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Johannes Kepler (1571-1630): the program

• To discover the plan of God when He created the universe:
◦ Mysterium Cosmographicum, 1596;
◦ Harmonices Mundi Libri V, 1619.

• To investigate the physical causes of the orbits and the mo-
tions of the planets:
◦ Astronomia Nova, 1609.



Durissima est hodie conditio scribendi libros Ma-
thematicos, præcipue Astronomicos. Nisi enim
servaveris genuinam subtilitatem propositionum,
instructionum, demonstrationum, conclusionum,
liber non erit Mathematicus: sin autem ser-
vaveris, lectio efficitur morosissima, præsertim in
Latina lingua, quæ caret articulis, & illa gratia
quam habet græca, cum per signa literaria lo-
quitur.

It is extremely painful nowadays to write mathemati-
cal books, especially astronomical ones. For unless one
maintains the innate exactness of propositions, con-
structions, demonstrations and conclusions the book
will not be mathematical; but if you respect that
sequence it will be most laboriuos to communicate
through written symbols, especially in Latin, which
lacks the articles and that gracefulness possessed by
Greek.

(Astronomia Nova, Introduction.)
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Geometric tools of Greek Astronomy

• Eccentric: Apollonius (262–190 bC).
◦ Explains the lack of uniformity in the annual motion of

the Sun and the Planets.
◦ The Earth T is in eccentric position with respect to the

center O of the circular orbit.
◦ P : perigee (for the Sun S); A: apogee.
◦ The eccentric anomaly u evolves uniformly.
◦ The true anomaly ψ increases faster at the perigee than

at the apogee.
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• Epicycle: Apollonius or Hipparchus (190–120 bC).
◦ Explains the retrograde motion of Planets.
◦ The Planet (e.g., M for Mars) rotates on a circle with

center Q (epicycle); the center Q rotates on another
circle (deferent).

◦ Compare with our expansion in Fourier series.
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• Equant: Ptolemæus (90–168 aC), or may be Hipparchus.
◦ An improvement for the non uniformity introduced by

the eccentric.
◦ The point Q rotates uniformly with respect to the

equant point E.
◦ The mean anomaly ϕ evolves uniformly.
◦ The position of the Planet M is the intersection of the

line EQ with the orbit.



The universe of Nicolaus Copernicus (1473-1543)
compared to Claudius Ptolemæus (∼ 100-170)

• Ptolemy:
◦ Geocentric model, fixed Earth;
◦ eccentric orbit (non uniform revolution);
◦ epicycles (retrograde motion);
◦ uniform revolution around the equant point;
◦ the Earth has no equant point, only eccentricity.

• Copernicus:
◦ Heliocentric model, Earth one of the planets;
◦ center of the planetary orbit in the mean Sun;
◦ replaces the motion around the equant point

with epicycles.

• Both:
◦ planets moving on material spheres made of

æther.



The “petitiones” (postulates) of Copernicus

Prima petitio:
Omnium orbium caelestium sive sphaerarum
unum centrum non esse.

There is no unique common center of all the celestial
orbs or spheres.

Secunda petitio:
Centrum terrae non esse centrum mundi, sed
tantum gravitatis et orbis Lunaris.

The center of the Earth is not the center of the universe,
but only the center of gravity and of the sphere of the
moon.

Tertia petitio:
Omnes orbes ambire Solem, tanquam in medio
omnium existentem, ideoque circa Solem esse
centrum mundi.

All the spheres encircle the Sun, which appears to be in
the middle of them all, so that the center of the universe
is near the Sun.

Quarta petitio:
Minorem esse comparationem distantiarum
Solis et terrae ad altitudinem firmamenti,
quam semidimetientis terrae ad distantiam So-
lis, adeo ut sit ad summitatem firmamenti in-
sensibilis.

The ratio of the Earth–Sun distance to the height of the
firmament is smaller than the ratio of the Earth’s radius
to the Earth–Sun distance, to such a degree that the
Earth-Sun distance is imperceptible compared with the
height of the firmament.



Quinta petitio:
Quicquid ex motu apparet in firmamento, non
esse ex parte ipsius, sed terrae. Terra igitur
cum proximis elementis motu diurno tota con-
vertitur in polis suis invariabilibus firmamento
immobili permanente ac ultimo caelo.

Whatever motion we see in the firmament is due, not to
it, but to the Earth. Thus the Earth together with the
elements close to it revolves around its fixed poles, while
the firmament remains fixed, being the highest heaven.

Sexta petitio:
Quicquid nobis ex motibus circa Solem ap-
paret, non esse occasione ipsius, sed telluris
et nostri orbis, cum quo circa Solem volvimur
ceu aliquo alio sidere, sicque terram pluribus
motibus ferri.

Whatever motion we observe in the Sun is due, not to
its motion, but to the motion of the Earth and of our
sphere, with which we revolve about the Sun, as any
other planet, and so the Earth undergoes many motions.

Septima petitio:
Quod apparet in erraticis retrocessio ac pro-
gressus, non esse ex parte ipsarum sed telluris.
Huius igitur solius motus tot apparentibus in
caelo diversitatibus sufficit.

What appears in the planets as retrograde and direct
motion is due, not to their motion, but to the Earth’s.
Thus the motion of the Earth alone suffices to explain
all apparent irregularities in the heaven.

(Copernicus: Commentariolus).



The universe of Tycho Brahe (1546-1601)

• The Earth is fixed at the center of the Universe:
◦ The Moon and the Sun revolve around the

Earth;
◦ The other planets revolve around the Sun.

• Removes the material spheres:
◦ a great comet observed in 1577 was beyond the

sphere of the Moon, and its orbit did cross the
sphere of Venus;

◦ Mars in opposition is closer to the Earth than
the Sun, as observed in 1582 (the sphere of
Mars should intersect the sphere of the Sun).

Figure from: De mundi ætherei recentioribus
phænomenis.



The first part of “Astronomia Nova”
in very short terms

• Comparison between the models of Ptolemy, Copernicus and Tycho; they are geometrically equivalent.

• For physical reasons, the heliocentric model of Copernicus in preferred, but:
◦ there are no solid spheres (in agreement with Tycho Brahe);
◦ the reference point is located in the true Sun (not the mean Sun) for all planets;
◦ this leads to conclude that the orbits of every planet lies in a plane through the Sun.

• The Earth has an equant point, like all planets, but:
◦ bisection of the eccentricity (as Ptolemy did): putting the center of the orbit halfway between E

(equant) and S (Sun) makes the orbit of the Earth plane;
◦ the vicarious hypothesis: setting the distances of E and S form the center in the ratio 8 : 5 produces

the correct angles, but wrong distances.

• Ad imitationem veterum. Why the equant?
◦ using the equant point in place of the double epicycle of Copernicus is more convenient anyway, as a

geometrical tool.
◦ however, the equant is just an useful geometric artifice: there is nothing there.

References:
• B. Stephenson: Kepler’s physical astronomy, Springer–Verlag (1987).
• N.M. Swerdlow: Astronomy in the Renaissance, in Astronomy before the telescope, C. Walker ed., British

Museum Press (1996).



Towards the “law of areas”

• Concentrate attention of the orbit of the Earth, as-
sumed circular with bisected eccentricity.
◦ The velocity at perihelion is larger than at aphe-

lion (true for all planets);
◦ make this remark quantitative.

• Two equivalent claims, that hold true quam prox-
ime:
◦ the time spent on equal arcs (mora) is propor-

tional to the distance from the Sun;
◦ the velocity in aphelion and perihelion is in-

versely proportional to the distance from the
Sun.

• Remark: Kepler does not mention the areas here.

Primum sciat in omni hypothesi Ptolemaica hac
forma instructa, quantacunque eccentricitas fuerit,
celeritatem in perihelio & tarditatem in aphelio
proportionari quam proxime lineis ex centro mundi
eductis in Planetam.

First, [the reader] should understand that in all hy-
potheses constructed according to this Ptolemaic
form, no matter of the value of eccentricity, the ra-
pidity at perihelion and the slowness at aphelion
exhibit very close a proportion with the lines drawn
from the centre of the world to the planet.

(Astronomia Nova, ch. XXXII)
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The proof of Kepler

• Measuring the time (mora)
◦ |FG| measures the mora for the arc AB ;
◦ |HK| measures the mora for the arc CD .

• Geometric relations:
◦ sector SAB similar to SCD;
◦ sector EAB similar to EFG;
◦ sector EHK similar to ECD;

• Want to prove

|HK|
|FG|

=
|SC|
|SA|

.

◦ true if

|OA|2 ' |EA| |SA| , |OC|2 ' |EC| |SC| ;

◦ have instead

|OA| = |EA|+ |SA|
2

=
|EC|+ |SC|

2
= |OC| .

◦ Must use r
√

(1 + e)(1− e) ' r(1− e2

2 ), which
is equal to r quam proxime.

Let us do it in simpler terms (for us. . .) using areas.

S : Sun ; E : Equant ; O : center of the eccentric orbit ; CF : line of absides.

|OA| = |OC| = |EF | = |EH| = r , |EA| = |OH| = |SC| = r(1− e) , |SA| = |EC| = |OF | = r(1 + e) .
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• S : Sun;
• O : center of the orbit;
• E : equant point;
• P : perihelion;
• A : aphelion.

|OA| = |OP | = a ,

|OS| = |OE| = ea ,

|SP | = |EA| = (1− e)a ,
|SA| = |EP | = (1 + e)a ,

|A′A′′| = (1− e)aδϑ ,
|P ′P ′′| = (1 + e)aδϑ .

area(SP ′P ′′) =
1

2
|P ′P ′′| · |SP |

area(SA′A′′) =
1

2
|A′A′′| · |SA|

 =
1

2
(1−e)(1+e)a2δϑ .

• The argument is perfect for the apsides; only approximate for all other points.

• Write δs = r δϕ; recover the claim of Kepler in either form

δs

δt
=

1

r
or δt = r δs .

• Kepler calculates the sum of small areas in order to calculate the mean anomaly.
◦ A long discussion: Astronomia Nova, ch. L.
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• S : Sun;
• O : center of the orbit;
• E : equant point;
• P : planet;
• A : perihelion;
• ψ : true anomaly;
• u : eccentric anomaly;
• ϑ : equant’s anomaly, measures the time.
• Translate EP to OQ;
• area(OAQ) evolves uniformly in time (red);
• area(SAP ) : the area swept by the radius from

the Sun (green);
• want to compare the red and the green area.

Q

A

P

ϑ

OE

ϑ u ψ

e A

P

ϑ

SOE



Q

e

ϑ ψ

A

D

SO

P

Q

e

ϑ ψ

ϑ

C

D

E

e

SO

P

A

Q

P C

ϑ

Q′

e

• equivalent to comparing area(DSO) (light blue)
with area(DPQ) (yellow);
• draw the straight line PC ‖ OA;
• |PC| = |OS| = e;
• get area(DSO) = area(DPC);
• draw PQ′ ⊥ CQ;
• get area(PQC) = area(PQ′C) + O(e3);

• area(DSO)− area(DPQ) ∼ e2 sin 2ϑ
4 .

• conclude:∣∣area(SAP )− area(OAQ)
∣∣ ∼ e2 sin 2ϑ

4
.

Second law in terms of areas: Newton, Principia, sect. II, Prop. I theorema I.



The elliptic orbit of Mars

• The orbit of Mars, the inobservabile sidus:
◦ the method of equants gives the correct angles;
◦ but the distances from the true Sun do not corre-

spond to observations of Tycho Brahe.

• The orbit exhibits an oval form:
◦ the displacement of the planet from the circle resem-

bles an oscillation along a diameter of an epicycle,
◦ which is hardly intepreted as due to a physical cause!
◦ the circle and the orbit are separated by a lunula.
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Cum igitur duobus argumentis (. . .) non obscure col-
ligerem, lunulæ illius latitudinem dimidiam tantum
assumendam, scilicet , correctius , (. . .); cœpi
de causis & modo cogitare, quibus tantæ latitudinis
lunula rescinderetur.

Thus, having clearly concluded from two different ar-
guments (. . .) that the width of that lunula should be
halved, i.e., , or more correct , (. . .); I began
to investigate how and why such a big lunula should
be subtracted.

Qua in cogitatione dum versor anxie, . . . forte fortu-
ito incido in secantem anguli ◦′ quæ est mensura
æquationis Opticæ maximæ. Quem cum viderem esse
, hic quasi e somno expergefactus, & novam
lucem intuitus, sic cœpi ratiocinari.

While I am plunged anxiously into these reflections
by pure chance I fall on the secant of the angle ◦′,
which is the maximal amplitude of the optical equa-
tion. When I saw it to be , it was like be-
ing suddenly awakened from sleep, and seeing a new
light. Then I began to argue as follows.

For Mars: Optical equation ϑ ' ◦′; width of the lunula δ ' 0.00429).

(Astronomia Nova, ch. LVI)
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In longitudinibus mediis, æquationis pars Optica fit
maxima. In longitudinibus mediis lunula seu curtatio
distantiarum est maxima, etque tanta, quantus est
excessus secantis æquationis opticæ maximæ 
supra radium . Ergo si pro secante usurpetur
radius in longitudine media, efficitur id, quod suadent
observationes. Et in schemate cap. XL conclusi gene-
raliter, si pro HA usurpes HR, pro V A vero V R, &
pro EA substituas EB, & sic in omnibus, fiet idem
in locis cæteris eccentrici, quod hic factum est in lon-
gitudinibus mediis.

In correspondence with the average value of the lon-
gitude the optical equation is close to a maximum.
The amplitude of the lunula takes a maximum there,
and is the same as the excess of the secant of the opti-
cal equation, namely  over the radius .
According to ch. XL, I thus concluded, in general,
that if you replace HA with HR, V A with V R and
EA with EB, and similarly for all points, the same
will happen at the other points of the eccentric circle
that occurred here for average longitude.

(The text refers to Kepler’s figure. In the present figure: replace SQ with SP , with |SP | = |QB|).



The equation of the orbit
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• Cartesian coordinates:
◦ O the origin; line of apsides AP the x axis;
◦ S : Sun; Q, Q′ : fictitious positions of Mars on

the circle;
◦ SM, M ′ : true positions of Mars;
◦ u : eccentric anomaly;

• Calculate:
◦ SQ′ = (cosu− e, sinu);
◦ OQ′ = (cosu, sinu);
◦ |DQ′| = 1− e cosu

(scalar product between OQ′ and SQ′);

• With Kepler:
◦ let a = |OP | be the semimajor axis;
◦ let u be given (eccentric anomaly);
◦ draw the arc of radius r = |DQ′|;
◦ find M ′ by intersecting the arc with the line

from Q′ orthogonal to AP ;
◦ get

r = a(1− e cosu) ,

the equation of an ellipse.



Kepler’s equation
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area(OQP ) =
1

2
a2u ;

area(SPQ) =
1

2
a2u− 1

2
a2e sinu ;

area(SPM) =
b

a

(
1

2
a2u− 1

2
a2e sinu

)
=
πab

T
t ;

Kepler’s equation:

u− e sinu = ` , ` =
2π

T
t : mean anomaly .



• Kepler could not find a solution of his equation:
◦ suggests the problem to geometers:

Data area partis semicirculi, datoque puncto
diametri, invenire arcum, & angulum ad illud
punctum: cujus anguli cruribus, & quo arcu,
data area comprehenditur. Vel: Aream semi-
circuli ex quocunque puncto diametri in data
ratione secare.
Mihi sufficit credere, solvi a priori non posse
propter arcus & sinus ἑτερογένειαν. Erranti
mihi, quicunque viam monstraverit, is erit
mihi magnus Apollonius.

Let the area of a part of a semicircle and a point on the
diameter be given; to find the arc and the angle at that
point, such that the sides of that angle and that arc en-
close the given area. Or, similarly: to divide the area of
a semicircle in a given ratio from any given point on the
diameter.
I just think a priori that this can not be solved, for the
arc and the sine are heterogeneous quantities. I’m wan-
dering here, and if anyone will show me the way, he will
be for me a great Apollonius.

(Astronomia Nova, ch. LX.)

• A solution has been found by Lagrange (1771).
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The perfection of the world

• Mysterium Cosmographicum (1596): the 5 regu-
lar solids inside the orbits of the planets (left).

. . . so many years . . .

◦ Harmonice Mundi (1619): the music played by
planets in honor of the Creator (below).



The third law of Kepler

Hactenus egimus de diversis moris vel arcubus
unius et eiusdem Planetæ. Jam etiam de bi-
norum Planetarum motibus inter se comparatis
agendum. (. . .)

So far we have considered either time intervals or
arcs of one and the same Planet. Now we should con-
sider the motions of pairs of planets, compared with
each other. (. . .)

Rursum igitur hic aliqua pars mei Mysterii
Cosmographici, suspensa ante 22 annos, quia
nondum liquebat, absolvenda et huc inferenda
est. Inventis enim veris orbium intervallis per ob-
servationes Brahei, plurimi temporis labore con-
tinuo, tandem, tandem genuina proportio tem-
porum periodicorum at proportionem orbium —

Therefore we should now achieve another part of
my Cosmographical Mystery, suspended twenty-two
years ago, because it was not yet clear enough. For
after I had discovered the true distances of the orbits,
thanks to Brahe’s observations, and had spent a great
amount of time working hard, at last!, at last the true
proportion of the periodic times to the orbits —

sera quidem respexit inertem,
Respexit tamen et longo post tempore venit;(∗)

late she saw me, lying helpless,
yet she came and gazed at me after a long time;

eaquem si temporis articulos petis, 8 Mart. hu-
jus anni millesimi sexcentesimi decimi octavi an-
imo concepta, sed infeliciter ad calculos vocata,
eoque pro falsa rejecta, denique 15 Maji reversa,
novo capto impetu expugnavit mentis meae tene-
bras, tanta comprobatione et laboris mei septen-
decennalis in observationibus Braheanis et med-
itationis hujus in unum conspirantibus, ut som-
niare me et præsumere quæsitum inter principia
primo crederem.

and if you want to know the precise moment, the first
idea came across me on the 8th March of this year
1618; but it was rejected as false, due to an unappro-
priate reduction to calculation. But later it fell again
upon me on the 15th May, and conquered with out-
standing power the darkness of my mind, thanks to the
agreement between this idea and my seventeen years
labour on Brahe’s observations, so that I thought I
was dreaming, and took my result for granted in my
first assumptions.

(*) Publius Vergilius Maro: Bucolica, Ecloga I.



Sed res est certissima exactissimaque, quod pro-
portio quæ est inter binorum quorum-
cunque Planetarum tempora periodica, sit
præcise sesquialtera proportionis mediarum
distantiarum, id est orbium ipsorum; at-
tento tamen hoc, quod medium arithmeticum
inter utramque diametrum ellipticæ orbitæ sit
paulo minus longiore diametro. Itaque si quis ex
periodo, verbi causa Telluris, quæ est annus unus,
et ex periodo Saturni triginta annorum, sumserit
tertiam proportionis partem, id est, radices cu-
bicas, et huius proportionis duplum fecerit, radi-
cibus quadrate multiplicatis, is habet in prodeun-
tibus numeris intervallorum Terræ et Saturni a
Sole mediorum proportionem justissimam. Nam
cubica radix de 1 est 1, ejus quadratum 1. Et
cubica radix de 30 est major quam 3, eius igi-
tur quadratum majus quam 9. Et Saturnus me-
diocriter distans a Sole, paulo altior est noneuplo
mediocris distantiæ Telluris a Sole.

For it is a definitely certain, an absolutely exact truth
that the actual proportion between the periodic times
of any two planets is exactly the sesquialtera propor-
tion of the mean distances of the orbits, i.e., of the
orbits themselves; this taking into account that the
arithmetic mean between the two diameters of the
elliptic orbit is a little less than the longer diameter.
Thus if one considers, e.g., the period of the Earth,
which is 1 year, and the thirty years period of Sat-
urn, and takes one third of the proportions, that is
the cubic roots, and doubles that proportion, making
the square of the roots, he will get from the resulting
numbers the correct proportion of the mean distances
of the Earth and of Saturn from the Sun. For the cu-
bic root of 1 is 1, and its square is 1; and the cubic
root of 30 is greater than 3, and its square greater
than 9. Indeed the average distance of Saturn from
the Sun is a little bigger than nine times the average
distance of the Earth from the Sun.

(Harmonices Mundi Libri V, Liber V, Caput III.)

The plan of God has been discovered!

but . . .



The “Tabulæ Rudolphinæ

• The dates:
◦ conceived by Tycho Brahe (he was 17 years old) in 1564;
◦ work undertaken in 1572;
◦ Kepler’s collaboration begins in 1600;
◦ Tycho Brahe dies in 1601;
◦ compilation completed by Kepler in 1623;
◦ published in 1627.

Et de certitudine quidem calculi testabuntur ob-
servationes præsentium temporum, imprimis Bra-
heanæ; de futuris vero temporibus plura præsume-
re non possumus, quam vel observationes veterum,
quibus usus sum, vel ipsa motuum mediorum
conditio, nondum penitus explorata, concursusque
causarum physicarum præstare possunt, cum ob-
servationes Regiomontani et Waltheri testentur,
omnino de æquationibus secularibus esse cogitan-
dum, ut singulari libello reddam demonstratum
suo tempore; quæ tamen æquationes quales et
quantæ sint, ante plurimum sæculorum decursum
observationesque eorum, a gente humana definiri
nequaquam possunt.

And the observations made in our epoch, especially
by Brahe, will prove the reliability of our calcula-
tions. However, concerning the future we can not
expect so much. The validity may be questioned by
ancient observations, that I’m well aware of, by the
knowledge of the mean motions, that have not yet
been fully explored, and by the concurrence of physi-
cal actions. The observations of Regiomontanus and
Walther do indeed show that we should definitely
think about secular equations, as I will explain in
a specially devoted booklet. Which and how many
equations we need, however, humanity will be un-
able to decide it before many centuries of observa-
tions have been accumulated.

(Tabulæ Rudolphinæ, preface)



Observations of Regiomontanus and Walther (sample)

Anno 1478, 22 Aug. h. 3 post medium noctis
fuerant in una linea X et duo oculi ], et erat X
occidentalior, distans per medietatem distantiæ,
qua duo oculi distant, ab oculo occidentaliori; sic
visui apparuit.

In 1478, august 22, tree hours past midnight, Jupiter
and the two eyes of Taurus were on the same line, and
Jupiter was toward west, the distance from the west
eye of Taurus being half the distance between the two
eyes; so it visually appeared.

1478, 24 Sept, 40′ ante ortum solis vidi lunam
circa Y, quasi coniunctos; distabat Luna mod-
icum ad septentrionem, ita ut inter circunferen-
tiam eius et Y videretur mediare spatium unius
palmæ.

In 1478, September 24, 40 minutes before sunrise I
saw Saturn and the Moon approximately in conjunc-
tion; Moon’s position was scanty on the north direc-
tion, and it appeared that between her circle and Sat-
urn’s one could insert the space of a palm.

(. . .) stella X videbatur inter duas Virginis,
quarum lucidior est circa medietatem alæ sin-
istræ Virginis, alia obscurior circa oculum eius
versus Leonem (. . .).
Magna cum perplexitate diu conflictatus sum,
quænam essent hæc duæ stellæ.

(. . .) the star Jupiter was seen between two stars of
Virgo. The brighter one is close to the center of the
left wing of Virgo, the other one, less bright, is close
to her eye, towards Leo (. . .).
With great perplexity and for a long I felt vexed trying
to figure out which these two stars are.

Observation reported by Ptolemy

(. . .) a. 82 die 2 Xantichi vesperi, quod ex fide
Ptolemæi interpretis fuit ante Chr. anno 229 d.
1 Mart. Tunc Y sub australi humero ` visus est
2 digitos.

(. . .) in the evening of the second day of the Xantic
month of the year 82, which according to the inter-
preters of Ptolemy is March 1, 229 BC. Then Sat-
urn was seen two fingers below the austral shoulder of
Virgo.



The difference between observations and calculation
for Jupiter and Saturn



The difference between observations and calculation
for Mercury, Venus and Mars



The last observation of Walther

• May 24, 1504:
◦ Walther reports a conjunction between Jupiter and Saturn;
◦ the calculation results in a distance of 58′

Et hic dissensus calculi in X and Y , excurrens ad
integrum gradum, est remora illa, quæ me, plurima
perplexitate circumventum, per solidos quinque
menses in observationibus Waltherianis exercuit
tandemque ad nova consilia circa motuum medio-
rum speculationem adegit, deprehensa manifesta
inæequalitate motuum seculari. (Absolvi hucusque
18 Junii 1624.)

And this discrepancy in the calculation for Jupiter
and Saturn, which amounts to a whole degree, is
such an hindrance that it caused me to be assailed
by many perplexities, and for five solid months I
have been troubled until I eventually changed my
advice concerning average motions, having accepted
the manifest secular inequality of the motions. (I
came to this conclusion on June 18, 1624.)

• Kepler tries to introduce secular equations, with great difficulty:
◦ assumes that the Earth’s motion is uniform over all centuries;
◦ keeps the eccentricites constants, as measured by Tycho Brahe;
◦ attempts to modify the aphelion;

• Successful (partially) only for the observations reported by Ptolemy.



A theological constraint

• The configuration of the planets at creation time:
◦ Common opinion at Kepler’s time: the world

was created around 4000 BC (based on Gene-
sis);

◦ Kepler’s hypotesis: the planets must have been
created in a privileged configuration;

◦ Kepler’s calculation: the creation date is july
24, 3993;

◦ at that time the planets were very close to the
cardinal points of the orbit of the Earth.

Certe non temere Deus instituit motus, sed
ab uno quodam certo principio et illustri stel-
larum conjunctione, et in initio zodiaci, quod
creator per inclinationem Telluris domicilii
nostri effinxit, quia omnia propter hominem.

It is certain that God did not establish the motions in-
considerately, but from one well definite beginning and
a privileged configuration of stars, and at the beginning
of the zodiac, which has been moulded by means of the
inclination of the Earth, our house, because everything
has been created for the human beings.

(Mysterium Cosmographicum, ch. XXIII)



The conclusions of Kepler

At cum ex his epochis computarem postea
Waltherianas et Regiomontani observationes
exque iis appareret clarissime, Y motus indigere
æquatione seculari, eoque frustra nos medium
affectare inter longe distantes, si inter se pu-
gnent, nec in unam certis vicinis observationi-
bus confirmatam commensurationem se cogi pa-
tiantur; (. . .)

Moreover, using their epochs I have calculated the ob-
servations of Walther and Regiomontanus, and from
them undoubtedly appears that the motion of Saturn
is affected by a secular equation. Thus it is vain that
we try to find an average between very distant obser-
vations, if they fight together and do not accept to be
represented by a definite proportion confirmed by reli-
able and close observations; (. . .)

Nam quod Tychonicum attinet, videor ex oppo-
sitionibus acronychiis per totam triacontaëderis
periodum jam sentiscere effectum æquationis
secularis. Id autem fieri solet non in æquatione
maxima, tunc enim quantitas consistit, insensi-
bili existente varietate, sed in æquatione prope
nulla, tunc enim desinente adjectoria, incipiente
subtratoria, vel e contrario, quantum potest
maxima sentitur.

Concerning Tycho’s time indeed it seems to me that
considering achronichous oppositions over a complete
period of thirty years the effect of a secular equation
begins to be perceived. This however usually does not
happen for a maximal equation, since in that case the
quantity remains almost constant due to an insensi-
ble change, but it rather happens to be close to a null
value, when the quantities to be added before and to be
subtracted after, or the contrary, reach the maximum
attainable.

(Consideratio observationum Regiomontani et Waltheri.)

• Kepler’s opinion: we should accumulate observations over many centuries, so as to determine the secular
equations to be added.

There is still a lot of work for the future.



After Kepler

• The question regarding the great inequality:
◦ investigated by Newton, Halley, D’Alembert, Lalande, Euler, Boskovich, Lagrange, Laplace (among

others);
◦ the solution of Laplace (1785): a perturbation with period ∼ 900 years, due to closeness to 5 : 2

resonance.

• The development of perturbation theory:
◦ too many people . . . (we know).

• The hurricane Poincaré:
◦ the discovery of chaos (∼ 1890),
◦ essentially forgotten for some 70 years.

• The rediscovery of chaos in Astronomy:
◦ Contopoulos (∼ 1960), Hénon and Heiles (1964), . . .
◦ . . . well, we all know the story . . . it’s matter of the last 60 years . . .

What about the search of Kepler for a perfect world?

May try many answers possibly located between two extrema . . .



Our theory is perfect;

the world is wrong.

Then I would feel sorry for the dear Lord. The theory is correct anyway. (A. Einstein)



Our theory is perfect;

the world is wrong.

Then I would feel sorry for the dear Lord. The theory is correct anyway. (A. Einstein)

or

The world is perfect;

what is wrong is our idea of perfection.



Thanks for

your attention!

(With my apologies)

Drawings by Cristina Giorgilli


