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(2) Department of Mathematics, Khalifa University,

Abu Dhabi - United Arab Emirates

Abstract. We study the local limit distribution of sequences of random
variables representing the number of occurrences of a symbol in words
of length n in a regular language, generated at random according to a
rational stochastic model. We present an analysis of the main local limits
when the finite state automaton defining the stochastic model consists
of two primitive components. Our results include an evaluation of the
convergence rate, which in the various cases is of an order slightly slower
than O(n−1/2).

1 Introduction

This work continues the analysis developed in [3,7,10] on the limit distribution
of the number of symbol occurrences in words of given length, chosen at random
in regular languages. More precisely, we consider sequences of random variables
{Yn}, where each Yn is the number of occurrences of a symbol a in a word w
of length n, generated at random in a rational stochastic model. Such a model
can be formally defined by a finite state automaton with real positive weights on
transitions. In this setting the probability of generating a word w is proportional
to the weight the automaton associates with w; thus, the language recognized
by the automaton is the family of all words having non-null probability to be
generated. This model is quite general, it includes as special cases the traditional
Bernoullian and Markovian sources [14,13] and contains the random generation
of words of length n in any regular language under uniform distribution.

The properties of {Yn} are of particular interest for the analysis of regular
patterns occurring in words generated by Markovian models [14,13,3] and for the
asymptotic estimate of the coefficients of rational series in commutative variables
[3,4]. They are also related to the study of the descriptional complexity of lan-
guages and computational models [5] and to the analysis of the values of additive
functions defined on regular languages [11]. Clearly, the asymptotic behaviour
of {Yn} depends on the properties of the finite state automaton A defining the
stochastic model. It is known that if A has a primitive transition matrix then
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Yn has a Gaussian limit distribution [13,3] and, under a suitable aperiodicity
condition, it also satisfies a local limit theorem [3]. The limit distribution of Yn
in the global sense is known also when the transition matrix of A consists of
two primitive components [7] and a first (non-Gaussian) local limit theorem in
a particular bicomponent case is presented in [10].

Here we improve these results presenting an analysis of the local limits of {Yn}
when the transition matrix of A consists of two primitive components equipped
with some transition from the first to the second component. At the cost of
adding suitable aperiodicity conditions, we prove that the main convergences
in distribution obtained in [7] also hold true in the local sense. Moreover, we
evaluate the rates of convergence to our limits both in the primitive case and
in all bicomponent cases (a tight convergence rate is a natural goal in these
contexts [12]). Our results are obtained by applying the Saddle Point Method
[8, Chapter VII] and, as our limit densities often are not normal, proofs can be
regarded as an application of this tool in non-Gaussian cases 1.

In this context it is crucial to observe that a local limit theorem does not fol-
low immediately from a traditional convergence in distribution (which occurs for
instance in the usual central limit theorems), since single probabilities are differ-
ences of values of the corresponding distribution functions, and hence they may
not be detected by a standard analysis of convergence in law. Usually, in order to
prove a local limit theorem from a convergence in distribution, some additional
regularity or aperiodicity conditions are necessary; standard counterexamples
show that such conditions cannot be avoided [9,4].

The material we present is organized as follows. In Section 2 we define the
problem, recalling the notions of convergence in distribution and local limit law.
In Section 3 we revise the primitive case stating a local limit theorem for our
statistics Yn with a convergence rate of the order O(n−1/2). In Section 4 we study
the behaviour of Yn in (communicating) bicomponent models: first we show a
Gaussian local limit property when there is a dominant component, yielding a
convergence rate analogous to the primitive model. Then, in Subsection 4.1, we
consider the equipotent bicomponent case, occurring when the main eigenvalues
of the two components coincide; in this case the results depend on the values of
four constants: β1, γ1 and β2, γ2, representing the leading terms of mean value
and variance of our statistics associated to the first and the second component,
respectively. When β1 6= β2 we strengthen the result on local limit towards a
uniform density obtained in [10] by showing a convergence rate “almost” of the

order O(n−1/2 log3/2 n). If β1 = β2 but γ1 6= γ2, then the local limit density
turns out to be a suitable mixture of Gaussian densities, with a convergence
rate “almost” of the order O(n−1/2 log2 n). When β1 = β2 and γ1 = γ2 we
obtain again a Gaussian local limit with convergence rate O(n−1/2). Finally,
these results are summarized in the last section, where we discuss possible future
investigations.

1 However, due to space constraints, all proofs in the present work are omitted.



2 Problem setting

Given the binary alphabet {a, b}, for every word w ∈ {a, b}∗ we denote by |w|
the length of w and by |w|a the number of occurrences of a in w. For each n ∈ N,
we also represent by {a, b}n the set {w ∈ {a, b}∗ : |w| = n}. Here a formal series
in the non-commutative variables a, b is a function r : {a, b}∗ → R+, where
R+ = {x ∈ R | x ≥ 0}, and for every w ∈ {a, b}∗ we denote by (r, w) the
value of r at w. Such a series r is called rational if for some integer m > 0
there is a monoid morphism µ : {a, b}∗ → Rm×m+ and two arrays ξ, η ∈ Rm+ ,
such that (r, w) = ξ′µ(w)η, for every w ∈ {a, b}∗. In this case, as the morphism
µ is generated by matrices A = µ(a) and B = µ(b), we say that the 4-tuple
(ξ, A,B, η) is a linear representation of r of size m. Clearly, such a 4-tuple can be
considered as a finite state automaton over the alphabet {a, b}, with transitions
(as well as initial and final states) weighted by positive real values. Throughout
this work we assume that the set {w ∈ {a, b}n : (r, w) > 0} is not empty for
every n ∈ N+ (so that ξ 6= 0 6= η), and that A and B are not null matrices,
i.e. A 6= [0] 6= B. Then we can consider the probability measure Pr over the set
{a, b}n given by

Pr(w) =
(r, w)∑

x∈{a,b}n(r, x)
=

ξ′µ(w)η

ξ′(A+B)nη
∀ w ∈ {a, b}n

Note that, if r is the characteristic series of a language L ⊆ {a, b}∗ then Pr is
the uniform probability function over the set L ∩ {a, b}n. Thus we can define
the random variable (r.v. for short) Yn = |w|a, where w is chosen at random in
{a, b}n with probability Pr(w). As A 6= [0] 6= B, Yn is not a degenerate r.v. . It
is clear that, for every k ∈ {0, 1, . . . , n},

pn(k) := Pr(Yn = k) =

∑
|w|=n,|w|a=k(r, w)∑
w∈{a,b}n(r, w)

Since r is rational also the previous probability can be expressed by using its
linear representation. It turns out that

pn(k) =
[xk]ξ′(Ax+B)nη

ξ′(A+B)nη
∀ k ∈ {0, 1, . . . , n} (1)

For sake of brevity we say that Yn is defined by the linear representation (ξ, A,B, η).
The distribution of Yn can be represented by the map hn(z) and the character-
istic function Ψn(t), given respectively by

hn(z) = ξ′(Aez +B)nη ∀ z ∈ C (2)

Ψn(t) =

n∑
k=0

pn(k)eitk =
ξ′(Aeit +B)nη

ξ′(A+B)nη
=
hn(it)

hn(0)
∀ t ∈ R (3)

In particular mean value and variance of Yn are determined by

E(Yn) =
h′n(0)

hn(0)
, Var(Yn) =

h′′n(0)

hn(0)
−
(
h′n(0)

hn(0)

)2

(4)



Our general goal is to study the limit distribution of {Yn} as n grows to +∞
and in particular its possible local limit law.

We recall that a sequence of r.v.’s {Xn} converges in distribution (or in law) to
a random variableX of distribution function F if limn→+∞ Pr(Xn ≤ x) = F (x) ,
for every x ∈ R of continuity for F . The central limit theorems yield classical
examples of convergence in distribution to a Gaussian random variable.

Instead, the local limit laws establish the convergence of single probabilities
to a density function (see for instance [9,8]). More precisely, consider a sequence
of r.v.’s {Xn} such that each Xn takes value in {0, 1, . . . , n}. We say that {Xn}
satisfies a local limit law of Gaussian type if there are two real sequences {an},
{sn}, satisfying an ∼ E(Xn), s2n ∼ Var(Xn) and sn > 0 for all n, such that for
some real εn → 0, the relation∣∣∣∣∣snPr (Xn = k) − e−( k−ansn

)
2
/2

√
2π

∣∣∣∣∣ ≤ εn (5)

holds uniformly for every k ∈ {0, 1, . . . , n} and every n ∈ N large enough. Here,
εn yields the convergence rate (or the speed) of the law. A well-known example
of such a property is given by the de Moivre-Laplace local limit theorem, which
concerns sequences of binomial r.v.’s [9].

Similar definitions can be given for other (non-Gaussian) types of local limit

laws. In this case the Gaussian density e−x
2/2/
√

2π appearing in (5) is replaced
by some density function f(x); clearly, if f(x) is not continuous at some points,
the uniformity of k must be adapted to the specific case.

3 Primitive models

A relevant case occurs when M = A + B is primitive, i.e. Mk > 0 for some
k ∈ N [16]. In this case it is known that Yn has a Gaussian limit distribution
and satisfies a local limit property [13,3]. Here we improve this result, showing
a convergence rate O(n−1/2), and revisit some material appearing in [3,4] that
is useful in the following sections.

Since M is primitive, by Perron-Frobenius Theorem, it admits a real eigen-
value λ > 0 greater than the modulus of any other eigenvalue. Thus, we can
consider the function u = u(z) implicitly defined by the equation

Det(Iu−Aez −B) = 0

such that u(0) = λ. It turns out that, in a neighbourhood of z = 0, u(z) is
analytic, is a simple root of the characteristic polynomial of Aez +B and |u(z)|
is strictly greater than the modulus of all other eigenvalues of Aez+B. Moreover,
a precise relationship between u(z) and function h(z), defined in (2), is proved in
[3] stating that there are two positive constants c, ρ and a function r(z) analytic
and non-null at z = 0, such that

hn(z) = r(z) u(z)n +O(ρn) ∀z ∈ C : |z| ≤ c (6)



where ρ < |u(z)| and in particular ρ < λ.

Mean value and variance of Yn can be estimated from relations (6) and (4).
In turns out [3] that the constants

β =
u′(0)

λ
and γ =

u′′(0)

λ
−
(
u′(0)

λ

)2

(7)

are strictly positive and satisfy the relations

E(Yn) = βn+O(1) and Var(Yn) = γn+O(1)

Other properties concern function y(t) = u(it)/λ, defined for real t in a neigh-
bourhood of 0. In particular, there exists a constant c > 0, for which relation
(6) holds true, satisfying the following relations [3]:

|y(t)| = 1− γ

2
t2 +O(t4), arg y(t) = βt+O(t3), |y(t)| ≤ e−

γ
4 t

2

∀ |t| ≤ c (8)

The behaviour of y(t) can be estimated precisely when t tends to 0. For any q
such that 1/3 < q < 1/2 it can be proved [3] that

y(t)n = e−
γ
2 t

2n+iβtn(1 +O(t3)n) for |t| ≤ n−q (9)

The previous properties can be used to prove a local limit theorem for {Yn}
when M is primitive, with a convergence rate O(n−1/2). The result, stated in
Theorem 1 below, holds under a further assumption, introduced to avoid period-
icity phenomena. To state this condition properly, consider the transition graph
of the finite state automaton defined by matrices A and B, i.e. the directed
graph G with vertex set {1, 2, . . . ,m} such that, for every i, j ∈ {1, 2, . . . ,m}, G
has an edge from i to j labelled by a letter a (b, respectively) whenever Aij > 0
(Bij > 0, resp.). Also denote by d the GCD of the differences in the number
of occurrences of a in the (labels of) cycles of equal length of G. Here and in
the sequel we say that the pair (A,B) is aperiodic if d = 1. Such a property is
often verified; for instance it holds true whenever Aij > 0 and Bij > 0 for two
(possibly equal) indices i, j.

Theorem 1. Let {Yn} be defined by a linear representation (ξ, A,B, η) such
that M = A + B is primitive, A 6= [0] 6= B and (A,B) is aperiodic. Moreover,
let β and γ be defined by equalities (7). Then, as n tends to +∞, the relation∣∣∣∣∣∣√nPr (Yn = k) − e−

(k−βn)2

2γn

√
2πγ

∣∣∣∣∣∣ = O
(
n−1/2

)
(10)

holds true uniformly for every k ∈ {0, 1, . . . , n}.



4 Bicomponent models

In this section we study the behaviour of {Yn}n∈N defined by a linear repre-
sentation (ξ, A,B, η) of size m, such that the matrix M = A + B consists
of two irreducible components. Formally, there are two linear representations,
(ξ1, A1, B1, η1) and (ξ2, A2, B2, η2), of size m1 and m2 respectively, where m =
m1 +m2, such that :

1) for some A0, B0 ∈ Rm1×m2
+ we have

ξ′ = (ξ′1, ξ
′
2), A =

(
A1 A0

0 A2

)
, B =

(
B1 B0

0 B2

)
, η =

(
η1
η2

)
(11)

2) M1 = A1 +B1 and M2 = A2 +B2 are irreducible matrices and we denote
by λ1 and λ2 the corresponding Perron-Frobenius eigenvalues;

3) ξ1 6= 0 6= η2 and matrix M0 = A0 +B0 is different from [0].
Note that condition 2) is weaker than a primitivity hypothesis for M1 and

M2. Condition 3) assures that there is communication from the first to the
second component and hence the main term of the probability function of Yn
also depends on the convolution of their behaviours.

Assuming these hypotheses the limit properties of {Yn} first depend on
whether λ1 6= λ2 or λ1 = λ2. In the first case there is a dominant compo-
nent, corresponding to the maximum between λ1 and λ2, which determines the
asymptotic behaviour of {Yn}. In the second case the two components are equipo-
tent and they both contribute to the limit behaviour of {Yn}. In both cases the
corresponding characteristic function has some common properties.

For j = 1, 2, let us define h
(j)
n (z), uj(z), yj(t), βj , and γj , respectively, as the

values hn(z), u(z), y(t), β, γ referred to component j. We also define H(x, y) as
the matrix-valued function given by

H(x, y) =

+∞∑
n=0

(Ax+B)nyn =

[
H(1)(x, y) G(x, y)

0 H(2)(x, y)

]
, where

H(1)(x, y) =
Adj (I − (A1x+B1)y)

Det (I − (A1x+B1)y)
, H(2)(x, y) =

Adj (I − (A2x+B2)y)

Det (I − (A2x+B2)y)
, (12)

G(x, y) = H(1)(x, y) (A0x+B0)y H(2)(x, y) .

Thus, the generating function of {hn(z)}n satisfies the following identities

∞∑
n=0

hn(z)yn = ξ′H(ez, y)η = ξ′1H
(1)(ez, y)η1 + ξ′1G(ez, y)η2 + ξ′2H

(2)(ez, y)η2 (13)

Hence, setting gn(z) = [yn]ξ′1G(ez, y)η2 , we obtain

hn(z) = h(1)n (z) + gn(z) + h(2)n (z) (14)

to be used in the analysis of the characteristic function Ψn(it) given by (3).
The dominant case is similar to the primitive one. Assume that λ1 > λ2, M1

is aperiodic (and hence primitive) and A1 6= [0] 6= B1. For sake of brevity, we



say that {Yn} is defined in a dominant bicomponent model with λ1 > λ2. In this
case we have 0 < β1 < 1, 0 < γ1, and it is known that Yn−β1n√

γ1n
converges in

distribution to a normal r.v. of mean value 0 and variance 1 [7]. Moreover, one
can prove the following result:

Theorem 2. Let {Yn} be defined in a dominant bicomponent model with λ1 >
λ2 and assume (A1, B1) aperiodic. Then, as n tends to +∞, the relation∣∣∣∣∣∣√nPr (Yn = k) − e−

(k−β1n)2

2γ1n

√
2πγ1

∣∣∣∣∣∣ = O
(
n−1/2

)
holds true uniformly for every k ∈ {0, 1, . . . , n}.

4.1 Equipotent case

Now, let us assume that λ1 = λ2 = λ, both matrices M1 and M2 are aperiodic
(and hence primitive) and Aj 6= [0] 6= Bj for j = 1, 2. Under these hypotheses
we say that {Yn} is defined in an equipotent bicomponent model. In this case the
limit distribution of {Yn} depends on the parameters β1, β2, γ1, γ2, defined as
in (7), which now satisfy conditions 0 < βj < 1 and 0 < γj , for both j = 1, 2.
Before studying the different cases, we recall some properties presented in [7]
that are useful in our context.

Observe that both h
(1)
n (z) and h

(2)
n (z) satisfy relation (6). Moreover, from

relations (12) and an analysis of function ξ′1G(ez, y)η2, for some c > 0 it can be
shown that

gn(z) = s(z)

n−1∑
j=0

u1(z)ju2(z)n−1−j +O(ρn) ∀z ∈ C : |z| ≤ c (15)

where s(z) is an analytic and non-null function for |z| ≤ c, and ρ < max{|u1(z)|,
|u2(z)|}. Therefore, by equality (14) we obtain

hn(z) = s(z)

n−1∑
j=0

u1(z)ju2(z)n−1−j +O(u1(z)n) +O(u2(z)n) ∀z ∈ C : |z| ≤ c

(16)
This relation has two consequences. First, since u1(0) = λ = u2(0), it implies

hn(0) = s(0)nλn−1(1 +O(1/n)) (s(0) 6= 0) (17)

Second, if u1(z) 6= u2(z) for some z ∈ C satisfying 0 < |z| ≤ c, then one gets

hn(z) = s(z)
u1(z)n − u2(z)n

u1(z)− u2(z)
+O(u1(z)n) +O(u2(z)n) (18)

Finally, in the equipotent bicomponent models the aperiodicity condition
consists of requiring that both pairs (A1, B1) and (A2, B2) are aperiodic. Under
this hypothesis, the following property holds true.



Proposition 3. Let {Yn} be defined in an equipotent bicomponent model and
let both pairs (A1, B1) and (A2, B2) be aperiodic. Then, for every c ∈ (0, π) there
exists ε ∈ (0, 1) such that |Ψn(t)| = O(εn) for all t ∈ R satisfying c ≤ |t| ≤ π.

4.1.1 Local limit with different β’s. In this subsection we assume an equipo-
tent bicomponent model with β1 6= β2. In this case it is known that {Yn/n} con-
verges in distribution to a uniform r.v. [7]. Here we state a local limit theorem
with a speed of convergence of an order arbitrarily slower thanO(n−1/2(log n)3/2),
thus improving a recent result presented in [10]. To this end, in view of Propo-
sition 3, we study the characteristic function Ψn(t) for |t| ≤ c, where c ∈ (0, π)
is a constant satisfying relation (16). Recall that in such a set both functions
y1(t) = u1(it)/λ and y2(t) = u2(it)/λ satisfy relations (8), and hence for every
real t such that |t| ≤ c, we have

y1(t) = 1 + iβ1t+O(t2) , y2(t) = 1 + iβ2t+O(t2) (19)

|y1(t)| ≤ e−
γ1
4 t

2

, |y2(t)| ≤ e−
γ2
4 t

2

(20)

Moreover, since in the present case (18) holds true for z near 0, using the previous
relations, for a suitable c ∈ (0, π) and every t ∈ R such that 0 < |t| ≤ c, we obtain

Ψn(t) =
hn(it)

hn(0)
=

1 +O(t)

1 +O(1/n)

(
y1(t)n − y2(t)n

i (β1 − β2) tn

)
+
∑
j=1,2

O

(
yj(t)

n

n

)
(21)

Now, for such a constant c, let us split [−c, c] into sets Sn and Vn, given by

Sn =

{
t ∈ R : |t| ≤

√
logn

n
τ1/3n

}
, Vn =

{
t ∈ R :

√
logn

n
τ1/3n < |t| ≤ c

}
(22)

where {τn} ⊂ R+ is any sequence such that τn → +∞ and τn = o(log log n)
(i.e. τn tends to +∞ with an arbitrarily slow order of growth). The behaviour of
Ψn(t) in these sets is given by the following two propositions, where we assume
an equipotent bicomponent model with β1 6= β2.

Proposition 4. For some a > 0 one has |Ψn(t)| = o
(
n−aτ

2/3
n

)
for all t ∈ Vn.

In order to evaluate Ψn(t) for t ∈ Sn, let us define

Kn(t) =
e−

γ1
2 t

2n+iβ1tn − e−
γ2
2 t

2n+iβ2tn

i(β1 − β2)tn
(23)

and consider relation (21). Since for t ∈ Sn one has nO(t3) = o(1), relation (9)
applies to both y1(t) and y2(t) yielding

yj(t)
n = e−

γj
2 t

2n+iβjtn(1 + nO(t3)) ∀ t ∈ Sn, j = 1, 2

Replacing these values in (21), after some computation one gets

Ψn(t) =
[
1 +O(t) + nO(t3) +O(1/n)

]
Kn(t) +O(1/n) ∀ t ∈ Sn (24)



Proposition 5. Defining Sn and Kn(t) as in (22) and (23), we have∣∣∣∣∫
Sn

(Ψn(t)−Kn(t)) dt

∣∣∣∣ = O

((
log n

n

)3/2

τn

)

Now, we are able to state the local limit in the present case. Set b1 =
min{β1, β2}, b2 = max{β1, β2} and denote by fU (x) the density function of
a uniform r.v. U in the interval [b1, b2], that is

fU (x) =
1

b2 − b1
χ[b1,b2](x) ∀x ∈ R

where χI denotes the indicator function of the interval I ⊂ R. Then we have

Theorem 6. Let {Yn}n∈N be defined in an equipotent bicomponent model with
β1 6= β2 and assume aperiodic both pairs (A1, B1) and (A2, B2). Then, for n
tending to +∞, the r.v. Yn satisfies the relation

|n Pr(Yn = k) − fU (x)| = O

(
(log n)3/2 τn√

n

)
(25)

for every real sequence {τn} satisfying τn → +∞, τn = o(log log n) and for every
integer k = k(n), provided that k/n→ x for a constant x such that β1 6= x 6= β2.

As an example, consider the rational stochastic model defined by the weighted
finite automaton of Figure 1, where each transition is labelled by an alphabet
symbol and a weight, together with the arrays ξ = (1, 0, 0, 0) and η = (0, 0, 1, 1).
Such an automaton recognizes the set of all words w ∈ {a, b, c}∗ of the form
w = xcy, such that x, y ∈ {a, b}∗ and the strings aa and bb do not occur in
x and y, respectively. Clearly this is a bicomponent model, with both pairs
(A1, B1) and (A2, B2) aperiodic. Moreover M1 = M2, while A1 6= A2. Hence the
two components are equipotent and β1 6= β2. This means that Yn/n converges
in distribution to a uniform r.v. of extremes β1, β2, and Yn satisfies Theorem
6. Note that simple changes may modifies the limit distribution: for instance,

setting to 3 the weight of transition 2
b→ 1 makes dominant the first component,

implying a Gaussian local limit law (Theorem 2).
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Fig. 1. Weighted finite automaton defining an equipotent bicomponent model (λ1 =
λ2 = 2) with 1/3 = β1 6= β2 = 2/3.



4.1.2 Local limit with equal β’s and different γ’s. In this section we
present a local limit theorem for {Yn} defined in an equipotent bicomponent
model with β1 = β2 and γ1 6= γ2. In this case, setting β = β1 = β2 and
γ = γ1+γ2

2 , it is known [7] that Yn−βn√
γn weakly converges to a random variable

T whose distribution is a mixture of Gaussian laws of mean 0 and variance
uniformly distributed over the interval of extremes γ1

γ and γ2
γ .

Formally, the density function of T is given by

fT (x) =
γ

γ2 − γ1

∫ γ2
γ

γ1
γ

e−
x2

2s

√
2πs

ds ∀ x ∈ R (26)

In passing, we observe that, for each x ∈ R, fT (x) may be regarded as the mean

value of the “heat kernel” K(x, t) = (4πt)−1/2e
−x2
4t at point x in the time

interval of extremes γ1/(2γ) and γ2/(2γ) [6].
Note that E(T ) = 0 and Var(T ) = 1, while its characteristic function is

ΦT (t) =

∫ +∞

−∞
fT (x)eitxdx = 2γ

e−
γ1
2γ t

2

− e−
γ2
2γ t

2

(γ2 − γ1)t2
(27)

Then, fT (x) can be expressed in the form

fT (x) =
1

2π

∫ +∞

−∞
ΦT (t)e−itxdt =

1

2π

∫ +∞

−∞
2γ

e−
γ1
2γ t

2

− e−
γ2
2γ t

2

(γ2 − γ1)t2
e−itxdt

Our goal is to present a local limit property for {Yn} (suitably scaled) to-
ward the r.v. T , with a speed of convergence of an order arbitrarily slower than

O
(

log2 n√
n

)
.

Also in this case we assume aperiodic both pairs (A1, B1) and (A2, B2), which
implies Proposition 3. As in the previous section, c ∈ (0, π) is a constant for which
relation (16) holds true; as a consequence, both functions y1(t) and y2(t) satisfy
relations (8), which now can be refined in the following form:

yj(t) =
uj(it)

λ
= 1 + iβt− γj + β2

2
t2 +O(t3) , ∀ x ∈ R : |t| ≤ c, j = 1, 2

Applying these values in (18), which is valid also in the present case for z near
to 0, and using (17), for some c ∈ (0, π) and every t ∈ R such that 0 < |t| ≤ c,
we obtain

Ψn(t) =
hn(it)

hn(0)
= 2

1 +O(t)

n+O(1)

y1(t)n − y2(t)n

(γ2 − γ1)t2 +O(t3)
+
∑
j=1,2

O

(
yj(t)

n

n

)
(28)

Now, for such a constant c, split the interval [−c, c] into sets Sn and Vn given by

Sn =

{
t ∈ R : |t| ≤

√
logn

n
τ1/4n

}
, Vn =

{
t ∈ R :

√
logn

n
τ1/4n < |t| ≤ c

}
(29)



where τn is defined as in (22). The behaviour of Ψn(t) in these sets is described
by the propositions below where we assume an equipotent bicomponent model
with β1 = β2 = β and γ1 6= γ2.

Proposition 7. For some a > 0 we have |Ψn(t)| = o
(
n−aτ

1/2
n

)
for every t ∈ Vn.

For sake of brevity, we define

Kn(t) = 2
e−

γ1
2 t

2n − e−
γ2
2 t

2n

(γ2 − γ1)t2n
eiβtn , ∀ t ∈ R (30)

It is easy to see that |Kn(t)| ≤ 2
∑
j=1,2

(
1− e−

γj
2 t

2n

|γ2 − γ1|t2n

)
for every t ∈ R. A simple

study of these expressions shows that both addends take their maximum value at
t = 0, where they have a removable singularity, and such values are independent
of n. As a consequence we can state that |Kn(t)| ≤ γ1+γ2

|γ2−γ1| , for every n ∈ N+

and every t ∈ Sn.

Proposition 8. Defining Sn and Kn(t) by (29) and (30), respectively, we have∫
Sn

|Ψn(t)−Kn(t)| dt = O

(
(log n)2 τn

n

)
Now we can state the local limit theorem in the present case:

Theorem 9. Let {Yn}n∈N be defined in an equipotent bicomponent model with
β1 = β2 = β, γ1 6= γ2, assume aperiodic pairs (A1, B1) and (A2, B2) and set
γ = (γ1 + γ2)/2. Then, for n tending to +∞, Yn satisfies the relation∣∣∣∣√γn Pr(Yn = k) − fT

(
k − βn
√
γn

)∣∣∣∣ = O

(
(log n)2 τn√

n

)
(31)

uniformly for k ∈ {0, 1, . . . , n}, where fT is defined in (26) and {τn} ⊂ R+ is
any sequence such that τn → +∞ and τn = o(log log n).

4.1.3 Local limit with equal β’s and equal γ’s. In this section we study the
local limit properties of {Yn} assuming an equipotent bicomponent model with
β1 = β2 = β and γ1 = γ2 = γ. In this case, it is known [7] that Yn−βn√

γn converges

in distribution to a Gaussian random variable of mean 0 and variance 1. Here
we prove that a Gaussian local limit property holds true with a convergence rate
of the order O(n−1/2), assuming aperiodic both pairs (A1, B1) and (A2, B2).

Again we assume c ∈ (0, π) is a constant for which equality (16) holds true,
so that both functions y1(t) and y2(t) satisfy relations (8) and (9), which we now
restate in the following form for sake of clearness:

|yj(t)| ≤ e−
γ
4 t

2

∀ t ∈ R : |t| ≤ c, j = 1, 2 (32)

yj(t)
n = e−

γ
2 t

2n+iβtn(1 + nO(t3)) ∀ t ∈ R : |t| ≤ n−q, j = 1, 2 (33)



where q is an arbitrary value such that 1/3 < q < 1/2.
The following propositions yield properties of the characteristic function

Ψn(t) respectively for |t| ≤ n−q and n−q < |t| ≤ c.

Proposition 10. For every q ∈ (1/3, 1/2), we have

|Ψn(t)| = O
(
e−

γ
4 n

1−2q
)

∀ t ∈ R : n−q < |t| ≤ c

Proposition 11. For every q ∈ (1/3, 1/2), we have∫
|t|≤n−q

∣∣∣Ψn(t)− e−
γ
2 t

2n+iβtn
∣∣∣ dt = O(n−1)

Then, our last result follows:

Theorem 12. Let {Yn}n∈N be defined in an equipotent bicomponent model with
β1 = β2 = β and γ1 = γ2 = γ, and assume aperiodic both pairs (A1, B1) and
(A2, B2). Then, for n tending to +∞ the relation∣∣∣∣∣∣√nPr (Yn = k) − e−

(k−βn)2

2γn

√
2πγ

∣∣∣∣∣∣ = O
(
n−1/2

)
holds true uniformly for every k ∈ {0, 1, . . . , n}.

5 Conclusions

The analysis of the symbol statistics Yn’s presented in this work concerns the
cases when the rational stochastic model consists of one or two primitive com-
ponents. Our results are summarized in Table 1, which refers to the previous
literature for already known properties.

Bicomponent Models
Primitive Models equipotent

dominant β1 6= β2
β1 = β2
γ1 6= γ2

β1 = β2
γ1 = γ2

Local limit
distribution

N0,1 (see [3]) N0,1 Uβ1,β2 (see [10]) T N0,1

Convergence
rate

O(n−1/2) O(n−1/2) O
(
τn log3/2 n√

n

)
O
(
τn log2 n√

n

)
O(n−1/2)

Table 1. Symbols N0,1, Uβ1,β2 and T denote respectively a Gaussian, uniform and
T -type local limit, T being defined in Section 4.1.2. Also, τn is defined in Theorem 6

Natural extensions of these results concern rational models with more than
two primitive components having equal dominant eigenvalue and, possibly, the
evaluation of neglected terms in the asymptotic expressions. Also in the case



of bicomponent models our analysis is not complete as it does not include the
non-communicating cases (M0 = [0]) nor the degenerate cases (when, for a
dominant component i ∈ {1, 2}, either Ai = 0 or Bi = 0). In these cases rather
different limit distributions are obtained [7, Section 8], due to the diverse type
of generating functions appearing therein. Even if these situations are somehow
particular, they are representative of typical regular languages, and hence they
seem to be natural subjects for future investigations.
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