
A new Acceleration-based Combination
Framework for Array Properties

Francesco Alberti1, Silvio Ghilardi2, Natasha Sharygina3

1 Fondazione Centro San Raffaele, Milan, Italy
2 Università degli Studi di Milano, Milan, Italy

3 Università della Svizzera Italiana, Lugano, Switzerland

Abstract. This paper presents an acceleration-based combination frame-
work for checking the satisfiability of classes of quantified formulæ of the
theory of arrays. We identify sufficient conditions for which an ‘accel-
eratability’ result can be used as a black-box module inside such sat-
isfiability procedures. Besides establishing new decidability results and
relating them to results from recent literature, we discuss the application
of our combination framework to the problem of checking the safety of
imperative programs with arrays.

1 Introduction

The theory of arrays is one of the most relevant theories for software verification,
this is the reason why current research in automated reasoning dedicated so
much effort in establishing decision and complexity results for it. From a logical
perspective, arrays can be modeled just by adding free function symbols to some
fragment of arithmetic. As soon as quantified formulæ are concerned, however,
satisfiability becomes intractable when free unary function symbols are added to
mild fragments of arithmetic [15]. Nevertheless, since applications require the use
of quantifiers, e.g. in order to express invariants of program loops, it becomes
crucial to identify sufficiently expressive tractable quantified fragments of the
theory of arrays.

Various decidability (and sometimes also complexity) results for such frag-
ments are known from the literature. These results are often orthogonal to each
other, rely on rather different techniques, and finding common generalizations is
a hard task. Let us mention for instance two contributions from recent literature,
namely the decidability results for SIL-fragments in [14] and those for flat mono-
sorted fragments in [4]. The flat mono-sorted fragment of [4] is decidable via an
SMT-based combination method involving an extra quantifier-elimination step;
on the contrary the SIL-fragment of [14] is decided by a procedure that requires
back and forth conversions between logic and automata. The SIL-decidable frag-
ment of [14] has a heavy syntactic limitation on consequents of guards: such
consequents must be difference bound constraints. On the other hand, the main
limitation of the flat mono-sorted fragment in [4], inherited by an analogous
limitation from [9], is the impossibility of applying dereference to terms which
are not variables in the consequents of guards. This limitation typically prevents

applications to programs where terms like a[i] and a[i+ 1] are both used as, for
instance, in array updates.

The technique used in [14] exploits previous acceleration results for difference
bound constraints; acceleration (i.e. the definability of the transitive closure
of special classes of relations [5–8, 10, 11]) plays an important role in several
model-checking approaches which are, in a sense, orthogonal to the SMT-inspired
model-checking methods. The curious fact is that acceleration results, previously
established using counter automata, were transferred in [14] to array theories via
another further conversion from array logic to counter automata formalism.

The contribution of this paper is the definition of a new framework for check-
ing the satisfiability of quantified array formulæ. The principal feature of our
framework is that it can exploit and combine acceleration results as black box
modules. Indeed, the main questions we answer in this paper, in a combination
spirit, are the following: can we use acceleration results as they are, i.e., as black
box modules inside decision procedures for array fragments? What are the formal
conditions that such ‘acceleration modules’ have to satisfy in order to be com-
bined as black box modules? Formally, we will answer these two questions with
the Definitions 1-2 and with Theorem 3. In particular, the algorithm of The-
orem 3 supplies a simple ‘guess-and-group’ preprocessing step putting current
SMT-solvers in the condition of importing acceleration modules. Decidability
results like those in [4] and [14] follow as immediate consequences, and further
decidable array property fragments can be designed by mere combination.

A remark about acceleration is in order. In our earlier work [2,4], we adopted
acceleration techniques into SMT-based software model-checking; to this aim, we
investigated what in this paper will be called ‘vertical’ acceleration, i.e., accel-
eratability of array relations expressed via specific (syntactically characterized)
formulæ in the theory of arrays. In this paper the aim is different, because ac-
celeratability in the underlying arithmetic is used as an ingredient for designing
satisfiability procedures at the more complex level of array formulæ. We will
refer to this acceleration as ‘horizontal’ acceleration.

A running example Consider the program of Fig. 1. We want to prove that
the assertion in location 4 cannot be violated. The formal proof we produce is
precise, it does not rely on any form of abstraction or of over-approximation. To
do this we need two forms of acceleration: (i) we need vertical acceleration (i.e.
acceleration at the level of the theory of arrays) to summarize the two loops; (ii)
we need horizontal acceleration (i.e. acceleration at the level of the underlying
arithmetic) in order to discharge the proof obligation coming from (i).

The program in Fig. 1 has two array variables (namely a1, a2) and an integer
variable (namely I). An error path violating the assertion should comprise the

following steps: (1) an initialization step leading to initial values a
(1)
1 , a

(1)
2 , I(1);

(2) n executions of the loop in location 2 leading from a
(1)
1 , a

(1)
2 , I(1) to updated

values a
(2)
1 , a

(2)
2 , I(2); (3) the exit step from the loop in location 2 and the ex-

ecution of the instruction in location 3, leading from a
(2)
1 , a

(2)
2 , I(2) to updated

values a
(3)
1 , a

(3)
2 , I(3); (4) m executions of the loop in location 4 leading from

int a1[N+1]; int a2[N+1]; int I;

1 I = 0; a1[I] = 0; a2[I] = 0;

2 while (I < N)

a1[I + 1] = a1[I] + 1;

a2[I + 1] = I + 1;

I++;

3 I = 0;

4 while (I < N)

{
assert(a1[I+1] = a2[I+1]);

I++;

}

Fig. 1: Running example.

(α1) I
(1) = 0 ∧ a

(1)
1 [I(1)] = 0 ∧ a

(1)
2 [I(1)] = 0

(α2)

∀i

(
I
(1) ≤ i < I

(1) + n → i < N ∧ a
(2)
1 [i+1] = a

(2)
1 [i] + 1 ∧

∧ a
(2)
2 [i+1] = i+1

)
∧

∧ ∀i
(
I
(1)+n+1 ≤ i ≤ N → a

(2)
1 [i] = a

(1)
1 [i] ∧ a

(2)
2 [i] = a

(1)
2 [i]

)
∧

∧ ∀i
(

0 ≤ i ≤ I
(1) → a

(2)
1 [i] = a

(1)
1 [i] ∧ a

(2)
2 [i] = a

(1)
2 [i]

)
∧

∧ I
(2) = I

(1)+n

(α3) I

(2) ≥ N ∧ I
(3) = 0 ∧ a

(3)
1 = a

(2)
1 ∧ a

(3)
2 = a

(2)
2

(α4)

∀i
(
I
(3) ≤ i < I

(3)+m → i < N ∧ a
(3)
1 [i+1] = a

(3)
2 [i+1]

)
∧

∧ a
(4)
1 = a

(3)
1 ∧ a

(4)
2 = a

(3)
2 ∧

∧ I
(4) = I

(3)+m

(α5) a

(4)
1 [I(4)+1] 6= a

(4)
2 [I(4)+1]

Fig. 2: Proof obligation.

a
(3)
1 , a

(3)
2 , I(3) to updated values a

(4)
1 , a

(4)
2 , I(4); (5) the satisfiability of the error

exit condition from the loop in location 4 by the final values a
(4)
1 , a

(4)
2 , I(4). Thus,

the error path is feasible iff the conjunction of the formulæ (α1)−(α5) from Fig. 2
is satisfiable.

The formulæ (α2) and (α4) are computed following mechanical patterns for
‘vertical’ array acceleration (see Section 5 for more). The satisfiability test of
the conjunction (α1) ∧ · · · ∧ (α5) is not handled by current SMT-solvers and
it is not trivial indeed, because quantifiers and some form of induction are in-

volved (to make first order logic conversion, read array equalities like a
(3)
1 = a

(4)
1

as ∀i (a
(3)
1 [i] = a

(4)
1 [i])). In order to discharge the proof obligation consisting

of the satisfiability test of the conjunction of the formulæ (α1) − (α5), the
method we propose in Theorems 3-4 below relies on acceleration results for

fragments of plain arithmetic. Roughly speaking, the idea is the following. Take
for instance the consequent of the first guard of (α2): such a consequent comes
from the loop body of location 2 in Fig. 1. The instructions describing such
loop can be converted into a logical formula relating the values of the program
variables I, a1, a2 before a single execution of the loop with the correspond-
ing values I, a1, a2 after the single execution of the loop. If, in such a logical
formula, we abstract out the terms I, a1[I], a2[I], a1[I], a2[I] with the fresh vari-
ables i, e1, e2, ē1, ē2 and the terms I+1, a1[I+1], a2[I+1], a1[I+1], a2[I+1] with
the corresponding primed variables i′, e′1, e

′
2, ē
′
1, ē
′
2 we get a purely arithmetical

relation φ(i, e1, e2, ē1, ē2, i
′, e′1, e

′
2, ē
′
1, ē
′
2) between 5-tuples of variables. If this re-

lation is acceleratable, we can replace (up to satisfiability) the first guard of
(α2) with the arithmetical formula expressing the fact that the relation denoted
by φ is composed with itself (I(1) + n) − I(1) = n times. In this way, we get
a reduction of the proof obligation of Fig. 2 to plain Presburger arithmetic. Of
course, the above description of the reduction is very loose and quite incomplete,
we shall turn to this Example in Section 5 and run it in full details. Here we
just observe that accelerations in fragments of arithmetic are used as black boxes
during the horizontal phase of the reduction (this phase is computing accelera-
tions inside array intervals, whereas vertical acceleration computes acceleration
between array variables as wholes).
Plan of the paper. Section 2 fixes notations; in Section 3 we introduce acceler-
atable fragments and in Section 4 we use them in decision procedures for quan-
tified array formulæ. In Section 5 we show applications to reachability problems
for array programs. Section 6 concludes. For space reasons, additional material
(including some proofs) has been moved to Appendixes.

2 Notation

We work in a decidable fragment of arithmetic (typically Presburger arithmetic,
but given the modularity of our approach, we can consider even more expressive
fragments like [16]); we expand the related language with free constants and
free unary function symbols. When we speak about truth or about validity, we
refer to the structures having as reduct the standard model of the integers with
the natural interpretation of the arithmetic symbols. In order to make our lan-
guage more manageable, we may enrich it with definable function and predicate
symbols (see any textbook in mathematical logic, like [17] for the notion of a
definable predicate or function symbol). A purely arithmetical formula is a for-
mula that does not contain free function symbols (notice however that such a
formula may contain parameters, i.e. free constants).

It is convenient to partition the set of variables we use into two disjoint
sets V = {x, y, z, w, . . . , i, j, . . . } and V ′ = {x′, y′, z′, w′, . . . , i′, j′, . . . }, where V ′
contains precisely a ‘primed’ copy of each variable in V. Renaming substitutions
are bijections σ on variables respecting primed copies (i.e. we have σ(x)′ = σ(x′)
for all x). Free constants are indicated with letters c, d, . . . , terms with letters
t, u, . . . and formulæ with letters φ, ψ, Underlined or bold letters usually

denote tuples (of variables, constants, terms) of unspecified length. With t = u
we mean component-wise equality, i.e.

∧
i ti = ui, where it is implicitly assumed

that t, u have the same length and that t = t1, . . . , tn and u = u1, . . . , un. The
notation φ(x), t(x) indicates that at most the variables x occur free in φ, t.

When we talk about arrays we assume that they are modeled as unary free
function symbols to be denoted with letters a, b, Read operation (i.e. function
application) is denoted with [−]; a,b stands for tuples of array variables. If
a = a1, . . . , an and t = t1, . . . , tn, then a[t] stands for a1[t1], a2[t2], . . . , an[tn];4

however, if t is a single term, we may use a[t] for a1[t], . . . , an[t]. Notations like
φ(x,a[t]) mean that φ(x, y) is purely arithmetical and that the tuple of distinct
variables y has been component-wise replaced by the length-matching tuple of
terms a[t].

Arrays are equipped with length; for simplicity, we assume that length is
the same for all arrays we consider; we represent it by a free constant N . In our
intended models, for every array a, we assume that a[x] is equal to a conventional
value (say, 0) for any x outside the interval [0, N]. When we discuss satisfiability
of array fragments, we are only interested in sub-intervals of [0, N], hence we use
notations like t ∈ [u1, u2] to mean the conjunction 0 ≤ u1 ≤ t ≤ u2 ≤ N ;
similarly, t ∈ [u1, u2) means t ∈ [u1, u2 − 1]. We may also use standard notation
for relativized quantifiers, e.g. ∀i ∈ [u1, u2)ψ abbreviates ∀i (i ∈ [u1, u2)→ ψ).

3 Acceleratable fragments

A formula φ(x, x′) denotes a relation among tuples; φn(x, x′) is the formula
representing the composition of the relation denoted by φ with itself n-times.
More precisely, we have

φ1(x, x′) : ≡ φ(x, x′); φn+1(x, x′) : ≡ ∃x] (φn(x, x]) ∧ φ(x], x′)).

Definition 1. A purely arithmetical formula φ(x, x′), is said to be acceleratable
iff there exists (and one can actually compute) a formula φ∗(x, x′, j) such that
for all n ∈ N

|= φn(x, x′)↔ φ∗(x, x′, n̄) (1)

where n̄ is the n-th numeral, i.e. it is S(· · ·S(0) · · ·), where S - the successor
symbol - is applied n-times.5

Definition 2. A set of purely arithmetical formulæ Γ is said to be an accelerat-
able fragment iff every φ ∈ Γ is acceleratable and Γ is closed under conjunctions
and renaming substitutions. An acceleratable fragment Γ is said to be normal iff
it contains the formulæ x′ = x+ 1 and y′ = x′ for every variables x, y.

Closure under conjunctions of acceleratable fragments is a crucial condition:
we need it in the ‘grouping’ step of the modular algorithm of Theorem 3; nor-
mality is required in the applications from Section 5. We supply below, using

4 This is different from previous papers of ours.
5Sometimes we shall write n instead of n̄ if confusion does not arise.

relevant results from the literature, some important examples of acceleratable
fragments.

Theorem 1. [8,10] Difference Bounds Constraints, i.e. conjunctions of formu-
lae of the kind

x− x′ ./ n̄, x− y ./ n̄, x′ − y′ ./ n̄

(where n ∈ Z and ./ ∈ {≤,≥}) are a normal acceleratable fragment.

Theorem 2. [6] Octagons, i.e. conjunctions of formulae of the kind

x± x′ ./ n̄, x± y ./ n̄, x′ ± y′ ./ n̄, 2x ./ n̄, 2x′ ./ n̄

(where n ∈ Z and ./ ∈ {≤,≥}) are a normal acceleratable fragment.

Another class is introduced in Proposition 1 below. This class (called the
class of iteratable formulæ) is ubiquitous; in essence, the idea of an iteratable
formula is based on the simple idea of combining (a generalized form of) variable
increments with non-deterministic updates; the formal definition of an iteratable
formula requires nevertheless some technicalities to match Definition 2.

We recall the notion of an iterator from [2]. Given a m-tuple of terms

u(x) := u1(x1, . . . , xm), . . . , um(x1, . . . , xm) (2)

containing the m variables x = x1, . . . , xm, we indicate with un the term express-
ing the n-times composition of (the function denoted by) u with itself. Formally,
we have u0(x) := x and

un+1(x) := u1(un(x)), . . . , um(un(x)) .

Definition 3. A tuple of terms u like (2) is said to be an iterator iff there is an
m-tuple of m+1-ary terms u∗(x, y) := u∗1(x1, . . . , xm, y), . . . , u∗m(x1, . . . , xm, y)
such that for any natural number n ≥ 0 it happens that the formula

un(x) = u∗(x, n̄) (3)

is valid.6 The ordered tuple of (distinct) variables (x1, . . . , xm) is said to be the
domain of the iterator u and u is said to be an m-ary iterator.

Example 1. The canonical example is when we have m = 1 and u := u1(x1) :=
x1 + 1; this is an iterator with u∗1(x1, y) := x1 + y. ut

Example 2. The previous example can be modified, by choosing u to be x1 + k̄,
for some integer k 6= 0: then we have u∗1(x1, y) := x1 + k ∗ y (where k ∗ y is the
sum y + · · ·+ y of k copies of y). ut

Example 3. Sometimes we need to use definable functions to build u∗. Take u to
be n̄−x1; then we have u∗1(x1, y) := (if y ≡ 0 (mod 2) then x1 else n̄−x1). ut

6Recall that in this paper ‘validity’ means validity in the class of our intended
structures - those having the standard model of arithmetic as reduct.

Example 4. Finite monoid affine transformations [11] supply another interesting
example. Let v be a vector from Zm and let M be a m × m integer matrix
generating a finite monoid (i.e. we have that Mk+l = Mk for some k, l > 0).
Putting u(x) := Mx + v, we get an iterator (the definition of u∗(x, y) requires
the identification of a rather complex - but straightforward - definable function,
see [11]). ut

Definition 4. A formula φ(x, x′) is said to be iteratable iff there is a finite set
Iφ of iterators such that:

(0) the variables x, x′ are partitioned as z, z′, w′ (notice that the unprimed vari-
ables w do not occur in φ);

(i) the domain of every u ∈ Iφ is included in z;
(ii) every z ∈ z belongs to the domain of at least one u ∈ Iφ;
(ii) if (zi1 , . . . , zis) ⊆ z is the domain of u = (u1, . . . , us) ∈ Iφ, then

φ(x, x′)→ z′ij = uj(zi1 , . . . , zis) (4)

is valid for all j = 1, . . . , s.

Thus, in iteratable formulae, the ‘updates’ z′i are deterministic and expressed
via an iterator; the reason why we allow Iφ to be a set (not just a singleton)
is because we want to ensure closure under conjunctions of iteratable formulæ.
The typical example of an iteratable formula is a formula of the kind

z′ = u(z) ∧ ψ(z, z′, w′) (5)

where ψ is arbitrary and u is an iterator with domain z. Notice that, when
taking iterated composition of the relation denoted by the above formula with
itself, the variables w′ are non-deterministically chosen at each step.

Proposition 1. The set of iteratable formulæ form a normal acceleratable frag-
ment.

Proof. The full proof is deferred to Appendix B. Here we just give the explicit
definition of the accelerated formula φ∗ for an iteratable φ. Suppose that free
variables occurring in φ are partitioned as z1, . . . , zn, z

′
1, . . . , z

′
n, w

′; to make our
notation more compact, we let z := z1, . . . , zn and x := z, w. The formula
φ∗(x, x′, j) is given by

z′ = v(z, j) ∧ ∀k ∈ [0, j) ∃w̃

(
(k = j−1→ w̃ = w′) ∧
∧ φ(v(z, k),v(z, k + 1), w̃)

)
(6)

where the tuple of terms v(z, k) := v1(z, k), . . . , vn(z, k) is obtained as follows.
For every zl ∈ z, choose some iterator ul ∈ Iφ such that zl is in the domain
of ul: if zl occurs at the h-th place in such a domain, we let vl be (ul)∗h(z, k).
In other words: we compute the iteration (ul)∗ of ul according to (3), take its
h-component, and apply it to z and k (actually, (ul)∗ will be applied to k and
to the subset of z which is the domain of ul, however it is compatible with our
notational conventions to display more variables than those actually occurring
in a syntactic expression). ut

Example 5. Consider the following formula φ (this example will be used for the
proof obligation of Fig. 2 - variables are numbered so to make this application
easier to recognize):

i′ = i+1 ∧ i < N ∧ (x
(2)
1)′ = x

(2)
1 +1 ∧ (x

(2)
2)′ = i+1 ∧ (x

(3)
1)′ = (x

(2)
1)′ ∧

∧ (x
(3)
2)′ = (x

(2)
2)′ ∧ (x

(3)
1)′ = (x

(3)
2)′ ∧ (x

(4)
1)′ = (x

(3)
1)′ ∧ (x

(4)
2)′ = (x

(3)
2)′

To show that φ is iteratable, let us put

z := i, x
(2)
1 , w′ := (x

(2)
2)′, (x

(3)
1)′, (x

(3)
2)′, (x

(4)
1)′, (x

(4)
2)′ ;

an iterator u(z) such that φ |= z′ = u(z) is given by

i′ = i+1, (x
(2)
1)′ = x

(2)
1 +1 .

As a consequence, the formula φ∗(z, z′, w′, j), according to (6), can be written
as

i′ = i+j ∧ (x
(2)
1)′ = x

(2)
1 +j ∧ ∀k ∈ [0, j) ∃w̃ ((k = j− 1→ w̃ = w′)∧ φ̃k) (7)

where φ̃k (omitting the trivial literals i + k + 1 = i + k + 1 and x
(2)
1 + k + 1 =

x
(2)
1 + k + 1) is the following formula

φ̃k ≡ i+k < N ∧ x̃
(2)
2 = i+k+1 ∧ x̃

(3)
1 = x

(2)
1 +k+1 ∧

∧ x̃(3)2 = x̃
(2)
2 ∧ x̃

(3)
1 = x̃

(3)
2 ∧ x̃

(4)
1 = x̃

(3)
1 ∧ x̃

(4)
2 = x̃

(3)
2

Notice that formula (6) introduces quantifiers; this does not matter because the
underlying fragment of arithmetic we work with is assumed to be fully decidable.
In practice, fragments used in verification - like difference logic and Presburger
arithmetic - admit quantifier elimination and, if we eliminate quantifiers from (7),
we can simplify it to

i′ = i+j ∧ (x
(2)
1)′ = x

(2)
1 +j ∧ i+ j < N ∧ (x

(2)
2)′ = i+j ∧ (x

(3)
1)′ = x

(2)
1 +j ∧

∧ (x
(3)
2)′ = i+j ∧ x

(2)
1 = i ∧ (x

(4)
1)′ = x

(2)
1 +j ∧ (x

(4)
2)′ = i+j

(8)
Thus (8) represents the formula φ∗(z, z′, w′, j), up to equivalence. ut

4 Acceleration modules in satisfiability procedures

Let Γ be an acceleratable fragment; a Γ -guard is a formula of the kind

∀i (i ∈ [t, u)→ φ(i,a[i],a[i+ 1])) (9)

such that the formula i′ = i+1∧φ(i, y, y′) belongs to Γ and t, u are ground terms
(recall that we expanded the language with free constants, hence ground terms
may contain them). Notice that, since Γ is closed under renaming substitutions,
the choice of the tuple i, y, i′, y′ is immaterial.

Theorem 3. Let Γ be an acceleratable fragment; then, any Boolean combination
of ground formulae and Γ -guards is decidable for satisfiability.

Proof. Since the negation of a Γ -guard can be converted into a ground formula
by Skolemization, it is sufficient to check the satisfiability of a conjunction

L1 ∧ · · · ∧ Ln ∧G1 ∧ · · · ∧Gm (10)

of ground literals and Γ -guards. We design a satisfiability algorithm below.
Step I [Guess an ordering]. Let S be the set of ground terms occurring

in (10);7 guess a partition on S and an ordering C1 < · · · < Cl of the equivalence
classes. For each equivalence class Ci, introduce a fresh constant ci; then add to
the current formula the literals of the form ci = t (varying t ∈ Ci) and of the
form ci < ci+1.

Step II [Cleaning] We call a constant ch an out-of-bound constant in case
h is bigger (resp. smaller) than the index of the constant corresponding to the
equivalence class of N (resp. of 0); a term t is out-of-bound iff the free constant
ck representing the equivalence class of t is out-of-bound. Dereference terms aj [t],
where t is out-of-bound, are replaced by the conventional value 0. Guards whose
antecedent is of the kind i ∈ [t, u), where t is out-of-bound or u is out-of-bound
or u is in the same equivalence class as N , are removed (by our conventions from
Section 2, these guards are tautological, having an inconsistent antecedent).
Similarly, guards whose antecedent is of the kind i ∈ [ch, ck) for h ≥ k are
removed too.

Step III [Grouping the guards]. In this step, we rewrite guards. The new
guards will be of the kind

∀i (i ∈ [ck, ck+1)→ ψk(i,a[i],a[i+ 1]))

where k + 1 is less or equal to the index of the constant corresponding to the
equivalence class of N and k is bigger or equal to the index of the constant
corresponding to the equivalence class of 0. The formula ψk is obtained by taking
the conjunction of the relevant consequents of the guards from (10). In other
words, if (10) contains the guard ∀i (i ∈ [t, u) → φ(i,a[i],a[i + 1])) and the
equivalence class of ck follows the equivalence class of t and the equivalence
class of u follows the equivalence class of ck+1, then φ is included among the
conjuncts of ψk. Since acceleratable fragments are closed under conjunctions,
the new guards we obtain are still Γ -guards.

Step IV [Reduction to Pure Arithmetic]. Let

G ∧
l∧

k=1

∀i (i ∈ [ck, ck+1)→ ψk(i,a[i],a[i+ 1])) (11)

7 We must include 0, N among such terms; however, to economize the guessing step,
besides 0, N , we can limit ourselves to terms t occurring in sub-expression of the form
a[t], i ∈ [t, u), i ∈ [u, t).

be the formula we obtain after Step III. Here G is a conjunction of ground
literals (including the literals added in Step I) and the quantified formulae are
Γ -guards. By the definition of a Γ -guard, the formulæ

φk(i, i′, y, y′) :≡ i′ = i+ 1 ∧ ψk(i, y, y′) (12)

are in Γ . We now replace (11) by the formula

G(d1/a[c1], . . . , dl/a[cl]) ∧
l∧

k=1

φ∗k(ck, ck+1, dk, dk+1, ck+1 − ck) (13)

where d1, . . . , dl are tuples of fresh constants and G(d1/a[c1], . . . , dl/a[cl]) is
obtained from G by replacing component-wise, for each k = 1, . . . , l and for each
t lying in the same equivalence class as ck, the tuple a[t] by the tuple dk.

We claim that the formulæ (13) are equi-satisfiable with the original for-
mula (10). Clearly, it is sufficient to show that (13) is equi-satisfiable to (11).
Suppose that (13) is satisfiable: this means that we can assign integer numbers
to the free constants occurring in (13), so to make the statement (13) true.
We use the same letters to denote a free constant, the number assigned to it
and the corresponding numeral. From the fact that φ∗k(ck, ck+1, dk, dk+1, ck+1 −
ck) is true (for the given choice of the ck, ck+1, dk, dk+1), we can infer that

φ
ck+1−ck
k (ck, ck+1, dk, dk+1) holds by Definition 1. By (12) and the definition of

relation composition, we get tuples dk := dck , dck+1, dck+2 . . . , dck+(ck+1−ck) :=
dk+1 such that

ψk(ck, dck , dck+1), ψk(ck + 1, dck+1, dck+2), . . . , ψk(ck+1 − 1, dck+1−1, dck+1
)

all hold. Thus, we define the interpretations of the unary integer functions a, by
letting a(n) := 0 for n > N and n < 0 and for ck ≤ n ≤ ck+1 by taking a(n)
to be dn. Formula (11) holds by construction. Similar considerations, read in
the opposite sense, show that the satisfiability of (11) implies the satisfiability
of (13). ut

Remark 1 (Complexity). Since this is a modular procedure, its complexity can
only be evaluated relatively to the complexities of the acceleration module and
of the underlying arithmetic solver. To this aim, notice that Steps I-II introduce
a linear guessing followed by linear manipulations and that Step III produces a
quadratically long formula (11). After these steps, the complexity relies entirely
on the complexity of the acceleration module and on the complexity of the
arithmetic solver: if we suppose that the former requires space fS(n) and time
fT (n) to produce the accelerated formula (13) out of (11) and that the latter
requires space gS(m) and time gT (m) for its satisfiability checks, the cost of the
whole procedure requires space bounded by gS(fS(O(n2))) and time bounded

by 2O(n2) · gT (fT (O(n2))) (we need exponential time to go through all possible
linear orderings).

We underline that in examples coming from practical verification problems,
the expensive guess of Step I is not needed, because the few consistent guessings
are suggested by the problem itself, as witnessed by the example below.

Example 6. We consider the proof obligation of Fig. 2. We first need to rewrite
all universally quantified guards in it in such a way that they match the pattern
given by (9). Thus, sub-formulae like ∀i (t ≤ i ≤ u → γ(i,a[i])) must be
rewritten as (t ≤ u → γ(t,a[t])) ∧ ∀i (i ∈ [t, u) → γ(i+ 1,a[i+ 1])); similarly,
array equations of the form a = b are rewritten to a[0] = b[0]∧∀i (i ∈ [0, N)→
a[i+1] = b[i+1]). After these rewritings, we can observe that all guards occurring
in Fig. 2 are Γ -guards, where Γ is the acceleratable fragment of Proposition 1
(one may equivalently use the fragment of Theorem 1 instead). To see this, let

us abstract out a
(k)
1 [i], a

(k)
1 [i + 1] with x

(k)
1 , (x

(k)
1)′ and a

(k)
2 [i], a

(k)
2 [i + 1] with

x
(k)
2 , (x

(k)
2)′ (k = 1, . . . , 4). Then, let us consider for instance the first guard of

(α2): the formula to be checked to belong to the acceleratable fragment is

i′ = i+ 1 ∧ i < N ∧ (x
(2)
1)′ = x

(2)
1 + 1 ∧ (x

(2)
2)′ = i+ 1

and it is clear that this formula fits Proposition 1 (and Theorem 1 too). Thus,
we can run the algorithm of Theorem 3 to check the unsatisfiability of the con-
junction of the formulæ (α1)− (α5). As for Step I, consider the partition

{0, I(1), I(3)} < {I(3)+m, I(4)} < {I(4)+1} < {N, I(2), I(1)+n} < {I(1)+n+1}

(other partitions are either analogous to this one or do not admit a consistent
ordering). We call c1, c2, c3, c4, c5, respectively, the fresh constants denoting a
generic element of the above classes of the partition (notice that c5 is out-of-
bound). Step II eliminates the second guard from (α2). Step III produces a
formula which is the conjunction of the ground literals from Fig. 3 with three Γ -
guards γ12, γ23, γ34 (relative to the intervals [c1, c2), [c2, c3), [c3, c4), respectively),
also displayed in Fig. 3.

Going to Step IV, we now consider the formula (13); the acceleration for-
mulæ replacing the Γ -guards γ12, γ23, γ34 can be drawn from Example 5 (strictly
speaking, Example 5 analyzes only γ12, but the other two Γ -guards are analyzed
in the same way). Thus formula (13) becomes equivalent to the conjunction of
the literals from Fig. 3 together with the additional literals from Fig. 4. To im-
prove readability, in Fig. 4 we do not replace terms a[t] with fresh constants
depending on the equivalence class of t like in (13) (as a consequence, we shall
need below congruence closure besides arithmetic to check inconsistency). To
conclude the unsatisfiability test of the proof obligation from Fig. 2 it is then
sufficient to observe that the following unsatisfiable subset can be extracted from
the literals in Fig. 3-4:

a
(4)
1 [I(4)+1] 6= a

(4)
2 [I(4)+1], c3 = I(4)+1, c1 = 0,

a
(4)
1 [c3] = a

(2)
1 [c2]+(c3−c2), c1 = I(1), a

(2)
1 [0] = a

(1)
1 [0],

a
(2)
1 [c2] = a

(2)
1 [c1]+(c2−c1), a

(1)
1 [I(1)] = 0, a

(4)
2 [c3] = c2+(c3−c2). ut

The decidable class covered by Theorem 3 includes some remarkable classes
known to be decidable from the literature: in particular, it covers the SIL-
fragments of [14] and the flat mono-sorted fragments of [4]. We point out, how-
ever, that some other known decidable classes are still orthogonal to the classes

Literals:

I
(1) = 0, a

(1)
1 [I(1)] = 0, a

(1)
2 [I(1)] = 0, a

(2)
1 [0] = a

(1)
1 [0], a

(2)
2 [0] = a

(1)
2 [0],

I
(2) = I

(1) + n, I(2) ≥ N, I(3) = 0, a
(3)
1 [0] = a

(2)
1 [0], a

(3)
2 [0] = a

(2)
2 [0],

I
(4) = I

(3) +m, a
(4)
1 [0] = a

(3)
1 [0], a

(4)
2 [0] = a

(3)
2 [0], a

(4)
1 [I(4)+1] 6= a

(4)
2 [I(4)+1],

c1 = 0, c1 = I
(1), c1 = I

(3), c1 < c2, c2 = I
(3) +m, c2 = I

(4), c2 < c3, c3 = I
(4)+1,

c3 < c4, c4 = N, c4 = I
(2), c4 = I

(1) + n, c4 < c5, c5 = I
(1) + n+ 1 .

Guards:

γ12 ≡ ∀i ∈ [c1, c2)

i < N ∧ a

(2)
1 [i+1] = a

(2)
1 [i] + 1 ∧ a

(2)
2 [i+1] = i+1 ∧

∧ a
(3)
1 [i+1] = a

(2)
1 [i+1] ∧ a

(3)
2 [i+1] = a

(2)
2 [i+1]∧

∧ a
(3)
1 [i+ 1] = a

(3)
2 [i+ 1]∧

∧ a
(4)
1 [i+1] = a

(3)
1 [i+1] ∧ a

(4)
2 [i+1] = a

(3)
2 [i+1]

γ23 ≡ ∀i ∈ [c2, c3)

i < N ∧ a

(2)
1 [i+1] = a

(2)
1 [i] + 1 ∧ a

(2)
2 [i+1] = i+1 ∧

∧ a
(3)
1 [i+1] = a

(2)
1 [i+1] ∧ a

(3)
2 [i+1] = a

(2)
2 [i+1] ∧

∧ a
(4)
1 [i+1] = a

(3)
1 [i+1] ∧ a

(4)
2 [i+1] = a

(3)
2 [i+1]

γ34 ≡ ∀i ∈ [c3, c4)

i < N ∧ a

(2)
1 [i+1] = a

(2)
1 [i] + 1 ∧ a

(2)
2 [i+1] = i+1 ∧

∧ a
(3)
2 [i+1] = a

(2)
2 [i+1] ∧ a

(3)
1 [i+1] = a

(2)
1 [i+1] ∧

∧ a
(4)
1 [i+1] = a

(3)
1 [i+1] ∧ a

(4)
2 [i+1] = a

(3)
2 [i+1]

Fig. 3: Literals and Guards after Step III (see Example 6).

presented in this paper. Since a comprehensive comparison is rather technical
and require more space, we defer it to Appendix A.

5 Applications to imperative programs

In this section we show how to use our results in order to establish decid-
ability of safety problems for a class of imperative programs handling arrays.
We will consider programs with flat control-flow graph with loops represented
by acceleratable formulæ. This section provides just initial assesments: future
more extensive work may comprise the exploitation of generalized notions like
iterators/selectors [2] and the adoption of compiler-oriented optimization fea-
tures [1, 13] which lie outside the scope of this work.

Henceforth v will denote the variables of the programs we analyze. Formally,
v = a, I where, according to our conventions, a is a tuple of array variables
(modeled as free unary function symbols in our framework) and I is an integer
variable to be used as a counter to scan arrays (we omit further integer variables
for simplicity, but see Remark 2 below). As stated in Section 2, we work in a

Literals from γ12:

c2 = c1 + (c2 − c1), a
(2)
1 [c2] = a

(2)
1 [c1] + (c2 − c1), a

(2)
2 [c2] = c1 + (c2 − c1),

a
(3)
1 [c2] = a

(2)
1 [c1] + (c2 − c1), a

(4)
1 [c2] = a

(2)
1 [c1] + (c2 − c1), c1 + (c2 − c1) < N,

a
(3)
2 [c2] = c1 + (c2 − c1), a

(4)
2 [c2] = c1 + (c2 − c1), a

(2)
1 [c1] = c1 .

Literals from γ23:

c3 = c2 + (c3 − c2), a
(2)
1 [c3] = a

(2)
1 [c2] + (c3 − c2), a

(2)
2 [c3] = c2 + (c3 − c2),

a
(3)
1 [c3] = a

(2)
1 [c2] + (c3 − c2), a

(4)
1 [c3] = a

(2)
1 [c2] + (c3 − c2), c2 + (c3 − c2) < N,

a
(3)
2 [c3] = c2 + (c3 − c2), a

(4)
2 [c3] = c2 + (c3 − c2) .

Literals from γ34:

c4 = c3 + (c4 − c3), a
(2)
1 [c4] = a

(2)
1 [c3] + (c4 − c3), a

(2)
2 [c4] = c3 + (c4 − c3),

a
(3)
1 [c4] = a

(2)
1 [c3] + (c4 − c3), a

(4)
1 [c4] = a

(2)
1 [c3] + (c4 − c3), c3 + (c4 − c3) < N,

a
(3)
2 [c4] = c3 + (c4 − c3), a

(4)
2 [c4] = c3 + (c4 − c3) .

Fig. 4: (Step IV) Literals whose conjunction is the formula
∧3
k=1 φ

∗
k from (13)

(see Example 6).

decidable fragment of arithmetic, extended with free constants and free unary
function symbols. A state-formula is a formula α(v) representing a (possibly
infinite) set of configurations of the program under analysis. A transition formula
is a formula of the kind τ(v,v) where v is a renaming of the tuple v (we prefer not
to use here the standard model-checking notation v′ for v, because we already
used the primed notation in the previous sections in a different context).

Definition 5 (Programs). Given a set of variables v, a program is a triple
P = (L,Λ,E), where (i) L = {l1, . . . , ln} is a set of program locations among
which we distinguish an initial location linit and an error location lerror; (ii) Λ is
a finite set of transition formulæ {τ1(v,v), . . . , τr(v,v)} and (iii) E ⊆ L×Λ×L
is a set of actions.

We indicate by src,L, tgt the three projection functions on E; that is, for
e = (li, τj , lk) ∈ E, we have src(e) = li (this is called the ‘source’ location of
e), L(e) = τj (this is called the ‘label’ of e) and tgt(e) = lk (this is called the
‘target’ location of e).

Definition 6 (Program paths). A program path (in short, path) of P =
(L,Λ,E) is a sequence ρ ∈ En, i.e., ρ = e1, e2, . . . , en, such that for every
ei, ei+1, we have tgt(ei) = src(ei+1). We denote with |ρ| the length of the path.
An error path is a path ρ with src(e1) = linit and tgt(e|ρ|) = lerror. A path

ρ is a feasible path if
∧|ρ|
j=1 L(ej)

(j) is satisfiable, where L(ej)
(j) represents

τij (v(j−1),v(j)), with L(ej) = τij . The (unbounded) reachability problem for
a program P is to detect if P admits a feasible error path.

One word about the notation τij (v(j−1),v(j)) used above: when we use tu-

ples of variables like v(j), we mean that we simultaneously employ many dis-
jointed renamed copies (written v(1),v(2),v(3), . . .) of the tuple v. Obviously,
τij (v(j−1),v(j)) indicates the formula obtained from τij (v,v) by replacing v by

v(j−1) and v by v(j).
We first give the definition of a flat0-program, i.e. of a program with only

self-loops for which each location belongs to at most one loop.

Definition 7 (flat0-program). A program P is a flat0-program if for every
path ρ = e1, . . . , en of P it holds that for every j < k (j, k ∈ {1, . . . , n}), if
src(ej) = tgt(ek) then ej = ej+1 = · · · = ek.

We shall consider below only programs whose transitions are of two kinds:

(i) quantifier-free formulae τ(v,v): these formulæ can be used only as labels for
actions which are not self-loops (i.e. whose source and target locations do
not coincide);

(ii) transitions used as labels in self-loops: these transitions must be of the fol-
lowing kind

(∀i 6= I+1 a[i] = a[i]) ∧ γ(I,a[I],a[I + 1],a[I + 1]) ∧ I = I+1 (14)

where γ is quantifier-free and arithmetical over a[I],a[I + 1],a[I + 1].

Formula (14) says that the loop modifies just the entry I+1 of each array a.
It is general enough to include instructions of the following kind

while(δ(I,a[I],a[I + 1])){ a[I + 1] := t(I,a[I],a[I + 1]); I++; }

where δ is a guard expressed via a quantifier-free formula arithmetical over
a[I],a[I + 1] and where the terms t are also arithmetical over a[I],a[I + 1].

Remark 2. Additional integer variables can be modeled as arrays as follows.
Suppose we have an integer variable C and that inside the loop we want to
update it as C := u(I, C,a[I],a[I + 1]). Then we can introduce a fresh array
variable c; this variable is (partially) initialized as c[I] := C before the loop,
it is returned as C := c[I] after the loop and it is updated inside the loop as
c[I + 1] := u(I, c[I],a[I],a[I + 1]).

Assumption. We assume from now on that our programs are flat0-programs
and that their transitions are subject to the above restrictions (i) and (ii).

This assumption is not yet sufficient for decidability, though. To gain decid-
ability, we put further conditions on guards and updates. Let us consider the
list of variables I, e, e, I ′, e′, e′ where the variables e, e are meant to abstract

out a[I],a[I] and the variables e′, e′ to abstract out a[I + 1],a[I + 1].We call
arithmetic projections of P the formulæ

I ′ = I + 1 ∧ γ(I, e, e′, e′) (15)

extracted from the self-loops instructions (14) occurring in P. We give some
sufficient practical (relatively simple) conditions so that the simultaneous accel-
eration of the formulæ (14) occurring in a path of P meets the hypothesis of
Theorem 3. One needs to pay attention to the fact that the update of a[I+1]
is recursive; this is why the variables e abstracting out a[I] have been preferred
to8 the e (abstracting out a[I]) when defining arithmetic projections.

Theorem 4. The unbounded reachability problem for P is decidable if there is
a normal acceleratable fragment containing all arithmetic projections of P.

Proof. (Sketch, see Appendix B for details). For a transition relation τ(v,v)
given by (14), the transition τ∗(v,v, n̄) expressing the n-times composition of τ
with itself is given by:

∀i ∈ [I, I + n) γ(i,a[i],a[i+ 1],a[i+ 1]) ∧
∀i ∈ [0, I + 1) a[i] = a[i] ∧
∀i ∈ [I + n+ 1, N + 1) a[i] = a[i] ∧
I = I + n

 (16)

Let now Γ be a normal acceleratable fragment containing all arithmetic pro-
jections of P: the key observation is that (16) (after little rewriting) is a con-
junction of ground literals and Γ -guards. This allows to check the satisfiability
of all formulæ expressing the feasibility of an error path. ut

Example 7. We apply the procedures of Theorem 4 to the example of Fig. 1.
The relevant error path comprises the execution of the instruction in location 1,
n executions of the loop in location 2, the exit condition from this loop together
with execution of the instruction in location 3, m executions of the loop in
location 4 and the error exit condition from that loop. If we apply formulæ (16)
for acceleration, we get the proof obligation of Fig. 2 (with little simplifications
improving readability). Example 6 shows that the conjunction of the formulæ
from Fig. 2 is inconsistent, hence the program of Fig. 1 is safe. ut

6 Conclusions and future work

In this paper we presented a new framework for deciding the satisfiability of
quantified formulæ with arrays. Such framework allows for the integration of
acceleration results satisfying the conditions identified in Definitions 1-2, and
exploits them as black-box modules, as described by the algorithm of Theorem 3.

8 Notice that a[I] = a[I] is nevertheless a logical consequence of (14).

The framework can also be applied in a software model-checking scenario, where
it can be proven that the safety of a new class of programs with arrays can be
decided by integrating our new results with acceleration procedures.

On the practical side, in our experience [2–4], the tools get remarkable ben-
efits from acceleration/decidability results, both whenever the results are used
directly in decisions procedures like that of Theorem 4 and when they are used
indirectly, via abstraction and instantiation, like in [2]. Implementing the results
of this work is an interesting and substantial future project which we intent to
pursue building upon our tools Booster [3] and mcmt [12].

References

1. A.V. Aho, M.S. Lam, R. Sethi, and J. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley Educational Publishers, Incorporated, 2007.

2. F. Alberti, S. Ghilardi, and N. Sharygina. Definability of accelerated relations in
a theory of arrays and its applications. In FroCoS, pages 23–39, 2013.

3. F. Alberti, S. Ghilardi, and N. Sharygina. Booster : an acceleration-based verifi-
cation framework for array programs. In ATVA, pages 18–23, 2014.

4. F. Alberti, S. Ghilardi, and N. Sharygina. Decision procedures for flat array prop-
erties. In TACAS, pages 15–30, 2014.

5. B. Boigelot. On iterating linear transformations over recognizable sets of integers.
Theor. Comput. Sci., 309(1):413–468, December 2003.

6. M. Bozga, C. Girlea, and R. Iosif. Iterating octagons. In TACAS, LNCS, pages
337–351, 2009.

7. M. Bozga, R. Iosif, and F. Konecny. Fast acceleration of ultimately periodic rela-
tions. In CAV, LNCS, 2010.

8. M. Bozga, R. Iosif, and Y. Lakhnech. Flat parametric counter automata. Funda-
menta Informaticae, (91):275–303, 2009.

9. A.R. Bradley, Z. Manna, and H.B. Sipma. What’s decidable about arrays? In
VMCAI, pages 427–442, 2006.

10. H. Comon and Y. Jurski. Multiple counters automata, safety analysis and Pres-
burger arithmetic. In CAV, volume 1427 of LNCS, pages 268–279. Springer, 1998.

11. A. Finkel and J. Leroux. How to compose Presburger-accelerations: Applications
to broadcast protocols. In FST TCS 02, pages 145–156. Springer, 2002.

12. S. Ghilardi and S. Ranise. MCMT: A Model Checker Modulo Theories. In IJCAR,
pages 22–29, 2010.

13. A. Gurfinkel, S. Chaki, and S. Sapra. Efficient predicate abstraction of program
summaries. In NASA Formal Methods - NFM, pages 131–145, 2011.

14. P. Habermehl, R. Iosif, and T. Vojnar. A logic of singly indexed arrays. In LPAR,
pages 558–573, 2008.

15. J.Y. Halpern. Presburger arithmetic with unary predicates is Π1
1 complete. J.

Symbolic Logic, 56(2):637–642, 1991.
16. A.L. Semënov. Logical theories of one-place functions on the set of natural num-

bers. Izvestiya: Mathematics, 22:587–618, 1984.
17. J.R. Shoenfield. Mathematical logic. Association for Symbolic Logic, Urbana, IL,

2001. Reprint of the 1973 second printing.

A Array Fragments: a Comparison

In this section we make a comparison between different quantified fragments
known to be decidable from the literature (including the fragment considered in
this paper). They all are ∃∗∀-fragments. The comparison below is made in the
settings of the present paper where arrays are interpreted on intervals [0, N]:
in other words, arrays are modeled as free unary function symbols taking a
conventional value, say 0, outside this interval (the condition ∀i(i < 0 ∨ i >
N → a[i] = 0) is assumed or can be expressed in all fragments below).

Fragment from [4]. In [4], two classes of array properties are shown to be
decidable. The second class (the two-sorted monic-flat fragment) is orthogonal
to the class covered by Theorem 3; the (lighter, but still useful) first class consists
of the flat formulæ whose quantified prefix is ∃∗∀ (a formula is flat iff for every
term of the kind a[t] occurring in it, the sub-term t is a variable). If we skolemize
existential quantifiers with free constants, abstract out ground terms with fresh
constants, put the matrix in normal form and distribute the universal quantifier,
from flat ∃∗∀-formulæ we get formulæ that are equivalent to conjunctions of
ground literals and of guards of the kind

∀i (i ∈ [0, N+1)→ φ(i,a[i])

where φ is purely arithmetical. If we rewrite this as

φ(0,a[0]) ∧ ∀i (i ∈ [0, N)→ φ(i+1,a[i+1])

we clearly get conjunctions of ground formulæ and Γ -guards, where Γ is the
acceleratable fragment of Proposition 1. ut

Fragment from [9]. In [9], the following class is shown to be decidable: the class
consists on formulæ which are equivalent to disjunctions of formulæ of the kind
∃k (ψ1(k,a) ∧ · · · ∧ ψn(k,a)), where each ψ’s is either a literal or a BM-guard.
In turn, a BM-guard is a formula of the kind

∀i (G→ θ) (17)

where (i) G is a conjunction of atoms of the kind i1 ≤ i2, i1 ≤ t(k), t(k) ≤
i1 for i1, i2 ∈ i and t(k) arithmetical; (ii) θ is obtained from a quantifier-free
arithmetical formula α(k, x) by replacing the variables x by terms of the kind
a[t(k)], a[i] for i ∈ i, t(k) arithmetical and a ∈ a.

To make a comparison, we must concentrate on BM-guards. Notice that we
can treat the k in (17) as free constants. These guards are orthogonal to the
Γ -guards, where Γ is the acceleratable fragment of Proposition 1: on one side,
in fact, the consequent of θ has limitations that do not occur in the definition of
Γ -guards (in θ, the quantified variables i must occur only as a read of an array)
and on the other side the guards (17) have more than one quantified variable.9

9In addition, [9] considers also many-dimensional arrays.

To understand why a conjunction φ of ground literals and of BM-guards is
decidable for satisfiability, it is useful to make a preprocessing interval guessing
partitions [c1, c2), . . . , [cl−1, cl) like in Step 1 of the algorithm from Theorem 3.
Having this partition, it is then not difficult to see that if our φ it is satisfiable,
then it is satisfiable in a model where the array variables a are interpreted on
functions which are constants on each interval : this is because in the consequents
θ of the BM-guards (17) each i ∈ i occurs only as a[i] (i.e. inside a read) and so we
may assume that the a[i] are equal to the values a[cj] where cj is the left bound
of the interval i belongs to. This fact is exploited in the completeness proof of [9]
and justifies a decision procedure by instantation: to check satisfiability of φ it is
sufficient to check satisfiability of the formula obtained from φ by instantiating
all universal quantifiers on interval bounds in all possible ways.

Notice that the decision procedure drawn from the combination of Propo-
sition 1 and Theorem 3 (and the decision procedure from from [4] too) is not
based on instantiation, but on quantifier handling in pure arithmetic. For the
lack of a better method, handling quantifiers in Presburger arithmetic requires a
quantifier elimination step, which might be harmful for complexity. This quan-
tifier elimination step is the price paid for allowing the quantified variable i
to occur outside the read of arrays in the consequents of the guards (in par-
ticular, it is the price paid for allowing genuinely ‘mono-sorted’ atoms like
a[i] = i, a[i] < i, a[i] 6= i+ 2, etc. in such consequents). ut

Fragment from [14]. In [14] another interesting decidable fragment is intro-
duced. The peculiarity of this fragment (making it orthogonal to all previously
known fragments) is that of allowing both sub-terms of the kind a[i] and of the
kind a[i+1], where i is the (unique) universally quantified variable that can be
used. This liberality is compensated by other restrictions, on the arithmetic ex-
pressions and on the use of disjunctions. The syntax of the so-called SIL-fragment
introduced in [14] is rather elaborated, however there is a normalized equivalent
formulation the authors themselves use after a preprocessing step (Lemma 6, in
Section 5.1 of [14]).

The normalized formulation covers Boolean combinations of ground formulæ
and of guards of the following two types

∀i (i ∈ [t, u)→ ν) (18)

∀i (i ∈ [t, u) ∧ i ≡n m→ ν) (19)

where: (i) t, u are ground arithmetical terms; (ii) m,n ∈ N; (iii) ν is a conjunction
of literals of the kinds

a1[i] ∼ `, a1[i]− i ∼ n̄, a1[i]− a2[i+ 1] ∼ n̄

for ∼ ∈ {≤,≥}, ` ground arithmetical, a1, a2 array variables, n ∈ Z.
Clearly, the guards of the form (18) are Γ -guards, where Γ is the acccelerat-

able fragment of Theorem 1.10 The guards of the form (19) can be transformed

10 The atom involving the term ` can be replaced, up to satisfiability, by the literal
a1[i] ∼ a`[i], where a` is an extra array variable subject to the constraints a`[0] =

into guards of the form (18), by some straightforward (but tedious) procedure.
We show the procedure by an example.

Suppose that in (19) we have n = 3 and m = 0; in addition, we need a
preliminary guess about the equivalence classes of t, u modulo 3. We suppose
t ≡3 0 and u ≡3 0. For simplicity, we consider a single array variable a. The
idea is to triplicate a into a0, a1, a2 where aj records the values of a[i] for i ≡3 j.
Recall that ν is of the kind ν(i, a[i], a[i + 1]); adding a literal t = 3c, u = 3d
(with fresh c, d), we may rewrite (19) as

∀i (i ∈ [c, d)→ ν(i, a0[i], a1[i]))

preserving satisfiability. Clearly, the general case is much more involved (and
presumably not optimal from the complexity viewpoint), because one has to
transform all together many guards of the form (18)-(19): this requires the con-
sideration of the l.c.m. of the congruences indexes involved, etc. Still, the above
sketch should make evident that a reduction is in principle possible. ut

The conclusion of the analysis of this section is that Theorem 3 encompasses
many results from current literature concerning decidability of quantified frag-
ments of the theory of arrays, although there are known orthogonal classes still
not covered by it (notably, the two-sorted monic-flat fragment of [4] and the
non-singly universally quantified class of [9]).

` ∧ ∀i (a`[i] = a`[i + 1]) (this constraint is a conjunction of a ground literal and of a
Γ -guard, for Γ as in Theorem 1).

B Missed Proofs

Proposition 1 The set of iteratable formulæ form a normal acceleratable frag-
ment.

Proof. Closure under renamings is immediate. For closure under conjunctions,
it is sufficient to take the union of the corresponding sets of iterators (notice
that, in case of overlaps of iterators domains, it might well happen that taking
conjunctions of iterator formulæ yield an inconsistent formula as a result - this
is not a problem from a formal point of view). By Example 1 above, it is clear
that x′ = x + 1 is an iteratable formula; that x′ = y′ is iteratable is clear from
Definition 4 (x and y do not occur in it). Hence the fragment of definition 4 is
normal.

We show that an iteratable formula φ is acceleratable (this is a straightfor-
ward, but a little annoying computation). Suppose that free variables occurring
in φ are partitioned as z1, . . . , zn, z

′
1, . . . , z

′
n, w

′; to make our notation more com-
pact, we let z := z1, . . . , zn and x := z, w. The accelerated formula φ∗(x, x′, j) is
given by (6), namely

z′ = v(z, j) ∧ ∀k ∈ [0, j) ∃w̃

(
(k = j−1→ w̃ = w′) ∧
∧ φ(v(z, k),v(z, k + 1), w̃)

)
where the tuple of terms v(z, k) := v1(z, k), . . . , vn(z, k) is obtained as follows.
For every zl ∈ z, choose some iterator ul ∈ Iφ such that zl is in the domain
of ul: if zl occurs at the h-th place in such a domain, we let vl be (ul)∗h(z, k).
In other words: we compute the iteration (ul)∗ of ul according to (3), take its
h-component, and apply it to z and k.

By induction, using (4) and (3), we first check that

φK(x, x′)→ z′ = v(z,K) (20)

is valid for every K ≥ 1: this follows from the (easily seen) fact that we have
|= φK(x, x′)→ z′0 = u∗(z0,K), for every K and for every u ∈ Iφ having domain
z0 ⊆ z.

We prove that (6) satisfies (1) by induction on j; the case j = 1 is immedi-
ate, because v(z, 0) = z, and v(z, 1) = z′ holds under assumption φ(x, x′) by (4)
and (3). Suppose now j > 1; we need to prove that φ(x, x′)j is equivalent to
the formula (6) where we replace the variable j by the numeral j̄. After this re-
placement, the relativized quantifier ∀k ∈ [0, j̄) can be turned into a conjunction
(k ∈ [0, j̄) is equivalent to k = 0 ∨ · · · ∨ k = j − 1), thus we may rewrite (6) as

z′ = v(z, j) ∧ ∃ w̃0 · · · w̃j−1

w̃j−1 = w′ ∧

∧
j−1∧
k=0

φ(v(z, k),v(z, k + 1), w̃k)

 (21)

Now recall that φj(x, x′) is ∃x] (φj−1(x, x]) ∧ φ(x], x′)), that is

∃z], w] (φj−1(x, z], w]) ∧ φ(z], x′)) .

The latter, moving all existential quantifiers in front and applying induction hy-
pothesis, can be written as ∃z], w], w̃0 · · · w̃j−2 θ, where the matrix θ is equiv-
alent to

z] = v(z, j − 1) ∧ w̃j−2 = w] ∧

∧
j−2∧
k=0

φ(v(z, k),v(z, k + 1), w̃k) ∧ φ(z], z′, w′) ∧

∧ z′ = v(z, j)

(22)

(the last conjunct has been added taking into consideration (20) for K := j).
We can now remove the redundant quantification over w] and introduce a new
quantification ∃w̃j−1(w′ = w̃j−1 ∧ · · ·); thus we get an existential formula

∃z] w̃0 · · · w̃j−1 θ′, where θ′ now is

z] = v(z, j − 1) ∧ w̃j−1 = w′ ∧

∧
j−2∧
k=0

φ(v(z, k),v(z, k + 1), w̃k) ∧ φ(z], z′, w̃j−1) ∧

∧ z′ = v(z, j)

(23)

If we remove also the quantifier ∃z] by replacing z] with v(z, j − 1), the matrix
of the resulting formula can be witten as the conjunction of

w̃j−1 = w′ ∧
j−2∧
k=0

φ(v(z, k),v(z, k + 1), w̃k) (24)

with

φ(v(z, j − 1), z′, w̃j−1) ∧ z′ = v(z, j) . (25)

Now, (24) ∧ (25) is the same as the matrix of (21), because (25) and

φ(v(z, j − 1),v(z, j), w̃j−1) ∧ z′ = v(z, j)

are logically equivalent. ut

Theorem 4 The unbounded reachability problem for P is decidable if there is
a normal acceleratable fragment containing all arithmetic projections of P.

Proof. For a transition relation τ(v,v) given by (14), the accelerated transition
τ+ allows to represent in one shot the precise set of states reachable after n
unwindings of that loop, for any n. By definition, the acceleration of a transition
τ(v,v) is the union of the n-th compositions of τ with itself, i.e. it is τ+(v,v) :=∨
n>0 τ

n(v,v), where

τ1(v,v) := τ(v,v), τn+1(v,v) := ∃ṽ (τn(v, ṽ) ∧ τ(ṽ,v)) .

Claim: we prove that τn(v,v) is equivalent to the formula τ∗(v,v, n̄) given
by (16), namely:

∀i ∈ [I, I + n) γ(i,a[i],a[i+ 1],a[i+ 1]) ∧
∀i ∈ [0, I + 1) a[i] = a[i] ∧
∀i ∈ [I + n+ 1, N + 1) a[i] = a[i] ∧
I = I + n

We argue by induction on n. In fact, if n = 1 it is clear that (16) is equivalent
to (14) (this is because ∀i 6= I+1 (a[i] = a[i]) entails a[I] = a[I]).

For the induction step, we have that the composition of the relation (14) with
itself n+ 1-times is represented (using induction hypothesis) by the relation

∃Ĩ ∃ã

(
τ∗(I,a, Ĩ, ã, n) ∧ (∀i 6= Ĩ+1 ã[i] = a[i]) ∧
∧ γ(Ĩ , ã[Ĩ], ã[Ĩ + 1],a[Ĩ+1]) ∧ I = Ĩ+1

)
(26)

This formula contains existential quantifiers (∃ã are second order quantifiers);
however, after a direct inspection, we shall realize below that such quantifiers
are redundant. In fact, (26) can be rewritten to

∃Ĩ ∃ã

 Ĩ = I + n ∧ ã = λj (if j = I+n+1 then a[I+n+1] else a[j]) ∧
∧ τ∗(I,a, Ĩ , ã, n) ∧ (∀i 6= Ĩ+1 ã[i] = a[i]) ∧
∧ γ(Ĩ , ã[Ĩ], ã[Ĩ+1],a[Ĩ+1]) ∧ I = Ĩ+1

Eliminating the existential quantifiers and applying β-conversion, we get:

∀i ∈ [I, I + n) γ(i,a[i],a[i+ 1],a[i+ 1]) ∧
∀i ∈ [0, I + 1) a[i] = a[i] ∧
∀i ∈ [I + n+ 2, N + 1) a[i] = a[i] ∧
γ(I+n,a[I+n],a[I+n+1],a[I+n+1]) ∧
I = I+n+1

which is precisely τ∗(I,a, I,a, n+1). This ends of the proof of the claim.

Because of the above claim, in the class of our standard models we have that
τ+(v,v) is equivalent to ∃x τ∗(v,v, x). We extend the projection function L by
denoting L+(e) := L(e)+ if src(e) = trt(e) and L+(e) := L(e) otherwise, where
L(e)+ denotes the acceleration of the transition labeling the edge e.

Let now Γ be a normal acceleratable fragment containing all arithmetic pro-
jections of P: the key observation is that (16) is a conjunction of ground literals
and Γ -guards: to see it, recall that Γ is normal (in the sense of Definition 1) and

notice that we can slightly rewrite (16) as:11

∀i ∈ [I, I + n) γ(i,a[i],a[i+ 1],a[i+ 1]) ∧
∀i ∈ [0, I) a[i+1] = a[i+1] ∧
∀i ∈ [I+n+1, N) a[i+1] = a[i+1] ∧
a[0] = a[0] ∧ a[I+n+1] = a[I+n+1] ∧
I = I + n

 (27)

Let ρ = e1, . . . , em be an error path of P; when testing its feasibility, accord-
ing to Definition 7, we can limit ourselves to the case in which e1, . . . , em are all
distinct, provided we replace the labels L(ek)(k) with L+(ek)(k) in the formula∧m
j=1 L(ej)

(j) from Definition 6.12 Thus P is unsafe iff, for some path e1, . . . , em
whose edges are all distinct, the formula

L+(e1)(1) ∧ · · · ∧ L+(em)(m) (28)

is satisfiable. Since the involved paths are finitely many and the satisfiabil-
ity of the formulæ (28) is decidable by Theorem 3 (the existential quantifiers
∃x τ∗(v,v, x) occurring in (28) can be skolemized away via free constants), the
safety of P can be decided. ut

11Normality is needed for the second and the third conjunct of (27) to be Γ -guards.
12 Notice that by these replacements we can represent in one shot infinitely many

paths, namely those executing self-loops any given number of times.

	A new Acceleration-based Combination Framework for Array Properties
	 Francesco Alberti, Silvio Ghilardi, Natasha Sharygina

