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Abstract. In this paper we study the complexity of some size constchohgstering problems with
normL,. We obtain the following results:

(i) A separation property for the constrained 2-clusterirapfgm. This implies that the optimal
solutions in the 1-dimensional case verify the so-callewifi§ Property”;

(i) The NP-hardness of the constrained 2-clustering probtereviery norm’,, (p > 1);

(iii) A polynomial time algorithm for the constrained 2-clustgrproblem in dimension 1 for every
normL,, with integerp. We also give evidence that this result cannot be extendedra L,,
with rational non-integep;

(iv) The NP-hardness of the constrained clustering probleminrenision 1 for every nornd,

(p=1).
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1. Introduction

Clustering or cluster analysis [9] is a method in unsupediearning and one of the most used tech-
nigues in statistical data analysis. Clustering has a vadge of applications in many areas like pattern
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recognition, medical diagnostics, data mining, biologgrket research and image analysis among oth-
ers. A cluster is a set of data points that in some sense aikasim each other, and clustering is a
process of partitioning a data set into disjoint clustensdistance clusteringthe similarity among data
points is obtained by means oflsstancefunction.

Distance clustering is a difficult problem. For an arbitrdisnensiond the problem is NP-hard even
if the numberk of clusters equalg [2]; the same occurs if = 2 andk is arbitrary [13]. For the Euclidean
distance, a well-known heuristic is Lloyd’s algorithm [1112], also known as th&-Means Algorithm;
since this is a heuristic procedure, there is no guarantgettbonverges to the global optimum. This
algorithm is usually very fast, but it can require exporarime in the worst case [16].

In real-world problems, often people have some informatonthe clusters: incorporating this
information into traditional clustering algorithms carciease the clustering performance. Problems
that include background information are calleshstrained clusteringroblems and are divided in two
classes. On the one hand, clustering problems with instased constraints typically comprise a set
of must-link constraints or cannot-link constraints [1@3fining pairs of elements that must be included,
respectively, in the same cluster or in different clustedm the other hand, clustering problems with
cluster-based constraints [3, 15] incorporate conssaiahcerning the size of the possible clusters. Re-
cently, in [19] cluster size constraints are used for imprg\wclustering accuracy; this approach, for
instance, allows one to avoid extremely small or large ehssin standard cluster analysis.

In this paper we study distance clustering with cluster siaestraints (constrained clustering for
short), mainly in the 1-dimensional case. Once> 1 is fixed, given a sefX of n reals, an integer
k > 1 andk integersmy,mo, ..., my Of size constraints, the problem consists in finding-partition
{A1, Ag, ..., A} of X with |A1| = mq, ..., |Ax| = my, that minimizes the objective function

k
W(Al,A2, ,Ak) = Z Z |$ _ Ci|p

i=1 z€A;

wherec; is the centroid ofd;, i.e. ¢; = argmin,, > 4 [z — pfP.

We prove that an optimal partitiofA;, A,, ..., Ax } for this problem verifies the so-callegtring Prop-
erty, i.e. eachA4; is a set of consecutive reals of the instance set X. The SRiogerty has previously
been proved in the particular caseleflimensional clustering with Euclidean distaripe= 2) in [5] and
extended td -dimensional clustering witpp > 1 in [14]. We obtain this result as a particular case of a
more general separation property of the optimal solutiarté multidimensional case.

We use the string property for obtaining a polynomial tirgoathm of the constrained 2-clustering
in dimension 1 whem is integer. On the contrary, we show that this problem in thdtidimensional
case is NP-hard. Also we briefly discuss the case of nonénteggionalp, showing that forp = 3/2
even the simpler problem of centroid localization is redate the open problem of determining the
complexity of SQRT-Sum, i.e. deciding whethgt; + ...+, /a; > Vb1 + ...+ /b, for positive integers
Ay, ..., Aq, bl, ceey br [6, 1]

Finally we show that, even in the 1-dimensional case, thre&nstrained clustering problem is NP-
hard for everyp. It should be observed that in dimension 1 the clusteringlpro (without constraints)
is solvable in polynomial time at least fpr= 2.

This paper is organized as follows: in Section 2 we set the&bstatement of the problem, in Section
3 we show some properties about the separation of the dusténe optimal solutions, and in Section
4 we demonstrate the String Property for size constraingstading. In Section 5 we give a hardness
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result concerning the size constrained 2-clustering prablin Section 6 we discuss the complexity of
the constrained 2-clustering in the 1-dimensional casdevirh Section 7 we prove the NP-hardness of
the size constrained clustering in dimension 1.

2. Definitions and preliminaries

We now introduce some basic notions and preliminary resuliereafter, for a positive integet,
we consider the spacB? equipped with thep-norm denoted by - ||,, with fixed p > 1, where
1
H(alv a2, "'7ad)HP - (Z ’ai’p);'
Let X = {x1,29,...,2,} C R A k-clusteringis ak-partition of X, i.e. a family{A;, A, ..., A}
of & nonempty subsets of such thatJ¥ | A, = X andA; N A; = 0, fori # j. Every 4; is called a
cluster. Thep-centroid (or simply centroidwhenp is clearly understood)'4 of a clusterA C X is

C'4 = argmin Z lz — pllh
PER? L ep

If p > 1 itis well-known that the centroid is unique; in particulah@np = 2 the centroid is the
meanCy = (3_,c4)/|A|. Inthe casep = 1 we can have different centroids; one of them is the
componentwise median. TlestiV (A) of a clusterA is

W(A) =" llz—Call, 1)

€A

while thecostof a k-clustering{ A1, As, ..., Ax} iIs W (A1, Ag, -+ , Ag) = Z’f W (A;). The classical
Clustering Problems formulated as follows.

Definition 1. (Clustering Problem)
Given a point sei = {z1,zs, ...,z,} C R? and an integek > 1, find ak-clustering{ Ay, As, ..., A;}
that minimizes the cost

W(Ay, Ag, -+, Ap) =Y W (A).

In this paper we are interested in a version of clusterindplpra, where the cardinalities of the clusters
are constrained. Formally, the problem can be stated amsisil

Definition 2. (Size Constrained Clustering Problem (SCC))
Given a point seiX = {x1,z9,...,2,} C R? anintegerk > 1 andk positive integersn,, mo, ..., my,
such that>"% m; = n, find ak-clustering{ A;, 4s, ..., A} with

|Az| =m; fori=1,..k%k

that minimizes the cost

W(Ay, Ag, -+, Ap) =Y W(A).
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We stress that in the SCC problem the integers andd are part of the instance. On the contrary] i§
fixed the problem is called SC&-if k is fixed the problem is callel-SCC; furthermore, if botld and
k are fixed the problem is calldd SCC.

We will classify the problems of kind SCC-1 @&SCC-1 by means of the classical complexity
classes [8]. In this regard, we suppose that= {z1,...,z,} is composed by positive integers <
x9 < ... < x,, represented in binary notation, whose siz® sz |5, Wwhere|xy|, is the number of bits of
x. Observe that this is equivalent to considering..., z,,} C Q, the set of rational numbers, since the
solution of the problems is invariant to translating andisga In fact, the instanceX; = {z1,...,z,},
Xo ={x1+ ¢, ...,y + ¢}, X3 = {cxq, ..., cx,, } do admit the same optimal solution.

3. Separation results

In this section we prove a separation property for the optgakution of 2-SCC. We first need a simple
lemma stating that ip > 1 then the centroid of a set of points moves whenever one ofdimgchanges.
The property is not true in the cage= 1.

Lemma 1. Givenn + 1 realszy,zg,...,x,, 71 andp > 1, let C(zy,zo9,...,x,) be the centroid of
{z1,z9,...,2,} andC(Zy, x9, ..., x, ) be the centroid of 71, zo, ..., z, }.
If 21 # a1, thenC(xl,xg, vy Tpy) F C(fl,xg,xg, ,xn)

Proof:

Let's suppose that'(z1, z2, ..., xn) = C(Z1, 22,23, ...,x,) = C. SettingF(p) = >, |z; — pufP, since
F () is strictly convex [14], it follows thaf” (C') = 0 = _ sgn(z; — O)|z; — C|P~1. Analogously, we
have0 = sgn(z; — C)|z; — C[P~1 + > "5 sgn(z; — C)|x; — C|P~L. This implies thatgn(z, — C)|z; —
C|p—1 :sgn(acl —C)|.T1 —C’|p_1,that isr1 = 7. a

Corollary 2. Fixedp > 1, let C be the centroid of{z1, x9,...,2,} C R? and C the centroid of
{fl,xg,xg, ,.Tn} C Rd, wherez; # x1. Then:

n n
D llwi = CllE <> [l = C
=1 i=1

Proof:

Sincez, # x1 there is a component (sdywith 1 < [ < d) of x; different from the corresponding
component oft;. By Lemma 1, thé-component o' is different from thel-component ofC, hence
C # C. SinceC is the unique minimum point of the function, ||z; — u||b, the thesis follows. 0

Proposition 3. Fixedp > 1, let {A, B} be an optimal solution of a 2-SCC problem on the instance
{z1,29,...,2,} C RTwith |A| = k. If z; € Aandz; € B, it holds:

[z = Cally + llzj = Cpll < llzi = CBllp + [l2; = Call;

Proof:
Since{ A4, B} is a partition, ther; # x;. Suppose by contradiction that:

i = Callp + [lzj = Clly > [lz: = Cll} + llz; = Callp )
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Then, denoting withF'y (1) = >, . ¢ |z — |/, we have:

W(A, B) = FA(Ca) + F5(C5)
= P4 f2,3(Ca) + |lzi — Callp + Fps; (C) + [lz; — CBl[}
> Faoqey(Ca) + |lzj — Call) + Fp o3 (Cr) + lzi — Cplh  (by (2))
= FA {oiy{z;3(Ca) + FB {2,302} (CB)
> Fp {2iufz;} (Cafaiute;}) T FB e, )0t} (OB (e uiz;)) (DY COT. 2)
=W(A~NA{z;} U{z;}, B~ A{z;} U{zi})

This is a contradiction, sincg # A~ {z;} U{z;}, but|A| = |[A~ {z;} U{z;}| = k. This would imply
that{ A, B} is not optimal. 0

Theorem 4. (Separation Result)
Fixedp > 1, let {A, B} be an optimal solution of a 2-SCC on the instafiee, o, ..., z,} C R? with
size constraintA| = k. Then we have that:
1.Cy #Cp
2. there existg € R such that:
r € Aimplies|lz — Callb — [z — Cplb < c
r € Bimplies||z — Call) — ||z — Cp|) > ¢

Proof:
We notice that, by Proposition 3,if;, € A andx; € B it holds:

[z = Cally = llzi = Clly < llzj = Cally = llzj = CBl; 3)

Sincex; # x; it follows thatCy # Cp, otherwise (3) yield$) < 0. Leta = maxzea ||z — Callp —
|z — Cplb and = mingep ||z — Callb — ||z — Cg||h. By (3) we obtaine < 3. Settinge = O‘Tw it
holdsa < ¢ < 3, hence:

r € Aimplies|lz — Callb — [z - Cplb <a<e

r € Bimplies||z — Call) — ||z — Cpl|h) > 8 > c

The previous theorem states thatRify the hypersurface of equation
lz = Callp — [z = CBl; = ¢ 4)

is well-defined and strictly separates the sétand B of an optimal solution. In the particular case
p = 2, the hypersurface becomes a hyperplane; in fact we havédthiaduces to

c+ICBl13 — Call3

(@.(C = Ca)) = :

which is the equation of a hyperplaneRd (here(-,-) denotes the scalar product).
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4. One-dimensional case: String Property

In this section we consider the cagde= 1, i.e. X = {z1, 29, ..., 2, } Wherez; € R for eachi, and we
show a structural property (String Property) of the optisiaé constrained-clustering. In this way we
extend to the constrained clustering a property observeldeirtiustering problem by Fisher [5] in the
casep = 2, and Novick [14] in the casg > 1.

Definition 3. A k-clustering{ 41, Aa, ..., Ay} of X = {z1, 22, ..., z,, } is said to have th8tring Property
iff for all ;, z; andz;, and for allA, if z;, z; € Ay andx; < x; < z; thenz; € A,.

In the case of-dimensional clustering with euclidean norm=£ 2), itis proved that any optimal solution
has the String Property [5]. In [14] this result is extendeeévery norm| - ||, with p > 1.
In this section we further extend this result to thdimensional size constrained clustering problem.
First of all, we treat the case @fdimensional 2-SCC for any > 1.

Proposition 5. Let {A, B} be an optimal2-clustering for the2-SCC problem on instancéz, s,
.., Tp } With |A| = k. Then{ A, B} has the String Property.

Proof:

Consider the functiotf (x) = |[x—Ca|P—|z—Cp|P, whereCy, C are the centroids od, B respectively.
By Theorem 4 there existssuch thatr € A implies f(z) < ¢, whilex € B implies f(z) > ¢. Now,
suppose&’4 < Cg. We have that:

if 2> Cpthenf'(z) =p((x —Cx)P~! = (. — Cp)P"1) >0
if Cp > x> Cythenf'(z) =p((x — CA)P—l +(Cp — x)p—l) >0
if Ca >z thenf'(z) = p(—(Ca —2)P~ + (Cp —2)P™) >0

Therefore f(z) is increasing; moreover it can be easily observed that
lim, 400 f(z) = 400 andlim,, _, f(x) = —oo. Sincef(x) is continuous, we conclude that there is
a uniquex™* such thatf (z*) = ¢; moreover:z € A impliesz < z*, v € B impliesz > z*. This means
that, under the assumptiariy < Cp, {A, B} has the String Property. Analogous reasoning applies
whenC4 > Cp, thus yielding the String Property again. a

We notice that the two half-line¥ = {z|f(z) < ¢} andH = {z|f(x) > ¢} are disjoint sets; further-
more A is contained in one half-line, whilB is contained in the other one. We now extend the previous
result to thek-SCC.

Theorem 6. Let {4;, Aq, ...Ax} be an optimak-clustering for SCC on instancE = {1, z, ..., z,}
with constraints{my, ma, ..., my }. Then{A;, As, ... A} has the String Property.

Proof:

Let us reason by induction on > 2. The casek = 2 is clearly solved by Proposition 5. Fér> 2,
given an optimak-clustering{ A, A, ..., A }, for any j we denotev; = min A;, V; = max A;, and
setc = minv; = vy. Let us consider any index# ¢; obviouslyv; > v,. We want to show that also
v; > Vy holds. In fact, consider the-SCC problem on instancé, U A; with constraints{m,, m;}; its
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optimal solution{ A,, A;} verifies the String Property because of Proposition 5, anddg, < v;. As
a consequence, ever (i # ¢) is contained in the half-linél = {z|x > V;}, while A, is contained in
the complementary half-lin&¢ = {z|z < V;}.

Let's now consider the optimal solutidmM, ..., Ay_1, Ag41, ..., Ax } to the(k — 1)-SCC problem on in-
stanceX . A, with constraints{my, ..., my_1, mgy1, ..., .my }. By induction hypothesisf A, ..., Ay_1,
Ay, ..., A} verifies the String Property, and hence by the discussioneabtso{ A, ..., 4y, ..., Ax }
does. O

5. NP-hardness of constrained 2-clustering problem

In order to highlight the usefulness of the String Propertihe design of algorithms for the 1-dimensional
constrained clustering, let’s consider the following peob for a fixedp > 1:

Definition 4. (Half-Partition (HP))
Givend andX = {1, ..., z2,} C N9, find the optimal 2-clusteringA, B} of X with |A| = |B| = n.

Whend = 1, we call the problem HP-1. HP-1 is solvable in polynomialdifar anyp > 1. Indeed, given
the realsey, 22, ..., x2,, the unique partitiof A, B} that verifies the String Property witll| = |B| = n

is {{z1,...,zn}, {Tn+1, ..., x2n } }, Which hence turns out to be the optimal solution. It follavat, for
anyp > 1:

Fact 7. HP-1 is solvable in polynomial time (for any> 1).

On the contrary, we show that the HP problem is NP-hard. Thdies that also 2-SCC is NP-hard.
Theorem 8. HP is NP-hard (for any > 1).

Proof:

We prove the result by a reduction from the Minimum Bisecfsoblem, which is known to be NP-hard
[7]. This problem consists of determining, for an undirdatgaphG = (V, E) with |V| = 2n, a subset
A C V of cardinality| A| = n such that the value

cut(A) =[{{ e E |l ={x,y},x € A,y & A}|
iS minimum.

In order to construct the reduction, let= (V, E) be an undirected graph with = {1,2,...,2n}
and define, for every € V, the arrayX, € R¥ with indices inE, such that

1 ifoe’
Xo[l] = . 5)
0 otherwise
Thus, the family of arrayg X, X, ..., Xs,} forms an instance of the Half-Partition problem for an

arbitraryp > 1.
Given A C V with |A| = n, let us compute its centroid 4. For everyl € E, we have the following
cases:
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1. If both vertices of are inA then

Calf] = argmin2(1 — )7 + (n -2} = —— =,
: L (o2)
2. If only one vertex of is in A then
Calt] = argmin{(1 - 2)? + (n — N} = ———— = 4,
. 1+ (n—1)51

3. If no vertices o is in A thenC4[¢] = 0.

Now, given a 2-clustering A, B} with |A| = |B| = n, the value of objective functioi/ (A, B) can be
written in the form

W(A,B) = (Z |1 X:[6) — Caldl” + > 1X;510 - OBW)

teE \i€A j€B

If £ ={i,5} withi € Aandj € B then we have

DI = CalAP + > 1X;5[0 — ColAP = 2[(1 = B,)” + (n —1)88]

icA j€B
On the contrary, i = {i, j} with either{s, j} C Aor{i,j} C B, then

DXl = CalaP + > 1X51 — CplAP = 2(1 - ay)? + (n = 2)al,

i€A jE€B
As a consequence, recalling that (A) is the number of edges with a vertexdnand a vertex i3, we
obtain

W(A, B) = cut(A)2[(1 = 5n)" + (n = DBE] + (|B] = cut(A))[2(1 — an)? + (n = 2)a7)]
=|E[-g(n,p) + cut(A) - s(n,p) (6)
whereg(n, p) does not depend ofA, B} and
s(n,p) = 2[(1 = B)” + (0 — 1)BE] = 2(1 = )” — (n — 2)o?

Now, for any fixedp > 1, asn tends to+occ we have

1

2\ r—1 1
o (_>p , Bn~n =
n
and hence
p_ 1
s(n,p) ~ (p—1) (2?*1 — 2) ‘n 1 >0
Therefore, from equation (6), if is sufficiently large we obtain

argmin W (A, B) = argmin cut(A)
|Al=n |[Al=n
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6. Complexity of constrained 2-clustering problem in dimersion 1

In the previous section we have shown that 2-SCC is NP-hagede e prove that 2-SCC-1 is solvable
in polynomial time ifp > 1 is an integer. 2-SCC-1 is an extension of HP-1: while anyams¢ of
HP-1 admits a unique 2-clustering verifying the String Rty every instance of 2-SCC-1 admits two
2-clusteringsry, mo verifying the String Property. For finding the solution, wa/h to comparéV ()
andW (). The comparison is immediateyif= 1 orp = 2, as in these cases the centroids can be easily
computed. lfp is an integer greater than 2, the problem seems to be moreudiffi

In this regard, we consider a slight extension of the 2-SQffeblem obtained by considering the
integerp, given in unary, as part of the instance. More precisely, wesider the problenUniform 2-
SCC-1 given a setX of positive integerse; < x2 < ... < x,, the size constraint§s,n — s} and an
integerp > 2 in unary notation, find a 2-clusterinfgA,, A2} of X with |[A;| = s,|As| = n — s that

minimizes the cost
> lz—Cillb+ D> g — Callp

;€A rjEA2

whereC; and(Cs are thep-centroids ofd; and A, respectively.
We solve this problem by using approximation techniqueghis regard, we recall a useful result
about the solutions of a square algebraic system appeafél in

Theorem 9. (Canny’s Gap)

Let (z1,zo, ..., zy) be a solution of an algebraic systemMdfequations inV unknowns having a finite
number of solutions, with maximum degréand with coefficients iZ smaller or equal td/ in absolute
value. Then, for each=1,..., N, eitherz; = 0 or |z;| > (3Md)~ V"

Given a sel” of integersy; < y2 < ... < yn, let;j be the index such that thecentroidC of Y verifies
y; < C < yjq1. Fixede (0 < e < %),_We calle-approximationof C'a numbeilC' with C < C' < C' +e¢
if yj+1—C >C —y;,andC — e < C < C otherwise. In any case, it holds' — C| < e.

Lemma 10. Given an integep > 2 andm integersl < y; < y2 < ... < ym, let C be thep-centroid of
Y ={y1,....,ym} @andW(Y") be the cost function defined in (1). Then, in polynomial timéhwespect
to p + In y,,, One can compute polynomialyx) = Z{)’_l a;z' andB(x) = > b b;z* such that:

1. C'is aroot ofA(x);

2.W(Y) = B(C),

3. lail, [bil <m - (ym +1)Pforalli=1,...,m
Moreover, for any= > 0, it is possible to compute in polynomial time with respecpte- log = an
e—approximationC' of C such that

4.|B(C)~ B(C)| <e-yh ' -p-m.

Proof:

We know that there ig such thaty; < C < y;41. To compute such ganote that, since > 2, function
D(z) = >, | — y;|P admits first derivative in alR and every value)’(y;) is easily computable for
eachi. SinceD(x) is strictly convex, the required coefficient is the uniguguch thatD’(y;) < 0 and
D'(yj4+1) > 0. The computation time is clearly polynomial with respecp telog y,,. As a consequence
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one can also compute the polynomials:

B(x)=Y (=g’ + > (i—x)f =) ba'
i=1 i=j+1 0

J

m p—1
Aw) = SB@) = 3@ —u ™ = 3 -y = 3 e
=j+ 0

i=1 i=j+1

The centroidC' satisfiesA(C) = 0; moreoveriV(Y)
[z°] B(x) the coefficient ofc’ in B(z), we have:

B(C). Observe now that, denoting with

m m
bi| = |[z"]B(2)| < [2'] )_(yn + )" th+1p<m(ym+1)
h=1 h=1
m m
jai| < [x thﬂ th+ P~ < mym + 1P < m(y + 1)

For computing am—approximationC, remark that for all: such thaty; < x < y;41, itholds A(z) < 0
if 2 < C, while A(z) > 0 whenever: > C. Therefore, we usflog 2+ < [log 2] many steps of
a binary search for localizing', i.e. computing an intervady, 3] suchthatr < C < gandf—a < e. If

A (%) < 0 then we seC = «, otherwiseC' = 3. The computation time at every step is bounded

by a polynomial inp + log .
To prove the last point we can writ&(C) — B(C)| as:

ZC W+ - ZC WP+

J+1 j+1
i m
D S (eR o) IV ) o e) R C)
21:( yi)P — ( 7y) ;(y ) (y;)

Fixed the index in the first summation, denote = C — y; andu = C — y;. Since|u|, |u| < yum, it
holds: [uP — @?| = |(u—@)(u? ' +uP~2a+...+aP~1)| < e-p-yb . Observe that every single term in
the last parenthesis g @'~ = (C — y;)(C — y;)?~1~" < b, ", thus yielding|u? — | < epyh, '

On the other hand, when fixing the indeix the second summation, the same upper bound is obtainable.
We can conclude thaBB(C) — B(C)| < mepylhy . O

We are ready now to state the main result of this section.

Theorem 11. The Uniform 2-SCC-1 problem is solvable in polynomial time.

Proof:
Given a setX of positive integers:; < z5 < ... < z,, and constraint§s, n — s}, because of the String
Property the optimal solution of the problem must be chosdwéen the two partitions

m ={A,B}with A = {x1,....,zs}, B={xsy1, ..., Tn}

mo ={D,E}with D = {x1,....,2p—s}, E = {Zpn_st1, ..., Tn}
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Thus, it is sufficient to calculate the costs of the clusiér®, D, E and check whether
W =W(m) - W(mr) =W(A) +W(B) - W(D) - W(E)

is positive, null or negative.
To this end, we can consider the system of equations:

Ai(z) =0 (foralli=1,...,4)
w = Bl(zl) + BQ(ZQ) — Bg(Zg) — B4(Z4)

with polynomials A;, B; ( = 1,...,4) obtained according to Lemma 10 separately for each cluster
A, B, D, E respectively. This is a system dfalgebraic equations of degree at mpsh 5 unknowns
21, ..., 24, w, Which is satisfied by the solutiofC1, Cs, Cs, Cy, W), whereC;’s (i = 1,...,4) are cen-
troids of A, B, D, E respectively. By Lemma 10, the coefficients of the polyndsia the system are
bounded byM = n(z, + 1)P. Hence, by applying Canny’s Gap Theorem, eitidér= 0 or |W| > §
where
d = [Bn(x, + l)pp]fg’p5

Thus, if we find an approximatioi of W up tog we can conclude:

if W < —g thenW < 0 and is the optimal solution;

if W > % thenW > 0 andm, is the optimal solution;

if [W] < g thenW = 0 and bothr; andw, are optimal solutions.
W can be obtained by computingy = B;(C1) + B2(C2) — B3(C3) — B4(C4), whereC; is ane-
approximation ofC;, with ¢ that guaranteeg¥V — W| < g By the last point of Lemma 10, we know
that:

W — W| < 4ep - n(z,)P!

It is sufficient to choose such that

1
depn(z, )Pt < g = §[3n(mn + 1)Pp] 5P
Then we can approximatg; up to thes-th binary digit after the point, where= 27°. By the previous

equation we have

5

s =0(p%log x,).

The approximate c_entroio@i (: = 1,...,4) can be obtained in polynomial time as in Lemma 10, and
the computation of¥/ requires a polynomial number of arithmetic operations amipers of polynomial
size. 0

The previous method cannot be extended to the case of rationantegerp. To put in evidence the
subtleties of this case, we briefly discuss the problem @lipicg thep-centroid.

Definition 5. The problem of localizing the-centroid f-LC) consists of deciding, for a séf of inte-
gers{zy, ..., z,, } and an integeh, whetherC' > h, whereC' is thep-centroid ofX.

It is easy to observe that the well-known problem SQRT-Supoignomially reducible te}-LC. SQRT-
Sum requires to decide, given positive integers..., aq, by, ..., b, whether,/a; + ... + /ag > Vb1 +
. + /by
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Theorem 12. SQRT-Sum is polynomially reducible E}}LC.

Proof:
With the instanceu, ..., aq, b1, ..., b, of SQRT-Sum we associate the instad¢e= {x1, ..., x4, } andh
of 2-LC where:

1)h = maxa; 2)z; =h—a;fori <gq 3)xqrj =h+bjforl <j<r

Setting (1) = 94 | — |3, sinceF(u) is strictly convex, we have:
1) F'(u) is increasing function;
2) if C is the 3-centroid ofX, thenF'(C) = 0.

Observe now that

R0 = Y -0 = Y (- 2)b = Vo bk A g

3372]1 $i<h

We hence conclude that:

h<C iff F'(h) <F'(C) iff ai+ ..+ ag—bi—..— b >0

This proves the reduction. a

The characterization of the computational complexity ofRFEBum was proposed as open problem in
[6]; despite the efforts, the best-known result, due to idier et al. [1], puts SQRT-Sum in CH, i.e. the
Counting Hierarchy introduced in [17]. Theorem 12 implikatt if %-LC were solvable in polynomial
time, then SQRT-SurmP would hold, despite still today a major open problem is toidke whether
SQRT-Sum is solvable in NP.

7. NP-hardness of constrained clustering problem in dimensn 1

Because of the String Property, the clustering problemsirredsion 1 can be solved in polynomial
time by a simple dynamic programming technique (in case afiigan norm). On the contrary, in this
section we prove that the corresponding 1-dimensionaltcned clustering (SCC-1) is NP-hard, for
everyp > 1.

First of all, we reformulate SCC-1 as a decision problem.

Definition 6. (SCC-1: decision version)

Given a setX of n integersr; < x2 < ... < x,, positive integersn, ..., my, such thad_m; = n, and a
positive integer\ (called threshold), decide whether there existsa@ustering{ A4, ..., Ax} of X, with
constraintg A;| = m; (i = 1,..., k), such thatV (Aq, ..., Ax) < A.

We first notice that the clustering problem without consitsiis known to be solvable in polynomial
time whenp = 2. We prove that adding the constraints makes the problem it proof is based on a
reduction from the 3-Partition problem.
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Definition 7. (3-Partition Problem)
Given a setP = {py, ..., p3m } Of positive integers whose sumiisB, such that each; satisfiesB/4 <
p; < B/2, decide whether there exists a partitiph, ..., P, } of P such that, for each = 1,...,m,

erpix = B.

An equivalent version of this problem has been proved to bectiRplete in [10]; it remains NP-
complete even if the numbers ia are all bounded by a polynomial ir. The problem was originally
proved to be strongly NP-complete in [8] whéhis a multiset.

Theorem 13. SCC-1 is NP-hard (for any > 1).

Proof:

We want to reduce 3-Partition to the decision version of SIC@¥ith the instancé® = {p1, ..., p3;, } of
3-Partition we associate the instance of SCC-1 (decisiosiorg) given byX = UT* X; with constraints
{p1, ..., p3m } and threshold = 3mB?*, whereX; = {Hj+h: h =0,..., B—1}, with H = 6mB?+B
andB = 2™ p;/m. Now let's show the correctness of this reduction.

A partition { A1, ..., A3, } of X is said to bdineif for every A, there isX; with A; C X;: the main
observation is that 3-Partition with instanéeadmits a solution if and only if there is a fine partition
{Aq,..., A3y} of X sit. |4;| = p; foralli = 1,...,3m. In fact, let{P,..., P,,,} be a partition ofP
satisfying) . p. © = B; with every P, = {p;1, pi2, pi3} We associate a partitiad; = {A;1, Ai2, Aiz}
of X; s.t. |Ai;| = pij (5 = 1,2,3), which is possible sinc®_ ., * = B = |X;|; thusU"4; is a fine
partition of X satisfying the constraint§py, ..., ps,, }, sinceUP;, = P. Suppose now that the partition
{A1,..., A3 } Of X is fine and satisfies the constraint$;| = p;, ¢ = 1,...,3m. With everyX; we
associateP; = {|4;| : 4; € X,}: sincezxepjx = |X,| = B, {P,..., Py} verifies the instance
{p1, ..., p3m } Of 3-Partition.

To prove the correctness of the reduction, it is sufficient tbserve that
{Ay,...,A3,,} is a clustering of X with constraints {pi,...,ps,m} and cost
W (A1, ..., Asp) < Aiff {Aq, ..., A3, } is fine with constraintgp, ..., p3;m, }. Supposg Ay, ..., A3y, }is
fine, theniW (A, ..., Az,,) = S5™ W(A;). For all 4; there isX; s.t. A; C X;; thereforelW (4;) <
W(X;) < BPTL. In conclusion: W (Ay, ..., Asm) = S W(A;) < 3mBPT! < 3mB* = \. Now
suppose Ay, ..., A, } is not fine: there isA; containingz, y with x € X, y € X; ands # t. Observe
that|z — y| is at leasttd — B; if y is thep-centroid ofA;, then eithetz — u| > Z52 or |y — u| > 58,
It follows that

W (A1, ..., Asm) > W(A;) > o — plP + |y — pP
(H - B
2

Y

)P = (3mB2)P > 3mB% = \

8. Conclusions

In this paper we have studied some algorithmic problems stamite clustering with cluster size con-
straints. We have emphasized some analogies and differbet@een clustering and constrained cluster-
ing. In particular, we have obtained separation resulthi®optimal solutions that, in the 1-dimensional
case, imply the so-called String Property. In this way a Wketw result in clustering is extended to
constrained clustering.
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As in the case of classical clustering, the String Propéltyva us to obtain exact efficient algorithms
for solving constrained 2-clustering in dimension 1, withrm L,, for integerp, while the problem
turns out to be NP-hard when the dimension is not fixed. Maeowe have given evidence that the
method cannot be extended to the case of rational non-inteds last, we have shown that constrained
clustering is NP-hard even in dimension 1, while the comesing problem in classical clustering is
solvable in polynomial time, at least with the Euclideanmor

In this paper we have put the attention to exact algorithmshis context, we leave open the problem
of finding efficient algorithms for constraingdclustering, for smalk > 1; in fact, separation results
seem to indicate that this kind of problems can be solved Ignpmial time. Other open problems
are those of determining efficient approximation algorighior constrained 2-clustering in arbitrary di-
mension or for constrained clustering in dimension 1. HBynaln interesting issue is the development
of “practical” heuristics, for the general constrainedstiuing, that play the same role bfMeans or
k-Medoids in classical clustering.
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