
MCMT: A Tutorial

Silvio Ghilardi1 and Silvio Ranise2

1 Dipartimento di Informatica, Università degli Studi di Milano (Italia)
2 Dipartimento di Informatica, Università di Verona (Italia)

Abstract. The main purpose of this paper is to explain how to use
mcmt, an infinite state model checker for checking the safety of systems
whose state variables are arrays, called array-based systems. mcmt is
founded on a declarative framework based on many-sorted first-order
logic extended with theories for the specification of sets of states and
transitions of array-based systems. Imperative programs, parametrised,
timed, and distributed systems can all be formalized as array-based sys-
tems. We use a parametrised version of a real-time mutual exclusion
protocol to illustrate the main features of mcmt.

Remark. This tutorial was written for version 1.0, hence it does not
cover acceleration and abstraction features (these features are essential
to handle certain classes of problems, e.g. software model checking prob-
lems). However, the old tutorial has been modified by the first author to
cover some novelties (at specification level) offered by version 2.5.

1 Introduction

mcmt [GR10] is an infinite state model checker for checking the safety of systems
manipulating array variables, called array-based systems. One major goal of
mcmt is to provide a declarative and flexible verification tool for array-based
systems such as parametrised, timed, and distributed systems or imperative
algorithms (e.g., sorting programs).

The actual version of mcmt only supports the verification of safety prop-
erties although the theoretical framework underlying the system permits also
the verification of a sub-set of liveness properties. A safety problem is specified
by a formula I of first-order logic characterizing the set of initial states of an
array-based system S, a finite set Tr of formulae specifying the transitions of S,
a formula U for the set of unsafe states, obtained by negating the safety property
we would like the system S to satisfy. The verification of a safety property is
thus reduced to repeatedly compute the pre-images of U until a fixed-point is
reached or the intersection with the set of initial states is non-empty. If a fixed-
point has been reached and the intersection with I is empty, then we conclude
that S is safe with respect to the safety property under consideration; otherwise,
S is unsafe. In the second case, mcmt also returns a sequence of transitions that
leads the system from an initial to an unsafe state. The repeated computation
of pre-images and the checks for fixed-point and empty intersection with the
initial states is known as backward reachability procedure. To mechanize this

procedure, mcmt puts some constraints on the format of I, Tr, and U so that
pre-image computation is closed with respect to a certain class of first-order
formulae and both fixed-point and empty intersection checks can be reduced to
decidable Satisfiability Modulo Theories (SMT) problems for formulae contain-
ing universal quantifiers. At a very high-level of abstraction, the architecture
of mcmt is client-server where the client implements the backward reachability
procedure while the server is an SMT solver (in our case, Yices3) which is in-
voked to solve the SMT problems encoding fixed-point and empty intersection
checks.

1.1 Pointers to the literature

The formal framework underlying mcmt is described in [GNRZ08]. In particu-
lar, it is described the backward reachability procedure for checking the safety
of infinite state systems whose states are declaratively specified by first-order
formulae. In this context, checks for fixed-point and safety are reduced to Sat-
isfiability Modulo Theories (SMT) problems of formulae containing (universal)
quantifiers. In [GRV08,GR09b], some heuristics are described to reduce the num-
ber of quantified variables and—most importantly—of instances while preserv-
ing the completeness of SMT solving. The invariant synthesis techniques used
in the tool are described in [GR09a]. Finally, for a complete description of the
functionalities offered by mcmt and its usage, the reader can consult the on-
line User Manual available in the form of a Technical Report at the address
http://homes.dsi.unimi.it/~ghilardi/mcmt/GhRa-RI_MCMT.pdf.

1.2 Plan of the paper

Section 2 introduces the abstract input language of the tool. Section 3 briefly
describes the abstract calculus underlying the main loop of mcmt. Section 4
describes a parametrised version of Fischer’s protocol for mutual exclusion (Sec-
tion 4.1), illustrates its formalization in the abstract syntax (Section 4.2), and
then in the concrete syntax (Section 4.3). Finally (Section 4.4), various ways of
invoking mcmt on the previously described safety problem and a description of
its outputs is offered.

2 MCMT Abstract Input Language

The input language of mcmt can be seen as a parametrised extension of the one
used by UCLID (http://www.cs.cmu.edu/~uclid). Formally, it is a sub-set of
multi-sorted first-order logic, extended with the ternary expression constructor
“if-then-else” (which is standard in the SMT-LIB format). The concrete syntax
is fully described in the on-line User Manual and is illustrated on an example in
the following Section.

3 http://yices.csl.sri.com

http://homes.dsi.unimi.it/~ghilardi/mcmt/GhRa-RI_MCMT.pdf
http://www.cs.cmu.edu/~uclid
http://yices.csl.sri.com

Sorts. We use the following distinguished sorts: Ind for indexes, Elem1, ...,
Elemm for elements of arrays, and Arr1, ...,Arrm for array variables (where Arrk
corresponds to arrays of elements of sort Elemk, for k = 1, ...,m).

Theories. We assume that the mono-sorted theories TI and TEk
are given

over the sorts Ind and Elemk, respectively, for k = 1, ...,m. The three-sorted
theories AEk

I are obtained as the combination of the theories TI and TEk
for

each k = 1, ...,m by adding the sort Arrk to Ind and Elemk, by taking the
union of the symbols of TI and TEk

, and by adding the binary symbol []k :
Arrk × Ind → Elemk for reading the content of an array at a given index (the
subscript k is omitted if clear from the context). Finally, we let AEI :=

⋃m
k=1A

Ek

I .
Formats of formulae. We use two classes of formulae to describe sets of

states: ∀i.φ(i, a) and ∃i.φ(i, a), where i is a tuple of variables of sort Ind , a is a
tuple of length m of array variables of sorts Arr1, ...,Arrm, and φ is quantifier-
free formula containing at most the variables in i∪a as free variables. The former
are called ∀I -formulae and the latter ∃I -formulae. An ∃I -formula ∃i.φ is primitive
when φ is a conjunction of literals; it is differentiated when it is primitive and
φ contains as a conjunct the variable distinction ik 6= il for each 1 ≤ k < l ≤ n
(where n is the length of the tuple i). By applying simple logical manipulations,
it is always possible to transform any ∃I -formula into a disjunction of primitive
differentiated ones. To specify transitions, we use a particular class of formulae
(called transition formulae) corresponding to a generalization of the usual notion
of guarded assignment system:

∃i1, i2, e.

(
G(i1, i2, e, a) ∧

m∧
k=1

∀j. a′k[j] = Upd(j, i1, i2, e, a)

)
,

where i1, i2 are variables of sort Ind (having at most two existentially quantified
variables is not too restrictive since many disparate systems can be formalized
in this format as shown by the experiments available on-line), e is a variable of
sort Elemk (for some k = 1...,m), a is a tuple of array state variables, ak (in a)
is the actual value of a state variable and a′k is its value after the execution of the
transition (for k = 1, ...,m), G is a conjunction of literals (called the guard), and
Upd is a function defined by cases, i.e. by suitably nested if-then-else expressions
whose conditionals are again conjunctions of literals. The format for transition
formulae above—because of the presence of the existentially quantified variable
e over data values—is the first significant amelioration of the actual version of
mcmt as it allows one to specify classes of systems which were not previously
accepted by the tool such as real time systems or those with non-deterministic
updates. Notice that the theory TEk

over the sort Elemk of the variable e must
be Linear Arithmetic (over the integers or the reals). This limitation allows us
to maintain the closure of the class of ∃I -formulae under pre-image computation
by exploiting quantifier elimination (implemented only in the latest version of
mcmt).

Safety problem. Let I be a ∀I -formula describing the set of initial states,
Tr a finite set of transition formulae, and U an ∃I -formula for the set of unsafe
states. The safety problem solved by mcmt consists in establishing whether there

K [K is primitive differentiated]

Pre(τ1,K) | · · · | Pre(τm,K)
PreImg

K
K1 | · · · | Kn

Beta

K [K is AE
I -unsatisfiable]

× NotAppl
K [I ∧K is AE

I -satisfiable]

UnSafe
Safety

K [K ∧
∧
{¬K′|K′ � K} is AE

I -unsatisfiable]

× FixPoint

Fig. 1. The calculus underlying mcmt

exists an n ≥ 0 such that the formula

I(a0) ∧ τ(a0, a1) ∧ · · · ∧ τ(an−1, an) ∧ U(an) (1)

is AEI -satisfiable, where ah = ah1 ,, a
h
m for h = 0, ..., n, and τ :=

∨
τi∈Tr τi. If

there is no such n, then the system is safe (w.r.t. U); otherwise, it is said to be
unsafe since the AEI -satisfiability of (1) implies the existence of a run (of length
n) leading the system from a state in I to a state in U .

3 MCMT Backward reachability

mcmt implements backward reachability to solve safety problems. For n ≥ 0,
the n-pre-image of an ∃I -formula K(a) is Pre0(τ,K) := K and Pren+1(τ,K) :=
Pre(τ, Pren(τ,K)), where Pre(τ,K) := ∃a′.(τ(a, a′) ∧ K(a′)). It is easy to
show [GNRZ08] that the class of ∃I -formulae is closed under pre-image com-
putation under the assumption that TEk

admits elimination of quantifiers (if
an existentially quantified variable of sort Elemk occurs in a transition for-
mula). The formula BRn(τ, U) :=

∨n
i=0 Pre

i(τ, U) represents the set of states
which are backward reachable from the states in U in at most n ≥ 0 steps.
So, backward reachability consists of computing BRn(τ, U) for increasing values
of n and checking whether BRn(τ, U) ∧ I is AEI -satisfiable or ¬(BRn(τ, U) →
BRn−1(τ, U)) is AEI -unsatisfiable. In the first case (safety test), one concludes
the unsafety of the system while in the second (fixed-point test), it is possible
to stop computing pre-images as no new states can be reached and, if the safety
test has been passed, one can infer the safety of the system.

Figure 1 introduces the Tableaux-like calculus used by mcmt to implement
backward reachability [GR09a]. We initialize the tableau with the ∃I -formula
U(a) representing the set of unsafe states. The computation of the pre-image is
realized by applying rule PreImg (we use square brackets to indicate the appli-
cability condition of a rule), where Pre(τh,K) computes the ∃I -formula which
is logically equivalent to Pre(τh,K). Since the ∃I -formulae labeling the con-
sequents of the rule PreImg may not be primitive and differentiated (because
of nested if-then-else expressions and incompleteness of variable distinction), we
need to apply the Beta rule to an ∃I -formula so as to eliminate the conditionals by
case-splitting and derive K1, . . . ,Kn primitive differentiated ∃I -formulae whose
disjunction is AEI -equivalent to K. By repeatedly applying PreImg and Beta, it is

possible to build a tree whose nodes are labelled by ∃I -formulae whose disjunc-
tion is equivalent to BRn(τ, U) for some n ≥ 0. Indeed, there is no need to fully
expand the tree; it is useless to apply the rule PreImg to a node ν labelled by an
AEI -unsatisfiable ∃I -formula (rule NotAppl). One can terminate the whole search
because of the safety test (rule Safety), in which case one can extract from the
branch a bad trace, i.e. a sequence of transitions leading the array-based system
from a state satisfying I to one satisfying U . A branch can be terminated by the
fixed-point test described by rule FixPoint, where K ′ � K means that K ′ is a
primitive differentiated ∃I -formula labeling a node preceding the node labeling
K (nodes can be ordered according to the strategy for expanding the tree).

4 Fisher’s Mutual Exclusion Algorithm

To illustrate the concrete input syntax of mcmt and some of its options, we
present the verification of the safety of a parametric and real-time mutual ex-
clusion protocol. We consider the variant of Fischer’s real-time based synchro-
nization protocol for mutual exclusion described in Chapter 13 (“A Case Study:
Fischer’s Protocol”) of the book Operational Semantics for Timed Systems: A
Non-standard Approach to Uniform Modeling of Timed and Hybrid Systems by
H. Rust (LNCS 3456, Springer, 2005). Among the many available formaliza-
tions of the protocol, we choose this one as it was almost precisely in the formal
framework underlying mcmt and it was thus easy to use.

Below, after a brief high-level description of the algorithm, we give its formal-
ization in the high-level specification language of the previous Section, present
the same formalization in the concrete input language of mcmt, and finally de-
scribe how the tool solves the safety problem in the default setting and with
some options.

4.1 Informal description

Fischer’s real-time based synchronization protocol is meant to ensure mutual
exclusion of access to a shared resource via real-time properties of a shared
variable v by a set of n processes (for n ≥ 1). The idea is to use just one shared
variable v for coordinating the access to the critical section. The variable can
contain a process id or some neutral value, called noProc. When a process wants
to enter its critical section, it first has to wait until v = noProc; then it sets
v to its process id, waits some time, and then reads v again. If v has kept the
old value, i.e., the id of the process considered, the process may enter its critical
section; on leaving the critical section, v is set to noProc again. If v has not
kept its old value, the attempt has failed and the process must go back and wait
again till v = noProc. Two time distances are relevant for the correctness of the
protocol: the time from ensuring that v = noProc holds up to the moment at
which v is set to the process id; this span is required to be smaller than or equal
to a value called a. The other time span is that from setting v to the process
id to checking it again. This is assumed to be greater than or equal to a value
called b. Mutual exclusion is ensured for b > a.

State variables: n, v, s, r ,w

I n = 0 ∧ v = noProc ∧ ∀i.s[i] = nc

τ0 ∃c
(
c > 0 ∧ n′ = n+ c

)
τ1 ∃i, c.

 c > 0 ∧ s[i] = nc ∧

∀j.
(

n′ = n+ c ∧
s′[j] = if j = i then rv else s[j]

)
τ2 ∃i, c.

c > 0 ∧ s[i] = rv ∧ v = noProc ∧

∀j.

 n′ = n+ c ∧
s′[j] = if j = i then w1 else s[j]∧
r ′[j] = if j = i then n else r [j]

τ3 ∃i, c.

c > 0 ∧ s[i] = w1 ∧ n + c ≤ r [i] + a ∧

∀j.

n′ = n+ c∧

s′[j] = if j = i then w2 else s[j]∧
v′ = i ∧

w ′[j] = if j = i then n + c else w [j]

τ4 ∃i, c.

 c > 0 ∧ v 6= i ∧ s[i] = w2 ∧ n ≥ w [i] + b ∧

∀j.
(

n′ = n+ c ∧
s′[j] = if j = i then rv else s[j]

)
τ5 ∃i, c.

 c > 0 ∧ v = i ∧ s[i] = w2 ∧ n ≥ w [i] + b ∧

∀j.
(

n′ = n+ c ∧
s′[j] = if j = i then cr else s[j]

)
τ6 ∃i, c.

c > 0 ∧ s[i] = cr ∧

∀j.

 n′ = n+ c ∧
s′[j] = if j = i then nc else s[j]∧
v′ = noProc

U ∃i1, i2.(s[i1] = cr ∧ s[i2] = cr ∧ i1 6= i2)

Fig. 2. The formalization of Fischer’s protocol

4.2 Formalization in mcmt: abstract syntax

We assume TI to be the empty theory, TE1
is the theory of an enumerated data-

type with constants nc, rv ,w1 ,w2 , cr over the sort Elem1; the other four theories
we need are all identical copies of Linear Arithmetic (over reals/integers). We
have two shared variables, v and n (for the former see the informal description
above, the latter represents time). In addition, we need three (local) variables:
s : Arr1, v : Arr2, and n : Arr3 .4 While s stores the states of each process in the
system, r and w associate each process with the time point when the variable
v has been read and written, respectively. The formulae characterizing the set
of initial states, the seven transitions, and the set of unsafe states are depicted
in Figure 2. If a state variable α is not mentioned in a transition τi, then it is

4 Local state variables range over standard arrays while global or shared state variables
denote single values. These single values are internally tretaed by MCMT as arrays
containing the same value in all their cells. Since version 2.5, the user needs not to
care about this internal representation and can specify global variables just giving
them a name consisting of a string of characters.

assumed to be unchanged and the conjunct ∀j.α′[j] = α[j] must be added to τi
(if α is global the conjunct α′ = α must be added). The set of initial states is
given by a ∀I -formula while that of unsafe states is described by an ∃I -formula
which is also primitive differentiated.

For Fischer’s protocol, the existentially quantified variable c can always
be eliminated as TE2

is Linear Arithmetics over the reals, that is well-known
to admit elimination of quantifiers. To illustrate, consider the computation of
Pre(τ5, U), i.e.

∃i, c

 c > 0 ∧ v = i ∧ s[i] = w2 ∧ n ≥ w [i] + b ∧

∀j.
(

n′ = n+ c ∧
s′[j] = if j = i then cr else s[j]

) ∧ ∃i1, i2.
 s′[i1] = cr∧
s′[i2] = cr∧
i1 6= i2

 , (2)

where s′, n′ are also existentially quantified. Without loss of generality, it is
possible to instantiate i with i1 so that after some simple manipulations we
derive:5

∃i1, i2.(s[i1] = w2 ∧ s[i2] = cr ∧ v = i1 ∧ n ≥ w[i1] + b ∧ i1 6= i2),

which is an ∃I -formula. To quickly obtain this formula, call it N1, rewrite the
updates as

n′ = n+ c s′ = λj.(if j = i then cr else s[j])

eliminate the existentially quantified variables n′, s′ by substitution and finally
perform β-conversion.

To illustrate the need of quantifier-elimination in Linear Arithmetics, con-
sider to compute Pre(τ3, N1):

∃i, c

c>0 ∧ s[i] = w1 ∧ n + c ≤ r [i] + a ∧

∀j.

n′ = n+ c ∧

s′[j] = if j = i then w2 else s[j]∧
v′ = i ∧

w ′[j] = if j = i then n + c else w [j]

 ∧

∃i1, i2.(s′[i1] = w2 ∧ s′[i2] = cr ∧ v′ = i1 ∧ n′ ≥ w′[i1] + b ∧ i1 6= i2),

where all the primed array variables are (implicitly) existentially quantified. As
before, it is possible to identify i with i1 without loss of generality so as to

5 In mcmt, state formulae are kept in primitive and differentiated form. As a con-
sequence, we must produce three disjuncts corresponding to the cases when the
existentially quantified variable i in τ5 is equal (or distinct) to one (all) of the exis-
tentially quantified variables i1, i2 in U : one disjunct is obtained by instantiating i
to i1, one by instantiating i to i2, and the the last by requiring that i be different
from both i1 and i2 (i.e. i 6= i1 ∧ i 6= i2). After the fixed-point check, just one of the
three disjunct is kept while the the other two are subsumed.

obtain:6

∃i1, i2, c.
(
s[i1] = w1 ∧ s[i2] = cr ∧ v = i1∧
b ≤ 0 ∧ c > 0 ∧ n+ c ≤ r[i1] + a

)
,

which still contains the existential quantifier over the real valued variable c and
it is thus not an ∃I -formula. However, by using standard quantifier-elimination
in Linear Arithmetics, we can the derive the equivalent ∃I -formula:

∃i1, i2.(s[i1] = w1 ∧ s[i2] = cr ∧ v = i1 ∧ b ≤ 0 ∧ n < r[i1] + a).

The sharp-eyed reader may have already realized that b, being an increment of
time, should be positive so that the node just computed should be discarded
without loss of information. While this observation is true, to prove safety this
assumption is formally not needed (because if b is negative and a < b, the critical
section is not reachable at all). In addition, mcmt will be able of delete this node
because it is subsumed by others (see node labelled with 3 in Figures 3 and 4
below).

Let us apply rule Safety on formula N1 above. Discharging the applicability
condition of the rule amounts to checking the AEI -unsatisfiability of the following
formula:

∃i1, i2.(s[i1] = w2 ∧ s[i2] = cr ∧ v = i1 ∧ n ≥ w[i1] + b ∧ i1 6= i2) ∧
n = 0 ∧ v = noProc ∧ ∀i.s[i] = nc.

It is not difficult to see that instantiating i with i1 and i2 considering these as
free-constants yields an AEI -unsatisfiable quantifier-free formula; thereby imply-
ing that the intersection between the current set of backward reachable states
and the initial set of states is empty.

Similarly, the applicability condition of FixPoint applied on N1 reduces to
checking the AEI -unsatisfiability of the following formula, obtained by negating
N1 → U :

∃i1, i2.(s[i1] = w2 ∧ s[i2] = cr ∧ v = i1 ∧ n ≥ w[i1] + b ∧ i1 6= i2) ∧
∀i′1, i′2.(s[i′1] 6= cr ∨ s[i′2] 6= cr ∨ i′1 = i′2).

It is tedious but straightforward to check that by instantiating (i′1, i
′
2) to (i1, i1),

(i1, i2), (i2, i2), and (i2, i1) and considering i1 and i2 as free constants, the re-
sulting quantifier-free formula is AEI -satisfiable;7 thereby, implying that more
pre-images of N1 must be computed.

6 Notice that some simplification steps have been applied, e.g., we derive b ≤ 0 from
n + c ≥ n + c + b. One of the novelty of mcmt v. 1.0 is an enhanced simplification
routine for Linear Arithmetic which allows us to control the size of ∃I -formulae
representing sets of backward reachable states.

7 That such instantiations suffice follows from general facts, see [GNRZ08].

4.3 Formalization in mcmt: concrete syntax

We encode the enumerated data-type of sort Elem1 with a finite sub-set of the
integers as follows: 1 for nc, 2 for rv , 3 for w1 , 4 for w2 , and 5 for cr . To do
this, we use the following command

:smt (define-type locations (subrange 1 5))

which tells mcmt (and more precisely, to its backhand SMT solver Yices) to
include the declaration of the type locations whose values are the integers in
the range [1...5].

We introduce the array variables together with their types for the elements:

:local s locations

:global n real

:global v int

:local r real

:local w real

which tells mcmt that the system contains 5 array variables all of whose indices
range over an implicitly declared subset of the naturals while their elements take
values over the types locations, reals, integers, reals, and reals, respectively.
The special value noProc will be encoded by the integer value -1.

Then, we declare the two (time) parameters a and b of the protocol as follows:

:smt (define a::real)

:smt (define b::real)

which tells mcmt (and more precisely, to its backhand SMT solver Yices) to
include the declaration of two (time invariant) constants of type real. The as-
sumption that a < b can be encoded as follows:8

:system_axiom

:var x

:cnj (< a b)

The keyword :system axiom tells mcmt that the formula that follows is an in-
variant of the system being specified. Since the formula after :system axiom

must always be universally quantified, the keyword :var introduces an implic-
itly universally quantified index variable (in this case x) that may occur in the
formula after the keyword :cnj. Finally, the keyword :cnj must be followed in
this case by a single quantifier free formula. The set of initial states is specified
as follows:

:initial

:var x

:cnj (= n 0) (= v -1) (= s[x] 1)

The keyword :initial tells mcmt that the variable introduced by the keyword
:var (in this case x) is implicitly universally quantified and may occur in the
formula after the keyword :cnj. The meaning of the keyword :cnj is similar to
that of block introduced by :system axiom, but here you can insert after it a
list of quantifier free formulae intended conjunctively.

8 Without this assumption, the protocol is not correct and in fact dropping it causes
mcmt to find an unsafety trace of length 10.

The set of unsafe states is specified as follows:

:unsafe

:var z1

:var z2

:cnj (= s[z1] 5) (= s[z2] 5)

The keyword :unsafe tells mcmt that the variables introduced by the keyword
:var (in this case z1 and z2) are implicitly existentially quantified and may
occur in the formula after the keyword :cnj. Notice that the keyword :cnj can
only be followed by a list of literals (not formulae as in the previous case) in
Yices input language which are intended to be in conjunction. You need not
add the conjunct (not (= z1 z2)) to make the formula differentiated: this is
done automatically by the tool. It is worth noticing that the present release of
mcmt accepts multiple unsafety conditions intended disjunctively (see the User
Manual for the appropriate syntax to be used).

In all formulae of the input specification files for mcmt, the array reading
operation can be applied only to variables: you cannot for instance write (> s[(+

z2 1)] 1), you must use an extra existentially quantified variable, say z3, and
write the literals conjunction (> s[z3] 1) (= z3 (+ z2 1)) instead. This is a
special case of flattening for terms that is imposed by mcmt input syntax (more
detailed instructions and motivations can be found in the User Manual).

Finally, we specify the transitions. To help readability, we also propose (on
the right) the abstract version of the transition in Figure 2:

:comment --

:eevar c real

:transition

:var j

:guard (> c 0)

:numcases 1

:case

:val s[j]

:val (+ n c)

:val v

:val r[j]

:val w[j]

:comment --

∃c.
(
c > 0 ∧ n′ = n+ c

)

The existentially quantified variable over data is introduced by the key-
word :eevar and it can be used in any transition of the system. The keyword
:transition introduces the block of the transition: a transition is composed
by the variable declarations, the guard, the cases of a case distinction and the
updates (within each case) of the (local and global) system variables.

– The index variable j is universally quantified and can only be used in the
case distinctions (the list of literals following the keyword :case) and in the
updates, i.e. in the terms after the keyword :val, see below,

– The index variables x, y can also be introduced by the keyword :var; these
variables are existentially quantified (for instance, the former corresponds to
the variable i in the abstract versions of transitions 2, 3, etc., see below). The
existentially quantified variables are absent in the first transition, because
the first transition only modifies global variables. The use of the existentially
quantified variables is subject to precise constraints, see the User Manual.

– :guard introduces a list of literals in Yices format which may contain c and
the declared existentially quantified variables.

– The number after :numcases specifies the number of cases of the update
function (this number is 1 in the first transition, because there is no case
distinction there).

– The list of literals after the keyword :case specifies the condition under
which a certain update should be performed and the terms after the keyword
:val specify how each array variable (in the order in which they are declared)
must be updated. In the first transition, the list of literals after :case is
empty (one could put true instead), because there is no case distinction
there.

This transition will be identified by the name t1 in the system. The remaining
transitions are specified as follows and will be named t2, ..., t7:9

:comment --

:transition

:var x

:var j

:guard (> c 0) (= s[x] 1)

:numcases 2

:case (= x j)

:val 2

:val (+ n c)

:val v

:val r[j]

:val w[j]

:case (not (= x j))

:val s[j]

:val (+ n c)

:val v

:val r[j]

:val w[j]

:comment --

∃i, c.

 c > 0 ∧ s[i] = nc ∧

∀j.
(

n′ = n+ c) ∧
s′[j] = if j = i then rv else s[j]

)

9 Notice that in Figure 2 the naming of the transition is the following: τ0, . . . , τ6. The
correspondence should be obvious: t1 corresponds to τ0, t2 corresponds to τ1, and
so on.

:comment ---

:transition

:var x

:var j

:guard (> c 0) (= s[x] 2) (= v -1)

:numcases 2

:case (= x j)

:val 3

:val (+ n c)

:val v

:val n

:val w[j]

:case (not (= x j))

:val s[j]

:val (+ n c)

:val v

:val r[j]

:val w[j]

:comment ---

∃i, c.

c > 0 ∧ s[i] = rv ∧ v = noProc ∧

∀j.

 n′ = n+ c ∧
s′[j] = if j = i then w1 else s[j]∧
r ′[j] = if j = i then n else r [j]

:comment --

:transition

:var x

:var j

:guard (> c 0) (= s[x] 3) (<= (+ n c) (+ r[x] a))

:numcases 2

:case (= x j)

:val 4

:val (+ n c)

:val x

:val r[j]

:val (+ n c)

:case (not (= x j))

:val s[j]

:val (+ n c)

:val x

:val r[j]

:val w[j]

:comment --

∃i, c.

c > 0 ∧ s[i] = w1 ∧ n + c ≤ r [i] + a ∧

∀j.

n′ = n+ c ∧

s′[j] = if j = i then w2 else s[j]∧
v′ = i ∧

w ′[j] = if j = i then n + c else w [j]

:comment --

:transition

:var x

:var j

:guard (> c 0) (= s[x] 4) (>= n (+ w[x] b)) (not (= v x))

:numcases 2

:case (= x j)

:val 2

:val (+ n c)

:val v

:val r[j]

:val w[j]

:case (not (= x j))

:val s[j]

:val (+ n c)

:val v

:val r[j]

:val w[j]

:comment --

∃i, c.

 c > 0 ∧ v 6= i ∧ s[i] = w2 ∧ n ≥ w [i] + b ∧

∀j.
(

n′ = n+ c ∧
s′[j] = if j = i then rv else s[j]

)

:comment --

:transition

:var x

:var j

:guard (> c 0) (= s[x] 4) (>= n (+ w[x] b)) (= v x)

:numcases 2

:case (= x j)

:val 5

:val (+ n c)

:val v

:val r[j]

:val w[j]

:case (not (= x j))

:val s[j]

:val (+ n c)

:val v

:val r[j]

:val w[j]

:comment --

∃i, c.

 c > 0 ∧ v = i ∧ s[i] = w2 ∧ n[i] ≥ w [i] + b ∧

∀j.
(

n′ = n+ c ∧
s′[j] = if j = i then cr else s[j]

)

:comment --

:transition

:var x

:var j

:guard (> c 0) (= s[x] 5)

:numcases 2

:case (= x j)

:val 1

:val (+ n c)

:val -1

:val r[j]

:val w[j]

:case (not (= x j))

:val s[j]

:val (+ n c)

:val -1

:val r[j]

:val w[j]

:comment --

∃i, c.

c > 0 ∧ s[i] = cr ∧

∀j.

 n′ = n+ c ∧
s′[j] = if j = i then nc else s[j]∧
v′ = noProc

As mentioned above, there are syntactic constraints to be respected (most
of them are checked by the MCMT parser). The reader is referred to the User
Manual for complete information; we just mention some important syntax con-
straints here. First, the update of the global variables must be repeated in all
cases of the case distintions in the literally identical way. Second, when the vari-
able x is declared, there must be at least two cases in the case distinctions and
the first case must be (= x j). Third, the cases must be mutually exclusive and
exhaustive. Moreover, the variable y can be declared only when x is declared
too, etc.

4.4 Running mcmt

In order to solve the problem, it is sufficient to type at the command prompt
the following command:

mcmt < Fischer.in

provided that the specification described in the previous section has been saved
in the file named Fischer.in and that the mcmt executable is in the path of
the shell. As a result, the system will output the following message:

MCMT - version 2.5

MCMT is linked to the SMT solver Yices version 1.0.39 (@ SRI, Stanford)

--

node 1= [t6_1][0]

node 2= [t1][t6_1][0]

node 3= [t4_1][t6_1][0]

node 4= [t4_1][t1][t6_1][0]

node 3 is deleted!

node 5= [t3_1][t4_1][t1][t6_1][0]

node 6= [t6_2][t4_1][t1][t6_1][0]

node 7= [t2_1][t3_1][t4_1][t1][t6_1][0]

node 8= [t5_1][t3_1][t4_1][t1][t6_1][0]

node 9= [t1][t6_2][t4_1][t1][t6_1][0]

node 10= [t4_2][t6_2][t4_1][t1][t6_1][0]

node 11= [t1][t5_1][t3_1][t4_1][t1][t6_1][0]

node 12= [t4_2][t1][t6_2][t4_1][t1][t6_1][0]

node 10 is deleted!

node 13= [t3_2][t4_2][t1][t6_2][t4_1][t1][t6_1][0]

node 14= [t2_2][t3_2][t4_2][t1][t6_2][t4_1][t1][t6_1][0]

node 15= [t5_2][t3_2][t4_2][t1][t6_2][t4_1][t1][t6_1][0]

node 16= [t1][t5_2][t3_2][t4_2][t1][t6_2][t4_1][t1][t6_1][0]

==

Global fixpoint reached!

System is SAFE!

Max depth:10 #nodes:16 #deleted nodes:2 #SMT-solver calls:363 ...

==

mcmt executes backward reachability by trying to symbolically execute (back-
ward) one of the available transitions among t1, ..., t7 starting with the set
of unsafe states which is identified by [0] in the output above. Doing this, it
produces several nodes of the search space (which is organized as a tree along
the lines of what has been explained in Section 3). For example, the first node
(named node 1) has been generated by applying transition t6 to the set of un-
safe states (this amounts to apply rule PreImg in Figure 1). The number after
the label of transition t6, namely 1, tells us that the transition has been applied
by identifying the existentially quantified variable x occurring in it with the first
existentially quantified variable occurring in the formula characterizing the set

of unsafe states (i.e. z1). This is done by mcmt whenever it is possible in order
to keep the number of existentially quantified variables occurring in the set of
backward reachable states as low as possible. This is important to reduce the
cost of quantifier instantiation when performing fixed-point checking. However,
this is not always possible; the interested reader is pointed to [GRV08] for details
about this point. Similarly, the second node (named node 2) has been generated
by applying transition t1 to node 1 (since this has been generated by applying
t6 to the set of unsafe states). Once a node has been generated, it may become
redundant because it is subsumed by other nodes: this is the case with node 3

which is deleted because the disjunction of the formulae labelling nodes 1, 2,
and 4 is implied by it.

When no more nodes can be expanded (because of rules NotAppl or FixPoint
in Figure 1), a global fix-point has been reached and the system is said to be
safe (since rule Safety in Figure 1 is not applicable). Finally, some statistics are
reported such as the depth of the tree (10), the number of nodes obtained by
applying rule PreImg (16), the number of redundant nodes which have been
deleted (2), the number of calls to the backhand SMT-solver (336), etc.

If one is only interested in the final result, it is possible to run the system in
silent mode as follows:

mcmt -s < Fischer.in

In this case, the output is much more compact:

MCMT - version 2.5

MCMT is linked to

STATS=SAFE:10:16:2:363:0

However, it is possible to extract much more information about the set of back-
ward reachable states by generating a report listing the formulae labelling the
tree as well as a graphical representation of the tree itself. This can be done by
invoking the system as follows:

mcmt -r "Fischer" < Fischer.in

which generates a LaTeX file (named Fischer.report.tex)10 containing a list
of the formulae labelling the nodes of the tree representing the search space as
well as a file (named Fischer.report.dot) containing a picture of the search
space in Dot format, which can be read by Graphwiz.11 Figures 3 and 4 contain
an excerpt of the LaTeX file and the tree representing the search space for the
Fischer example, respectively. In Figure 4, deleted nodes are depicted in gray.

Finally, it is sometimes possible to reduce the search space explored by mcmt
by using invariants (sometimes, it is even possible to avoid non termination in
this way). There are various available strategies to synthesize invariants which
can be tried to reduce the response time of the system. The interested reader is
pointed to the on-line User Manual for a complete overview.

10 The option “-r STRING” tells mcmt to create a LaTeX file named
STRING.report.tex and a dot file named STRING.report.dot.

11 Available at http://www.graphviz.org.

http://www.graphviz.org

List of reachable nodes

– Kept node 0 at depth 0 labelled by

∃z1, z2. (and (= s[z1] 5) (= s[z2] 5))

– Kept node 1 at depth 1 generated by applying the transition τ6(z1) on
node 0 and labelled by

∃z1, z2. (and (<= (+ b w[z1]) n) (= s[z1] 4) (= s[z2] 5)

(= z1 v))

– Kept node 2 at depth 2 generated by applying the transition τ1) on node
1 and labelled by

∃z1, z2. (and (= s[z1] 4) (= s[z2] 5) (= z1 v))

– Deleted node 3 at depth 2 generated by applying the transition τ4(z1)
on node 1 and labelled by

∃z1, z2. (and (< n (+ a r[z1])) (<= b 0) (= s[z1] 3) (= s[z2] 5)

– Kept node 4 at depth 3 generated by applying the transition τ4(z1) on
node 2 and labelled by

∃z1, z2. (and (< n (+ a r[z1])) (= s[z1] 3) (= s[z2] 5)

– Kept node 5 at depth 4 generated by applying the transition τ3(z1) on
node 4 and labelled by

∃z1, z2. (and (< 0 a) (= s[z1] 2) (= s[z2] 5) (= 0 (+ 1 v))

– Kept node 6 at depth 4 generated by applying the transition τ6(z2) on
node 4 and labelled by

∃z1, z2. (and (< n (+ a r[z1])) (<= (+ b w[z2]) n) (= s[z1] 3)

(= s[z2] 4) (= z2 v))

– Kept node 7 at depth 5 generated by applying the transition τ2(z1) on
node 5 and labelled by

∃z1, z2. (and (< 0 a) (= s[z1] 1) (= s[z2] 5) (= 0 (+ 1 v))

Fig. 3. Excerpt of the file Fischer.report.tex

0

1

t6_1

2

t1_1

3

t4_1

4

t4_1

5

t3_1

6

t6_2

7

t2_1

8

t5_1

9

t1_1

10

t4_2

11

t1_1

12

t4_2

13

t3_2

14

t2_2

15

t5_2

16

t1_1

Fig. 4. Picture of search space for Fischer (file Fischer.report.dot)

References

GNRZ08. S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Towards SMT Model-
Checking of Array-based Systems. In Proc. of IJCAR, LNCS, 2008.

GR09a. S. Ghilardi and S. Ranise. Goal Directed Invariant Synthesis for Model
Checking Modulo Theories. In Tableaux 09, LNAI, pages 173–188. Springer,
2009.

GR09b. S. Ghilardi and S. Ranise. Model Checking Modulo Theory at work: the
intergration of Yices in MCMT. In AFM 09 (co-located with CAV09), 2009.

GR10. S. Ghilardi and S. Ranise. MCMT: A Model Checker Modulo Theories. In
Proc. of IJCAR 2010, LNCS, 2010.

GRV08. S. Ghilardi, S. Ranise, and T. Valsecchi. Light-Weight SMT-based Model-
Checking. In Proc. of AVOCS 07-08, ENTCS, 2008.

	MCMT: A Tutorial
	Silvio Ghilardi and Silvio Ranise

