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Abstract. We study the pattern statistics representing the number of occurrences
of a given string in a word of length n generated at random by rational stochastic
models, defined by means of weighted finite automata. We get asymptotic estima-
tions for the mean value and the variance of these statistics under the hypothesis
that the matrix of all transition weights is primitive. Our results extend previ-
ous evaluations obtained by assuming ergodic stationary Markovian sources and
they yield a general framework to determine analogous estimations under several
stochastic models. In particular they show the role of the stationarity hypothesis
in such models.

1 Introduction

The classical problem of evaluating the number of occurrences of a given string (usually
called pattern) in a random text has been mainly studied assuming the text generated by
a Markovian source [12,9,10]. Here we assume more general stochastic models, called
rational, which were first considered in [2] and studied in details in [6]. The rational
models are defined by means of weighted finite automata and are able to generate a
random string of given length in a regular language under uniform distribution. In this
work we determine asymptotic expressions of average value and variance of the number
of occurrences of a pattern in a string of length n generated at random in such models.
We compare our results with analogous evaluations obtained in [12,9,2]. Our approach
yields a general framework where the previous evaluations appear as special cases. We
also relax the stationarity hypothesis assumed in [12,9] and show how such a condition
affects the evaluations of mean value and variance of our statistics.

2 Preliminary Notions

Given a set X and an integer m > 0, we denote by X and X™*"™, respectively, the
set of all vectors and the set of all square matrices of size m with coefficients in X.
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Any x € X™ is considered as a column vector, while 2’ is its transposed (row) vector.
Denoting by R the set of nonnegative real numbers, we recall that a matrix M €
R is called primitive if M™ > 0 for some integer n > 0, meaning that all entries of
M™ are greater than 0. By the Perron—Frobenius theorem [13, Sect.1], it is well-known
that every primitive matrix M € R7"*"™ admits a real positive eigenvalue ), called
the Perron—-Frobenius eigenvalue of M, which is a simple root of the characteristic
polynomial of M, such that || < A for every eigenvalue v # .

The properties of nonnegative matrices are widely used to study the behaviour of
Markov chains [5,8,13]. We recall that a real vector 7' = (mq, o, ..., T ) is stochastic
if 0 < m; < 1 for every ¢ and Z?:l m; = 1. A matrix P € R™*™ is stochastic if all its
rows are stochastic vectors. It is easy to see that any stochastic matrix P has eigenvalue
1, with a corresponding right eigenvector 1’ = (1,1,...,1), while |y| < 1 for any other
eigenvalue ~y of P.

A stochastic vector 7 and a stochastic matrix P of same size m allows us to define
a Markov chain over the set of states Q@ = {1,2,...,m}, i.e. a sequence of random
variables { X, },,c v taking on values in @), such that Pr(X, = i) = m; and

Pr(X,pi =7 | Xn=0Xn1=tln_1,....,Xo0=1p) = Pr(Xpp1 =7 | Xpn=1) = B

for every n € N, and any tuple of states j,¢,%9...,i,—1 € . The arrays = and P
are called, respectively, the initial vector and the transition matrix of the Markov chain.
Note that Pr(X,, = j) = (7' P");, for each j € Q and every n € N. Moreover, if P is
primitive, by the Perron—Frobenius theorem one can prove that

P" =1 +0("), (H

where 0 < ¢ < 1 and v’ is the left eigenvector of P corresponding to the eigenvalue 1
such that v’1 = 1. Observe that 1v’ is a stable matrix, i.e. all its rows equal v; moreover,
v’ is a stochastic vector, called the stationary vector of the chain, and it is the unique
stochastic vector such that v' P = v’. If further 7 = v then the Markov chain is called
stationary, since 7' P = 7’ for every n € N, and hence Pr(X,, = j) = m; for any
state j.

Now, let us fix our notation on words and formal series. Given a finite alphabet A,
for every z € A*, |z| is the length of x and |z|, is the number of occurrences of a
symbol a € A in 2. We also denote by A™ the set {z € A* | |z| = n} for every n € N.
A formal series over A with coefficients in R, is a function r : A* — R, usually
represented in the form r = > _ . r(x) - 2, where r(x) denotes the value of  at
x € A*. We denote by R ((A)) the family of all formal series over A with coefficients
in R,. This set forms a semiring with respect to the traditional operations of sum and
Cauchy product. As an example of formal series in R ({A)), we recall the notion of
probability measure on A*, defined as amap f : A* — [0, 1], such that f(e) = 1 and
Y aca f(wa) = f(x), for every x € A* [7].

A formal series » € R, ((A)) is called rational if it admits a linear representation,
that is a triple (£, u, ) where, for some integer m > 0, £ and ) are (column) vectors
in R and p : A* — R’"™™ is a monoid morphism, such that r(z) = & u(x)n holds
for each - € A*. We say that m is the size of the representation. Such a triple (&, p, )
can be interpreted as a weighted nondeterministic automaton, where the set of states is
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given by {1,2,...,m} and the transitions, the initial and the final states are assigned
weights in Ry by p, £ and 7, respectively. To avoid redundancy it is convenient to
assume that (£, u,n) is trim, i.e. for every index ¢ there are two indexes p, ¢ and two
words z,y € A* such that (), # 0 and p(y)iqng 7 0. The total transition matrix
M of (£, p,m) is defined by M = 3", 4 pu(a). We say that (£, i, m) is primitive if such
a matrix M is primitive.

Several properties of the formal series in Ry ((A)) can be studied by considering
their commutative image. To define it formally, consider the canonical morphism @ :
A* — M(A), where M(A) is the free totally commutative monoid over A. Such a
monoid morphism extends to a semiring morphism from R ((A)) to the traditional ring
R[[A]] of formal series with real coefficients and commutative variables in A. We recall
that, if » € Ry ((A)) is rational, then also &(r) is rational in R[A], i.e. &(r) = pg~* for
two polynomials p, ¢ € R[A].

3 Stochastic Models on Words

Several stochastic models have been proposed in the literature to study probability mea-
sures on free monoids [11,7]. Here, we intuitively consider a stochastic (probabilistic)
model over a finite alphabet A as a device to define a probability function on the set A™
for every integer n > 0, equipped with an effective procedure to generate on input n a
word in A™ with the prescribed probability.

In this section we discuss three types of probabilistic models introduced in [6]
and called, respectively, Markovian, sequential and rational models. Here, we recall
their main properties and differences. These models include the classical Markovian
sequences of any order and the rational probability measure studied in [7]. They can be
seen as special cases of more general probabilistic devices studied in [11].

The simplest probabilistic model on words is the well-known Bernoullian model.
A Bernoullian model B over A is defined by a function p : A — [0, 1] such that
Y weapb(a) = 1. A word x € AT is generated in this model by choosing each let-
ter of x under the distribution defined by p independently of one another. Thus, the
probability of © = x5 --x,, where z; € A for each i, is given by Prg(z) =
p(x1)p(x2) - - - p(x,), which clearly defines a probability function over A™ for every
integer n > 0.

3.1 Markovian Models

A Markovian model over A is defined as a pair M = (m, u) where, for some integer
k > 0, 7 € [0,1]* is a stochastic vector and y is a function zz : A — [0, 1]*** such
that, for every a € A, each row of M (a) has at most one non-null entry and the matrix
M =37 ,c 4 i(a) is stochastic.
The probability of a word * = x5 - - - x,,, Where x; € Aforeachi=1,2,...,n,
is given by
Praqg(z) = 7' p(@1) (o) - - ()1

Thus, Pra is a rational formal series in R ((A)) with linear representation (7, u1, 1).
Also, since both 7 and M are stochastic arrays, Pry defines a probability function over
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A™ for each positive integer n. This model implicitly defines a Markov chain taking on
values in the set of states {1,2, ..., k}, that has initial vector 7 and transition matrix
M ; we may call it the underlying Markov chain of M.

Note that every Bernoullian model is a Markovian model. Moreover, the pair M =
(7, i) defines a deterministic finite state automaton where transitions are weighted by
probabilities: the set of states is Q@ = {1,2,...,k}, the transition function dq : Q@ X
A — QU {L} is defined so that for every ¢ € ) and every a € A, dp(i,a) = jif
p(a);; # 0, and the same value p(a),; is the weight of the transition, while d4(¢, a) =
1 if ,u(a)ij = 0. Clearly, 6, can be extended to all words in A*. Thus, the sum of
weights of all transitions outgoing from any state equals 1 and, since the automaton is
deterministic, for every word x € A* and every i € () there exists at most one path
labeled by x starting from 7. These properties lead to prove the following lemma, which
gives an asymptotic property of the probabilities defined in Markovian models.

Lemma 1. [6] Let M = (7, 1) be a Markovian model of size k over the alphabet A
and let x € A™T. Then, there exists 0 < 8 < 1 such that Pry(z") = O(8"), as n
tends to +oo .

This lemma plays a role similar to classical pumping lemma in formal languages
in the sense that it can be used to show that a given probabilistic model on A is not
Markovian simply by showing that, for a word # € A™T, the probability of 2™ is not of
the order ©(4™) for any constant 3 > 0.

Observe that the Markovian models can generate the traditional Markov sequences
of order m over A (for any m € N), where the probability of the next symbol occurrence
only depends on the previous m symbols. To define these sources in our context we say
that a Markovian model M over A is of order m if for every word w € A™ either there
exists j such that d (7, w) = j forevery i € Q or (i, w) = L forevery i € @, and
m is the smallest integer with such a property.

A relevant case occurs when m = 1. In this case, the set of states () can be reduced
to A and Pr 4 is called Markov probability measure in [7]. Also observe that there exist
Markovian models that are not of order m, for any m € N. For instance, if M is defined
by the following (weighted) finite automaton, then o (1, a™b) # (2, a™b) for every
n € N.

1 1
a,3 a,z

Hence our notion of Markovian model properly includes the traditional sources of
Markovian sequences.

3.2 Sequential Models

A natural proper extension of the previous model can be obtained by allowing nonde-
terminism in the corresponding finite state device. In this way the model corresponds

! This means that for some positive constants c1, ¢, the relation 18" < Pra(z™) < c28”
holds for any n large enough.
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to a stochastic sequential machine, as defined in [11], with a unary input alphabet.
Moreover, it is characterized by the rational probability measures, i.e. the probability
measures on A* that are rational formal series in R ((A)) [7].

Formally, we define a sequential stochastic model over A as a pair Q = (m, )
where 7 € [0, 1] is a stochastic vector and y is a function 1 : A — [0, 1]*** such
that M = ), pu(a) is a stochastic matrix. Clearly, any Markovian model is also a
sequential model. In particular, as in the Markovian models, ;» defines a monoid mor-
phism from A* to [0, 1]***, and the probability of a word x = x125-- -2, € A* is
given by

Pro(z) = m'p(z)l = 7' p(z1) w(z2) - - - pulwy) L

Also in this case, Prg is a rational formal series, taking on values in [0, 1], that admits
the linear representation (7, i, 1) and defines a probability function over A", for every
positive integer n. Furthermore, it is easy to see that Prg is a rational probability mea-
sure on A*. Actually, that is a characterization of the sequential models, in the sense
that, as proved in [7], for every rational probability measure f on A* there exists a
sequential model Q such that f = Prg.

Analogously, one can define the underlying Markov chain on the set of states () =
{1,2,...,k} with initial vector 7 and transition matrix M. We say that the sequential
model is primitive if M is a primitive matrix; if further 7 is the stationary vector then
the model is said to be stationary too. Moreover, the pair @ = (, 1) can be interpreted
as a finite state automaton equipped with probabilities associated with transitions; the
main difference, with respect to the Markovian models, is that now the automaton is
nondeterministic. For any a € A, every non-null entry p(a);; is the weight of the
transition from 7 to j labeled by @ and, for every word x, Prg(z) is the sum of the
weights of all paths labeled by x in the corresponding transition diagram.

However, in spite of these similarities, the sequential models seem to be much more
general than Markovian models. In particular, their probability functions do not satisfy
Lemma 1. In fact, it is easy to find a sequential model Q such that Prg(a™) = O(ne")
forsomea € Aand 0 < e < 1.

Further properties of sequential models concern the commutative image of the prob-
ability functions. Since Prg is rational, also its commutative image ¢(Prg) is rational
in R[A]; such a series is given by ®(Prg) = n'(I — Y ., p(a)a)™'1 and it rep-
resents the generating function of the probabilities of occurrences of symbols in A. In

other words, setting A = {a1,as,...,as}, we have
&(Prg) = Z Z Pro(z)alt ---als .
1€Ns \m|a1:i1,...,|m\as EP

3.3 Rational Models

Consider a rational formal series € R, ((A)) and, for every positive integer n, assume
r(w) # 0 for some w € A™. Then r defines a probability function over A™, given by

r(z)

Pr.(z) = 721064” ()

for every x € A™ . 2)
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Observe that if  is the characteristic series x, of a regular language . C A*, then Pr,.
represents the uniform probability function over L N A™, for each n.
Since r is rational it admits a linear representation (£, 14, 77) and hence

!

Pr,(z) = m for every x € A", 3)
where M = 3 _, p(a). Thus any linear representation (&, u1,7) defines a rational
model; we say that the model is primitive if M is a primitive matrix. Also observe that
Pr, is a sort of Hadamard division of two rational formal series. Well-known algorithms
for the generation of random words in regular languages can be easily modified in order
to compute, for an input n € N, a word = with probability Pr,(z) [4,3].

It is clear that every sequential model over A is a rational model over the same al-
phabet. However, in this case @(Pr,.) is not always a rational series. As shown in [6],
such a function may even be non-holonomic (and hence transcendental). This occurs
for rather simple r as, for instance, the characteristic series of the language (b + ab)*.
The key property here is that the Hadamard division of two rational series is not neces-
sarily rational. This proves that rational models are a proper extension of the sequential
models.

Thus, we can summarize the discussion presented in this section by the following
statement.

Proposition 1. The chain of inclusions
Markovian models C Sequential models C Rational models

is strict. Moreover, the Markovian models strictly include the Bernoullian models and
can generate the Markovian sequences of order m, for every integer m > 1.

4 Average Number of Pattern Occurrences

In this section we evaluate the average number of occurrences of a pattern w € A* in a
string x € A* of length n, generated at random in a rational model, assuming that the
corresponding series admits a primitive linear representation.

Let (&, ut, ) be a linear representation of size m over the alphabet A as defined in
Section 2. We assume the matrix M =}, u(a) is primitive. Let X be its Perron-
Frobenius eigenvalue and denote by v and u, respectively, the left and right (strictly
positive) eigenvector of M corresponding to A such that v'u = 1. We know (see for
instance [13]) that for every n € N

M™ = \"(uv' 4+ C(n)) €]

where C'(n) is a real matrix such that C(n) = O(e"), for some 0 < ¢ < 1. Thus,
we can define the matrix C' = 3_7°% C(n), which turns out to be an analogous of the
fundamental matrix in Markov chains [8, Sect. 4.3]. In fact, the following identities are
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easy to prove:

u -1
C:(I—(/\—uv’)> —w', V/C=Cu=0,

A4
CM =MC =\C—1+u) ch _GMC e

Now, let w € A* be a pattern of length m > 1 and let x € A* be a word of length
n > m, generated at random in the rational model defined by the linear representation
(&, 1,m). We can consider the random variable O,, representing the number of occur-
rences of w in x, i.e. O,, = |z|,. Clearly, O,, takes on values in {0,1,...,n —m + 1}
and for each ¢ in that set we have

Pr(On=i) = Y. Z,’;\%;

yEA",|y|u,:i

Setting x = z1 - - - &, with z; € A for each i, we can consider O,, as a sum of random
variables of the form

where, forevery j =m,m+1,...,n

| lifzize-- 25 € A"w
7771 0 otherwise

Note that each I; is a Bernoullian random variable such that

§MIT" p(w) M

I, =
Pi(l; = 1) = S

Proposition 2. Ler O,, be the number of occurrence of a nonempty pattern w € A™ in
a string of length n > m generated at random in a rational model defined by a primitive
linear representation (£, j1,m) of size m. Then, its average value is given by

EO,)=fn—m—-1)+a+b+0("), (le] < 1)
where (3, a and b are real constants defined by

o U EOuw (w)Cy

o T om0 Aoy
with \, v, u and C defined as above.
Proof. From (4) it is easy to derive the equations

EM"ny = X\"(uv'n+ O(e")) (6)
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and

DM u(w) My =
j=m
AT [(n—m+ Duwd’ p(w)un” + Cu(w)uv” + wo’ p(w)Cln + O(E™)} (7)

Thus, the result follows by replacing the right hand sides of (6) and (7) into the expres-
sion
n 5 ;
&M ) M
E(O,) =
00 = 3 S

j=m

As a comment to the previous result we now make the following remarks:

1. If m = 1 the pattern w is reduced to an element of A and we get the average number
of symbol occurrences in a primitive rational model obtained in [2].

2. If (&, p, m) is a sequential model then M is a stochastic matrix. Therefore, A = 1,
1 = u = 1 and v is the stationary distribution of the underlying Markov chain, here
defined by the initial vector ¢ and the transition matrix M. As a consequence, we
also have Cn = 0, and hence

E(O,) = v pu(w)l (n—m+1) + & Cu(w)l + O(e") . (8)

In this case the leading constant 5 = v’y (w)1 is the probability of generating w in
the stationary sequential model (v, 1) (i.e. a sort of stationary probability of w).
3. If (&, u,m) is a stationary sequential model (i.e. £ = v), then £'C = 0 and we get

E(O0,) =vpu(w)l (n—m+1), )

which is the equation obtained in [12] (see also [9] Eq. (7.2.25)) in a stationary
(primitive) Markovian model of order 1. Thus, our proposition extends the same
equality to all stationary (primitive) sequential models.

4. Note that Equation (9) is not true if the sequential model is not stationary (i.e.
& # v); in this case constant £'C'u(w)1 of Equation (8) is not null in general. This
means that the stationarity hypothesis is necessary to get (9), even in the Markovian
models of order 1.

5 Analysis of the Variance

In this section we study the variance of O,, under the same assumptions of the previous
section. Our goal is to determine an asymptotic expression of the form Var(O,) =
~vn 4+ O(1) where v is a real constant depending on the pattern w and the linear repre-
sentation (&, u, 7).

It turns out that + is also related to the autocorrelation set of w, a classical notion
we here define following the approach proposed in [9]. Assume w = w; - - - W,y,, Where
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w; € Aforeachi.Forevery1 <i<j < mletwf c AT begivenbwa = w; - wj.
Then, we define the set of indices S and the matrix P(w) given by

S={ke{L2...om—1}|wf=uwl 1}, Plw)= 3 Nu(uf,,)

keS
Clearly, if m = 1 then S = () and P(w) = 0.
Proposition 3. Under the assumptions of Proposition 2 we have
Var(O,) =yn+c+0("), (lel < 1)

where 7y and c are real constants, the first one being given by

Cu(w) + P(w)] u

3= = (om = 1)? oL

(10)

Proof. By Equation (5) and Proposition 2 we have

n n—1 n
EO}) =) E(I;)+2) Y E(LL)=
j=m i=m j=i+1

=(n-m-1)B8+a+b+

n—-m n n—1 min{i+m—1,n}

+2) Y ELIL)+2) > E(LI;) an

i=m j=t+m i=m J=i+1

Observe that E(I;1;) is easy to evaluate when ¢ +m < j since in this case there is no
overlap in the occurrences of w at positions 7 and j. Hence, forevery ¢ =m,...,n—m
and every j =4+ m,...,n, we have

M p(w) MO pu(w) M
B §Mnrn

E(Li1;) =Pr(l; =1,1; = 1)

Thus, replacing (4) in the previous equation, by some computation one obtains

QniR zn: E(LI) =

i=m j=i+m

—n2B% +n (25(a +b) — B2(4m — 3) + 2”'“(wii“(w)“> +0(1) (12)

Now consider the last sum in the right hand side of (11); this term exists only if m > 1
and in this case (being m ¢ ) it can be proved that

n—1 min{t+m—1,n} n—m-+1

2 Z Z E(LI]) =2 Z Z E(IiIi+7n—k) + 0(1)

i=m Jj=i+1 i=m k€S
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Again applying (4) we get

Qn_il:-HZE([.[, ) =2 v'p(w) P(w)u o(1 13
ili+m—k) = 2N + () ( )

)\Q’m
i=m kS

Thus, replacing (12) and (13) in (11) and recalling that Var(O,,) = E(O2) — E(O,)?,
the result follows.

Now, let us discuss the previous result in some special cases.

1. In the case m = 1 we get the same evaluation of the variance obtained in [2], with
v =8 8%+ 2(0 u(w)Cu(w)u) /N,
2. If (&, p,m) is a sequential model (and hence 8 = v'p(w)1) we get

v=8-(2m—1)8+20'u(w) |Cp(w) + > p(wi,)| 1
keS

which generalizes and extends the evaluation of the leading term of the variance
obtained in [12] in stationary (primitive) Markovian models of order 1(see also [9,
Th. 7.2.8]).

3. If (&, u,m) is just a Markovian model of order 1, Equation (10) is equivalent to
Equation (7.2.27) in [9]. Note that the leading term -y does not depend on the initial
distribution ¢ and is the same as in the stationary case.

4. Also the constant ¢ can be computed explicitly as a function of w and (&, i, 7). In
particular, in the sequential model, reasoning as in Proposition 3 one gets

c=(3m? —4m +1)% - 2(2m — 1)v' pu(w)Cp(w)1 — 20" pu(w)C M Cp(w)1+
m—1

—(m —1)8 = 2(m — 1)v’p(w) P(w)1 + 20" p(w) Y p(wi’y )L+

Note that, as for the average value, the constant term of the variance depends on the
initial distribution &. If the sequential model is stationary, the above expression of
c further simplifies and the equation reduces to the first two rows, all terms of the
third one being null. Hence, the terms in the third row represent the contribution
given to the variance by the non-stationary hypothesis.
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