and
it solves some problems related to deJongh exactness [dJ] of formulas) and
algebraic consequences (for it extends the well-known characterization [BH]
of projective Heyting algebras from the finite to the finitely presented case).
Unification theory suggests new algorithmic questions (first approached in
[Gh5]), where tableaux techniques are mixed with classical resolution.
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