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Abstract. In this paper we study the complexity of some size constrained clustering problems with
normLp. We obtain the following results:

(i) A separation property for the constrained 2-clustering problem. This implies that the optimal
solutions in the 1-dimensional case verify the so-called “String Property”;

(ii ) The NP-hardness of the constrained 2-clustering problem for every normLp (p > 1);

(iii ) A polynomial time algorithm for the constrained 2-clustering problem in dimension 1 for every
normLp with integerp. We also give evidence that this result cannot be extended tonormLp

with rational non-integerp;

(iv) The NP-hardness of the constrained clustering problem in dimension 1 for every normLp

(p ≥ 1).

Keywords: clustering, size constraints, NP-hardness
Mathematics Subject Classification (2000): 68Q25, 68T10

1. Introduction

Clustering or cluster analysis [9] is a method in unsupervised learning and one of the most used tech-
niques in statistical data analysis. Clustering has a wide range of applications in many areas like pattern
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recognition, medical diagnostics, data mining, biology, market research and image analysis among oth-
ers. A cluster is a set of data points that in some sense are similar to each other, and clustering is a
process of partitioning a data set into disjoint clusters. In distance clustering, the similarity among data
points is obtained by means of adistancefunction.

Distance clustering is a difficult problem. For an arbitrarydimensiond the problem is NP-hard even
if the numberk of clusters equals2 [2]; the same occurs ifd = 2 andk is arbitrary [13]. For the Euclidean
distance, a well-known heuristic is Lloyd’s algorithm [11,12], also known as thek-Means Algorithm;
since this is a heuristic procedure, there is no guarantee that it converges to the global optimum. This
algorithm is usually very fast, but it can require exponential time in the worst case [16].

In real-world problems, often people have some informationon the clusters: incorporating this
information into traditional clustering algorithms can increase the clustering performance. Problems
that include background information are calledconstrained clusteringproblems and are divided in two
classes. On the one hand, clustering problems with instance-based constraints typically comprise a set
of must-link constraints or cannot-link constraints [18],defining pairs of elements that must be included,
respectively, in the same cluster or in different clusters.On the other hand, clustering problems with
cluster-based constraints [3, 15] incorporate constraints concerning the size of the possible clusters. Re-
cently, in [19] cluster size constraints are used for improving clustering accuracy; this approach, for
instance, allows one to avoid extremely small or large clusters in standard cluster analysis.

In this paper we study distance clustering with cluster sizeconstraints (constrained clustering for
short), mainly in the 1-dimensional case. Oncep ≥ 1 is fixed, given a setX of n reals, an integer
k > 1 andk integersm1,m2, ...,mk of size constraints, the problem consists in finding ak-partition
{A1, A2, ..., Ak} of X with |A1| = m1, ..., |Ak | = mk, that minimizes the objective function

W (A1, A2, ..., Ak) =
k∑

i=1

∑

x∈Ai

|x− ci|p

whereci is the centroid ofAi, i.e. ci = argminµ
∑

x∈Ai
|x− µ|p.

We prove that an optimal partition{A1, A2, ..., Ak} for this problem verifies the so-calledString Prop-
erty, i.e. eachAi is a set of consecutive reals of the instance set X. The StringProperty has previously
been proved in the particular case of1-dimensional clustering with Euclidean distance(p = 2) in [5] and
extended to1-dimensional clustering withp > 1 in [14]. We obtain this result as a particular case of a
more general separation property of the optimal solutions in the multidimensional case.

We use the string property for obtaining a polynomial time algorithm of the constrained 2-clustering
in dimension 1 whenp is integer. On the contrary, we show that this problem in the multidimensional
case is NP-hard. Also we briefly discuss the case of non-integer rationalp, showing that forp = 3/2
even the simpler problem of centroid localization is related to the open problem of determining the
complexity of SQRT-Sum, i.e. deciding whether

√
a1+ ...+

√
aq >

√
b1+ ...+

√
br for positive integers

a1, ..., aq , b1, ..., br [6, 1].
Finally we show that, even in the 1-dimensional case, the size constrained clustering problem is NP-

hard for everyp. It should be observed that in dimension 1 the clustering problem (without constraints)
is solvable in polynomial time at least forp = 2.

This paper is organized as follows: in Section 2 we set the formal statement of the problem, in Section
3 we show some properties about the separation of the clusters in the optimal solutions, and in Section
4 we demonstrate the String Property for size constrained clustering. In Section 5 we give a hardness
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result concerning the size constrained 2-clustering problem, in Section 6 we discuss the complexity of
the constrained 2-clustering in the 1-dimensional case, while in Section 7 we prove the NP-hardness of
the size constrained clustering in dimension 1.

2. Definitions and preliminaries

We now introduce some basic notions and preliminary results. Hereafter, for a positive integerd,
we consider the spaceRd equipped with thep-norm denoted by‖ · ‖p, with fixed p ≥ 1, where

‖(α1, α2, ..., αd)‖p = (
∑ |αi|p)

1

p .
Let X = {x1, x2, ..., xn} ⊂ Rd. A k-clusteringis ak-partition ofX, i.e. a family{A1, A2, ..., Ak}

of k nonempty subsets ofX such that∪k
i=1Ai = X andAi ∩ Aj = ∅, for i 6= j. EveryAi is called a

cluster. Thep-centroid(or simplycentroidwhenp is clearly understood)CA of a clusterA ⊆ X is

CA = argmin
µ∈Rd

∑

x∈A

‖x− µ‖pp

If p > 1 it is well-known that the centroid is unique; in particular when p = 2 the centroid is the
meanCA = (

∑

x∈A x)/|A|. In the casep = 1 we can have different centroids; one of them is the
componentwise median. ThecostW (A) of a clusterA is

W (A) =
∑

x∈A

‖x− CA‖pp (1)

while thecostof a k-clustering{A1, A2, ..., Ak} is W (A1, A2, · · · , Ak) =
∑k

1
W (Ai). The classical

Clustering Problemis formulated as follows.

Definition 1. (Clustering Problem)
Given a point setX = {x1, x2, ..., xn} ⊂ Rd and an integerk > 1, find ak-clustering{A1, A2, ..., Ak}
that minimizes the cost

W (A1, A2, · · · , Ak) =

k∑

1

W (Ai).

In this paper we are interested in a version of clustering problem, where the cardinalities of the clusters
are constrained. Formally, the problem can be stated as follows:

Definition 2. (Size Constrained Clustering Problem (SCC))
Given a point setX = {x1, x2, ..., xn} ⊂ Rd, an integerk > 1 andk positive integersm1,m2, ..., mk

such that
∑k

1
mi = n, find ak-clustering{A1, A2, ..., Ak} with

|Ai| = mi for i = 1, ..., k

that minimizes the cost

W (A1, A2, · · · , Ak) =

k∑

1

W (Ai).
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We stress that in the SCC problem the integersn, k andd are part of the instance. On the contrary, ifd is
fixed the problem is called SCC-d; if k is fixed the problem is calledk-SCC; furthermore, if bothd and
k are fixed the problem is calledk-SCC-d.

We will classify the problems of kind SCC-1 ork-SCC-1 by means of the classical complexity
classes [8]. In this regard, we suppose thatX = {x1, ..., xn} is composed by positive integersx1 <
x2 < ... < xn represented in binary notation, whose size is

∑ |xk|b, where|xk|b is the number of bits of
xk. Observe that this is equivalent to considering{x,..., xn} ⊂ Q, the set of rational numbers, since the
solution of the problems is invariant to translating and scaling. In fact, the instancesX1 = {x1, ..., xn},
X2 = {x1 + c, ..., xn + c}, X3 = {cx1, ..., cxn} do admit the same optimal solution.

3. Separation results

In this section we prove a separation property for the optimal solution of 2-SCC. We first need a simple
lemma stating that ifp > 1 then the centroid of a set of points moves whenever one of the points changes.
The property is not true in the casep = 1.

Lemma 1. Given n + 1 realsx1, x2, ..., xn, x̄1 and p > 1, let C(x1, x2, ..., xn) be the centroid of
{x1, x2, ..., xn} andC(x̄1, x2, ..., xn) be the centroid of{x̄1, x2, ..., xn}.
If x̄1 6= x1, thenC(x1, x2, ..., xn) 6= C(x̄1, x2, x3, ..., xn).

Proof:
Let’s suppose thatC(x1, x2, ..., xn) = C(x̄1, x2, x3, ..., xn) = C. SettingF (µ) =

∑

i |xi − µ|p, since
F (µ) is strictly convex [14], it follows thatF ′(C) = 0 =

∑
sgn(xi −C)|xi −C|p−1. Analogously, we

have0 = sgn(x̄1 −C)|x̄1 −C|p−1 +
∑n

2
sgn(xi −C)|xi −C|p−1. This implies thatsgn(x̄1 −C)|x̄1 −

C|p−1 = sgn(x1 −C)|x1 − C|p−1, that isx1 = x̄1. ⊓⊔

Corollary 2. Fixed p > 1, let C be the centroid of{x1, x2, ..., xn} ⊂ Rd and C̄ the centroid of
{x̄1, x2, x3, ..., xn} ⊂ Rd, wherex̄1 6= x1. Then:

n∑

i=1

‖xi − C‖pp <
n∑

i=1

‖xi − C̄‖pp

Proof:
Sincex̄1 6= x1 there is a component (sayl, with 1 ≤ l ≤ d) of x1 different from the corresponding
component of̄x1. By Lemma 1, thel-component ofC is different from thel-component ofC̄, hence
C 6= C̄. SinceC is the unique minimum point of the function

∑

i ‖xi − µ‖pp, the thesis follows. ⊓⊔

Proposition 3. Fixed p > 1, let {A,B} be an optimal solution of a 2-SCC problem on the instance
{x1, x2, . . . , xn} ⊂ Rd with |A| = k. If xi ∈ A andxj ∈ B, it holds:

‖xi − CA‖pp + ‖xj − CB‖pp < ‖xi − CB‖pp + ‖xj − CA‖pp
Proof:
Since{A,B} is a partition, thenxi 6= xj . Suppose by contradiction that:

‖xi − CA‖pp + ‖xj − CB‖pp ≥ ‖xi − CB‖pp + ‖xj − CA‖pp (2)
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Then, denoting withFX(µ) =
∑

x∈X ‖x− µ‖pp, we have:

W (A,B) = FA(CA) + FB(CB)

= FAr{xi}(CA) + ‖xi − CA‖pp + FBrxj
(CB) + ‖xj − CB‖pp

≥ FAr{xi}(CA) + ‖xj − CA‖pp + FBr{xj}(CB) + ‖xi − CB‖pp (by (2))

= FAr{xi}∪{xj}(CA) + FBr{xj}∪{xi}(CB)

> FAr{xi}∪{xj}(CAr{xi}∪{xj}) + FBr{xj}∪{xi}(CBr{xj}∪{xi}) (by Cor. 2)

= W (Ar {xi} ∪ {xj}, B r {xj} ∪ {xi})

This is a contradiction, sinceA 6= Ar{xi}∪{xj}, but |A| = |Ar{xi}∪{xj}| = k. This would imply
that{A,B} is not optimal. ⊓⊔

Theorem 4. (Separation Result)
Fixedp > 1, let {A,B} be an optimal solution of a 2-SCC on the instance{x1, x2, ..., xn} ⊂ Rd with
size constraint|A| = k. Then we have that:

1. CA 6= CB

2. there existsc ∈ R such that:

x ∈ A implies‖x− CA‖pp − ‖x− CB‖pp < c

x ∈ B implies‖x− CA‖pp − ‖x− CB‖pp > c

Proof:
We notice that, by Proposition 3, ifxi ∈ A andxj ∈ B it holds:

‖xi − CA‖pp − ‖xi − CB‖pp < ‖xj − CA‖pp − ‖xj − CB‖pp (3)

Sincexi 6= xj it follows thatCA 6= CB , otherwise (3) yields0 < 0. Let α = maxx∈A ‖x − CA‖pp −
‖x − CB‖pp andβ = minx∈B ‖x − CA‖pp − ‖x − CB‖pp. By (3) we obtainα < β. Settingc = α+β

2
, it

holdsα < c < β, hence:

x ∈ A implies‖x− CA‖pp − ‖x− CB‖pp ≤ α < c

x ∈ B implies‖x− CA‖pp − ‖x− CB‖pp ≥ β > c
⊓⊔

The previous theorem states that, inRd the hypersurface of equation

‖x− CA‖pp − ‖x− CB‖pp = c (4)

is well-defined and strictly separates the setsA andB of an optimal solution. In the particular case
p = 2, the hypersurface becomes a hyperplane; in fact we have that(4) reduces to

〈x, (CB −CA)〉 =
c+ ‖CB‖22 − ‖CA‖22

2

which is the equation of a hyperplane inRd (here〈·, ·〉 denotes the scalar product).
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4. One-dimensional case: String Property

In this section we consider the cased = 1, i.e. X = {x1, x2, ..., xn} wherexi ∈ R for eachi, and we
show a structural property (String Property) of the optimalsize constrainedk-clustering. In this way we
extend to the constrained clustering a property observed inthe clustering problem by Fisher [5] in the
casep = 2, and Novick [14] in the casep > 1.

Definition 3. A k-clustering{A1, A2, ..., Ak} of X = {x1, x2, ..., xn} is said to have theString Property
iff for all xi, xj andxl, and for allAs, if xi, xj ∈ As andxi < xl < xj thenxl ∈ As.

In the case of1-dimensional clustering with euclidean norm (p = 2), it is proved that any optimal solution
has the String Property [5]. In [14] this result is extended to every norm‖ · ‖p with p > 1.

In this section we further extend this result to the1-dimensional size constrained clustering problem.
First of all, we treat the case of1-dimensional 2-SCC for anyp > 1.

Proposition 5. Let {A,B} be an optimal2-clustering for the2-SCC problem on instance{x1, x2,
..., xn} with |A| = k. Then{A,B} has the String Property.

Proof:
Consider the functionf(x) = |x−CA|p−|x−CB|p, whereCA, CB are the centroids ofA,B respectively.
By Theorem 4 there existsc such thatx ∈ A impliesf(x) < c, while x ∈ B impliesf(x) > c. Now,
supposeCA < CB. We have that:

if x > CB thenf ′(x) = p((x− CA)
p−1 − (x− CB)

p−1) > 0

if CB ≥ x > CA thenf ′(x) = p((x− CA)
p−1 + (CB − x)p−1) > 0

if CA ≥ x thenf ′(x) = p(−(CA − x)p−1 + (CB − x)p−1) > 0

Therefore f(x) is increasing; moreover it can be easily observed that
limx→+∞ f(x) = +∞ andlimx→−∞ f(x) = −∞. Sincef(x) is continuous, we conclude that there is
a uniquex∗ such thatf(x∗) = c; moreover:x ∈ A impliesx < x∗, x ∈ B impliesx > x∗. This means
that, under the assumptionCA < CB, {A,B} has the String Property. Analogous reasoning applies
whenCA > CB, thus yielding the String Property again. ⊓⊔

We notice that the two half-linesH = {x|f(x) < c} andH̄ = {x|f(x) > c} are disjoint sets; further-
moreA is contained in one half-line, whileB is contained in the other one. We now extend the previous
result to thek-SCC.

Theorem 6. Let {A1, A2, ...Ak} be an optimalk-clustering for SCC on instanceX = {x1, x2, ..., xn}
with constraints{m1,m2, ...,mk}. Then{A1, A2, ...Ak} has the String Property.

Proof:
Let us reason by induction onk ≥ 2. The casek = 2 is clearly solved by Proposition 5. Fork > 2,
given an optimalk-clustering{A1, A2, ..., Ak}, for anyj we denotevj = minAj , Vj = maxAj , and
setc = min vj = vℓ. Let us consider any indexi 6= ℓ; obviouslyvi > vℓ. We want to show that also
vi > Vℓ holds. In fact, consider the2-SCC problem on instanceAℓ ∪ Ai with constraints{mℓ,mi}; its
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optimal solution{Aℓ, Ai} verifies the String Property because of Proposition 5, and henceVℓ ≤ vi. As
a consequence, everyAi(i 6= ℓ) is contained in the half-lineH = {x|x > Vℓ}, whileAℓ is contained in
the complementary half-lineHC = {x|x ≤ Vℓ}.
Let’s now consider the optimal solution{A1, ..., Aℓ−1, Aℓ+1, ..., Ak} to the(k− 1)-SCC problem on in-
stanceX rAℓ with constraints{m1, ...,mℓ−1,mℓ+1, ..., .mk}. By induction hypothesis,{A1, ..., Aℓ−1,
Aℓ+1, ..., Ak} verifies the String Property, and hence by the discussion above also{A1, ..., Aℓ, ..., Ak}
does. ⊓⊔

5. NP-hardness of constrained 2-clustering problem

In order to highlight the usefulness of the String Property in the design of algorithms for the 1-dimensional
constrained clustering, let’s consider the following problem for a fixedp > 1:

Definition 4. (Half-Partition (HP))
Givend andX = {x1, ..., x2n} ⊂ Nd, find the optimal 2-clustering{A,B} of X with |A| = |B| = n.

Whend = 1, we call the problem HP-1. HP-1 is solvable in polynomial time for anyp > 1. Indeed, given
the realsx1, x2, ..., x2n, the unique partition{A,B} that verifies the String Property with|A| = |B| = n
is {{x1, ..., xn}, {xn+1, ..., x2n}}, which hence turns out to be the optimal solution. It followsthat, for
anyp > 1:

Fact 7. HP-1 is solvable in polynomial time (for anyp > 1).

On the contrary, we show that the HP problem is NP-hard. This implies that also 2-SCC is NP-hard.

Theorem 8. HP is NP-hard (for anyp > 1).

Proof:
We prove the result by a reduction from the Minimum BisectionProblem, which is known to be NP-hard
[7]. This problem consists of determining, for an undirected graphG = (V,E) with |V | = 2n, a subset
A ⊂ V of cardinality|A| = n such that the value

cut(A) = |{ℓ ∈ E | ℓ = {x, y}, x ∈ A, y 6∈ A}|

is minimum.
In order to construct the reduction, letG = (V,E) be an undirected graph withV = {1, 2, . . . , 2n}

and define, for everyv ∈ V , the arrayXv ∈ RE with indices inE, such that

Xv [ℓ] =

{

1 if v ∈ ℓ

0 otherwise
(5)

Thus, the family of arrays{X1,X2, . . . ,X2n} forms an instance of the Half-Partition problem for an
arbitraryp > 1.

GivenA ⊂ V with |A| = n, let us compute its centroidCA. For everyℓ ∈ E, we have the following
cases:
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1. If both vertices ofℓ are inA then

CA[ℓ] = argmin
x

{2(1 − x)p + (n− 2)xp} =
1

1 +
(
n−2

2

) 1

p−1

= αn

2. If only one vertex ofℓ is inA then

CA[ℓ] = argmin
x

{(1 − x)p + (n− 1)xp} =
1

1 + (n− 1)
1

p−1

= βn

3. If no vertices ofℓ is inA thenCA[ℓ] = 0.

Now, given a 2-clustering{A,B} with |A| = |B| = n, the value of objective functionW (A,B) can be
written in the form

W (A,B) =
∑

ℓ∈E




∑

i∈A

|Xi[ℓ]− CA[ℓ]|p +
∑

j∈B

|Xj [ℓ]− CB [ℓ]|p




If ℓ = {i, j} with i ∈ A andj ∈ B then we have
∑

i∈A

|Xi[ℓ]− CA[ℓ]|p +
∑

j∈B

|Xj [ℓ]− CB[ℓ]|p = 2[(1 − βn)
p + (n− 1)βp

n]

On the contrary, ifℓ = {i, j} with either{i, j} ⊂ A or {i, j} ⊂ B, then
∑

i∈A

|Xi[ℓ]− CA[ℓ]|p +
∑

j∈B

|Xj [ℓ]− CB [ℓ]|p = 2(1 − αn)
p + (n− 2)αp

n

As a consequence, recalling thatcut(A) is the number of edges with a vertex inA and a vertex inB, we
obtain

W (A,B) = cut(A)2[(1 − βn)
p + (n− 1)βp

n] + (|E| − cut(A))[2(1 − αn)
p + (n− 2)αp

n]

= |E| · g(n, p) + cut(A) · s(n, p) (6)

whereg(n, p) does not depend on{A,B} and

s(n, p) = 2[(1− βn)
p + (n− 1)βp

n]− 2(1 − αn)
p − (n− 2)αp

n

Now, for any fixedp > 1, asn tends to+∞ we have

αn ∼
(
2

n

) 1

p−1

, βn ∼ n
− 1

p−1

and hence
s(n, p) ∼ (p− 1)

(

2
p

p−1 − 2
)

· n− 1

p−1 > 0

Therefore, from equation (6), ifn is sufficiently large we obtain

argmin
|A|=n

W (A,B) = argmin
|A|=n

cut(A)

⊓⊔
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6. Complexity of constrained 2-clustering problem in dimension 1

In the previous section we have shown that 2-SCC is NP-hard. Here we prove that 2-SCC-1 is solvable
in polynomial time ifp ≥ 1 is an integer. 2-SCC-1 is an extension of HP-1: while any instance of
HP-1 admits a unique 2-clustering verifying the String Property, every instance of 2-SCC-1 admits two
2-clusteringsπ1, π2 verifying the String Property. For finding the solution, we have to compareW (π1)
andW (π2). The comparison is immediate ifp = 1 or p = 2, as in these cases the centroids can be easily
computed. Ifp is an integer greater than 2, the problem seems to be more difficult.

In this regard, we consider a slight extension of the 2-SCC-1problem obtained by considering the
integerp, given in unary, as part of the instance. More precisely, we consider the problemUniform 2-
SCC-1: given a setX of positive integersx1 < x2 < ... < xn, the size constraints{s, n − s} and an
integerp > 2 in unary notation, find a 2-clustering{A1, A2} of X with |A1| = s, |A2| = n − s that
minimizes the cost

∑

xi∈A1

‖xi − C1‖pp +
∑

xj∈A2

‖xj − C2‖pp

whereC1 andC2 are thep-centroids ofA1 andA2 respectively.
We solve this problem by using approximation techniques; inthis regard, we recall a useful result

about the solutions of a square algebraic system appeared in[4].

Theorem 9. (Canny’s Gap)
Let (x1, x2, ..., xN ) be a solution of an algebraic system ofN equations inN unknowns having a finite
number of solutions, with maximum degreed and with coefficients inZ smaller or equal toM in absolute
value. Then, for eachi = 1, ..., N , eitherxi = 0 or |xi| > (3Md)−NdN .

Given a setY of integersy1 < y2 < ... < ym, let j be the index such that thep-centroidC of Y verifies
yj ≤ C < yj+1. Fixedε (0 < ε < 1

2
), we callε-approximationof C a numberC̄ with C ≤ C̄ ≤ C + ε

if yj+1 − C > C − yj, andC − ε ≤ C̄ ≤ C otherwise. In any case, it holds|C̄ − C| ≤ ε.

Lemma 10. Given an integerp > 2 andm integers1 ≤ y1 < y2 < ... < ym, letC be thep-centroid of
Y = {y1, ..., ym} andW (Y ) be the cost function defined in (1). Then, in polynomial time with respect
to p+ ln ym, one can compute polynomialsA(x) =

∑p−1

0
aix

i andB(x) =
∑p

0
bix

i such that:
1. C is a root ofA(x);
2. W (Y ) = B(C);
3. |ai|, |bi| ≤ m · (ym + 1)p for all i = 1, ...,m

Moreover, for anyε > 0, it is possible to compute in polynomial time with respect top + log ym
ε

an
ε−approximationC̄ of C such that

4. |B(C)−B(C̄)| ≤ ε · yp−1
m · p ·m.

Proof:
We know that there isj such thatyj ≤ C < yj+1. To compute such aj note that, sincep > 2, function
D(x) =

∑m
i=1

|x − yi|p admits first derivative in allR and every valueD′(yi) is easily computable for
eachi. SinceD(x) is strictly convex, the required coefficient is the uniquej such thatD′(yj) ≤ 0 and
D′(yj+1) > 0. The computation time is clearly polynomial with respect top+log ym. As a consequence
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one can also compute the polynomials:

B(x) =

j
∑

i=1

(x− yi)
p +

m∑

i=j+1

(yi − x)p =

p
∑

0

bix
i

A(x) =
1

p
B′(x) =

j
∑

i=1

(x− yi)
p−1 −

m∑

i=j+1

(yi − x)p−1 =

p−1
∑

0

aix
i

The centroidC satisfiesA(C) = 0; moreoverW (Y ) = B(C). Observe now that, denoting with
[xi]B(x) the coefficient ofxi in B(x), we have:

|bi| = |[xi]B(x)| ≤ [xi]

m∑

h=1

(yh + x)p ≤
m∑

h=1

(yh + 1)p ≤ m(ym + 1)p

|ai| ≤ [xi]

m∑

h=1

(yh + x)p−1 ≤
m∑

h=1

(yh + 1)p−1 ≤ m(ym + 1)p−1 ≤ m(ym + 1)p

For computing anε−approximationC̄, remark that for allx such thatyj ≤ x < yj+1, it holdsA(x) < 0

if x < C, whileA(x) > 0 wheneverx > C. Therefore, we use⌈log yj+1−yj
ε

⌉ ≤ ⌈log ym
ε
⌉ many steps of

a binary search for localizingC, i.e. computing an interval[α, β] such thatα ≤ C ≤ β andβ−α ≤ ε. If

A
(
yj+yj+1

2

)

< 0 then we set̄C = α, otherwiseC̄ = β. The computation time at every step is bounded

by a polynomial inp+ log ym
ε

.
To prove the last point we can write|B(C)−B(C̄)| as:

∣
∣
∣
∣
∣
∣





j
∑

1

(C − yi)
p +

m∑

j+1

(yi − C)p



−





j
∑

1

(C̄ − yi)
p +

m∑

j+1

(yi − C̄)p





∣
∣
∣
∣
∣
∣

=

=

∣
∣
∣
∣
∣
∣





j
∑

1

(C − yi
︸ ︷︷ ︸

u

)p − (C̄ − yi
︸ ︷︷ ︸

ū

)p



+





m∑

j+1

(yi −C
︸ ︷︷ ︸

−u

)p − (yi − C̄
︸ ︷︷ ︸

−ū

)p





∣
∣
∣
∣
∣
∣

Fixed the indexi in the first summation, denoteu = C − yi and ū = C̄ − yi. Since|u|, |ū| ≤ ym, it
holds: |up− ūp| = |(u− ū)(up−1+up−2ū+ ...+ ūp−1)| ≤ ε ·p ·yp−1

m . Observe that every single term in
the last parenthesis isuhūp−1−h = (C − yi)

h(C̄ − yi)
p−1−h ≤ yp−1

m , thus yielding|up − ūp| ≤ εpyp−1
m .

On the other hand, when fixing the indexi in the second summation, the same upper bound is obtainable.
We can conclude that|B(C)−B(C̄)| ≤ mεpyp−1

m . ⊓⊔

We are ready now to state the main result of this section.

Theorem 11. The Uniform 2-SCC-1 problem is solvable in polynomial time.

Proof:
Given a setX of positive integersx1 < x2 < ... < xn and constraints{s, n − s}, because of the String
Property the optimal solution of the problem must be chosen between the two partitions

π1 = {A,B} with A = {x1, ..., xs}, B = {xs+1, ..., xn}
π2 = {D,E} with D = {x1, ..., xn−s}, E = {xn−s+1, ..., xn}
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Thus, it is sufficient to calculate the costs of the clustersA,B,D,E and check whether

W = W (π1)−W (π2) = W (A) +W (B)−W (D)−W (E)

is positive, null or negative.
To this end, we can consider the system of equations:

{

Ai(zi) = 0 (for all i = 1, ..., 4)

w = B1(z1) +B2(z2)−B3(z3)−B4(z4)

with polynomialsAi, Bi (i = 1, ..., 4) obtained according to Lemma 10 separately for each cluster
A,B,D,E respectively. This is a system of5 algebraic equations of degree at mostp in 5 unknowns
z1, ..., z4, w, which is satisfied by the solution(C1, C2, C3, C4,W ), whereCi’s (i = 1, ..., 4) are cen-
troids ofA,B,D,E respectively. By Lemma 10, the coefficients of the polynomials in the system are
bounded byM = n(xn + 1)p. Hence, by applying Canny’s Gap Theorem, eitherW = 0 or |W | > δ
where

δ = [3n(xn + 1)pp]−5p5

Thus, if we find an approximation̄W of W up to δ
3

we can conclude:
if W̄ < − δ

2
thenW < 0 andπ1 is the optimal solution;

if W̄ > δ
2

thenW > 0 andπ2 is the optimal solution;
if |W̄ | ≤ δ

2
thenW = 0 and bothπ1 andπ2 are optimal solutions.

W̄ can be obtained by computinḡW = B1(C̄1) + B2(C̄2) − B3(C̄3) − B4(C̄4), whereC̄i is anε-
approximation ofCi, with ε that guarantees|W − W̄ | ≤ δ

3
. By the last point of Lemma 10, we know

that:
|W − W̄ | ≤ 4εp · n(xn)p−1

It is sufficient to chooseε such that

4εpn(xn)
p−1 <

δ

3
=

1

3
[3n(xn + 1)pp]−5p5

Then we can approximateCi up to thes-th binary digit after the point, whereε = 2−s. By the previous
equation we have

s = O(p6 log xn).

The approximate centroids̄Ci (i = 1, ..., 4) can be obtained in polynomial time as in Lemma 10, and
the computation of̄W requires a polynomial number of arithmetic operations on numbers of polynomial
size. ⊓⊔

The previous method cannot be extended to the case of rational non-integerp. To put in evidence the
subtleties of this case, we briefly discuss the problem of localizing thep-centroid.

Definition 5. The problem of localizing thep-centroid (p-LC) consists of deciding, for a setX of inte-
gers{x1, ..., xn} and an integerh, whetherC > h, whereC is thep-centroid ofX.

It is easy to observe that the well-known problem SQRT-Sum ispolynomially reducible to3
2
-LC. SQRT-

Sum requires to decide, given positive integersa1, ..., aq, b1, ..., br, whether
√
a1 + ...+

√
aq >

√
b1 +

...+
√
br.
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Theorem 12. SQRT-Sum is polynomially reducible to3
2
-LC.

Proof:
With the instancea1, ..., aq , b1, ..., br of SQRT-Sum we associate the instanceX = {x1, ..., xq+r} andh
of 3

2
-LC where:

1)h = max aj 2)xi = h− ai for i ≤ q 3)xq+j = h+ bj for 1 ≤ j ≤ r

SettingF (µ) =
∑q+r

i=1
|xi − µ| 32 , sinceF (µ) is strictly convex, we have:

1) F ′(µ) is increasing function;
2) if C is the 3

2
-centroid ofX, thenF ′(C) = 0.

Observe now that

2

3
F ′(h) =

∑

xi≥h

(xi − h)
1

2 −
∑

xi<h

(h− xi)
1

2 =
√

b1 + ...+
√

br −
√
a1 − ...−√

aq

We hence conclude that:

h < C iff F ′(h) < F ′(C) iff
√
a1 + ...+

√
aq −

√

b1 − ...−
√

br > 0

This proves the reduction. ⊓⊔

The characterization of the computational complexity of SQRT-Sum was proposed as open problem in
[6]; despite the efforts, the best-known result, due to Allender et al. [1], puts SQRT-Sum in CH, i.e. the
Counting Hierarchy introduced in [17]. Theorem 12 implies that, if 3

2
-LC were solvable in polynomial

time, then SQRT-Sum∈P would hold, despite still today a major open problem is to decide whether
SQRT-Sum is solvable in NP.

7. NP-hardness of constrained clustering problem in dimension 1

Because of the String Property, the clustering problems in dimension 1 can be solved in polynomial
time by a simple dynamic programming technique (in case of Euclidean norm). On the contrary, in this
section we prove that the corresponding 1-dimensional constrained clustering (SCC-1) is NP-hard, for
everyp ≥ 1.

First of all, we reformulate SCC-1 as a decision problem.

Definition 6. (SCC-1: decision version)
Given a setX of n integersx1 < x2 < ... < xn, positive integersm1, ...,mk such that

∑
mi = n, and a

positive integerλ (called threshold), decide whether there exists ak-clustering{A1, ..., Ak} of X, with
constraints|Ai| = mi (i = 1, ..., k), such thatW (A1, ..., Ak) < λ.

We first notice that the clustering problem without constraints is known to be solvable in polynomial
time whenp = 2. We prove that adding the constraints makes the problem hard. The proof is based on a
reduction from the 3-Partition problem.
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Definition 7. (3-Partition Problem)
Given a setP = {p1, ..., p3m} of positive integers whose sum ismB, such that eachpi satisfiesB/4 <
pi < B/2, decide whether there exists a partition{P1, ..., Pm} of P such that, for eachi = 1, ...,m,
∑

x∈Pi
x = B.

An equivalent version of this problem has been proved to be NP-complete in [10]; it remains NP-
complete even if the numbers inP are all bounded by a polynomial inm. The problem was originally
proved to be strongly NP-complete in [8] whenP is a multiset.

Theorem 13. SCC-1 is NP-hard (for anyp ≥ 1).

Proof:
We want to reduce 3-Partition to the decision version of SCC-1. With the instanceP = {p1, ..., p3m} of
3-Partition we associate the instance of SCC-1 (decision version) given byX = ∪m

1 Xj with constraints
{p1, ..., p3m} and thresholdλ = 3mB2p, whereXj = {Hj+h : h = 0, ..., B−1}, withH = 6mB2+B
andB =

∑
3m
i=1

pi/m. Now let’s show the correctness of this reduction.
A partition {A1, ..., A3m} of X is said to befine if for everyAi there isXj with Ai ⊆ Xj : the main

observation is that 3-Partition with instanceP admits a solution if and only if there is a fine partition
{A1, ..., A3m} of X s.t. |Ai| = pi for all i = 1, ..., 3m. In fact, let{P1, ..., Pm} be a partition ofP
satisfying

∑

x∈Pi
x = B; with everyPi = {pi1, pi2, pi3} we associate a partitionAi = {Ai1, Ai2, Ai3}

of Xi s.t. |Aij | = pij (j = 1, 2, 3), which is possible since
∑

x∈Pi
x = B = |Xi|; thus∪m

1 Ai is a fine
partition ofX satisfying the constraints{p1, ..., p3m}, since∪Pi = P . Suppose now that the partition
{A1, ..., A3m} of X is fine and satisfies the constraints|Ai| = pi, i = 1, ..., 3m. With everyXj we
associatePj = {|Ai| : Ai ⊆ Xj}: since

∑

x∈Pj
x = |Xj | = B, {P1, ..., Pm} verifies the instance

{p1, ..., p3m} of 3-Partition.
To prove the correctness of the reduction, it is sufficient toobserve that

{A1, ..., A3m} is a clustering of X with constraints {p1, ..., p3m} and cost
W (A1, ..., A3m) < λ iff {A1, ..., A3m} is fine with constraints{p1, ..., p3m}. Suppose{A1, ..., A3m} is
fine, thenW (A1, ..., A3m) =

∑
3m
i=1

W (Ai). For allAi there isXj s.t. Ai ⊆ Xj ; thereforeW (Ai) ≤
W (Xj) < Bp+1. In conclusion:W (A1, ..., A3m) =

∑
W (Ai) < 3mBp+1 ≤ 3mB2p = λ. Now

suppose{A1, ..., A3m} is not fine: there isAi containingx, y with x ∈ Xs, y ∈ Xt ands 6= t. Observe
that|x− y| is at leastH −B; if µ is thep-centroid ofAi, then either|x−µ| ≥ H−B

2
or |y−µ| ≥ H−B

2
.

It follows that

W (A1, ..., A3m) ≥ W (Ai) ≥ |x− µ|p + |y − µ|p

≥ (
H −B

2
)p = (3mB2)p ≥ 3mB2p = λ ⊓⊔

8. Conclusions

In this paper we have studied some algorithmic problems on distance clustering with cluster size con-
straints. We have emphasized some analogies and differences between clustering and constrained cluster-
ing. In particular, we have obtained separation results forthe optimal solutions that, in the 1-dimensional
case, imply the so-called String Property. In this way a well-know result in clustering is extended to
constrained clustering.
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As in the case of classical clustering, the String Property allows us to obtain exact efficient algorithms
for solving constrained 2-clustering in dimension 1, with norm Lp for integerp, while the problem
turns out to be NP-hard when the dimension is not fixed. Moreover, we have given evidence that the
method cannot be extended to the case of rational non-integer p. At last, we have shown that constrained
clustering is NP-hard even in dimension 1, while the corresponding problem in classical clustering is
solvable in polynomial time, at least with the Euclidean norm.

In this paper we have put the attention to exact algorithms. In this context, we leave open the problem
of finding efficient algorithms for constrainedk-clustering, for smallk > 1; in fact, separation results
seem to indicate that this kind of problems can be solved in polynomial time. Other open problems
are those of determining efficient approximation algorithms for constrained 2-clustering in arbitrary di-
mension or for constrained clustering in dimension 1. Finally, an interesting issue is the development
of “practical” heuristics, for the general constrained clustering, that play the same role ofk-Means or
k-Medoids in classical clustering.
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