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Abstract

We give asymptotic estimates of the frequency of occurrences of a symbol in a
random word generated by any bicomponent stochastic model. More precisely, we
consider the random variable Yn representing the number of occurrences of a given
symbol in a word of length n generated at random; the stochastic model is defined
by a rational formal series r having a linear representation with two primitive com-
ponents. This model includes the case when r is the product or the sum of two
primitive rational formal series. We obtain asymptotic evaluations for the mean
value and the variance of Yn and its limit distribution.
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1 Introduction

Estimating the frequency of given patterns in a random text is a classical
problem studied in several research areas of computer science and mathe-
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matics that has well-known applications in molecular biology [10,15,8,14,17].
Pattern statistics studies this problem in a probabilistic framework: one or
more patterns are fixed and a text of length n is randomly generated by a
memoryless source (also called Bernoulli model) or a Markovian source (the
Markovian model) where the probability of a symbol in any position only de-
pends on a finite number of previous occurrences [11,15,13,5]. Main goals of
the research in this context are the asymptotic expressions of mean value and
variance of the number of pattern occurrences in the text and its limit distri-
bution. Several results show a Gaussian limit distribution of these statistics in
the sense of the central or local limit theorem [1]. In particular in [13] prop-
erties of this kind are obtained for a pattern statistics which represents the
number of (positions of) occurrences of words from a regular language in a
random string of length n generated in a Bernoulli or a Markovian model.

This approach has been extended in [3,4] to the so-called rational stochas-
tic model, where the text is generated at random according to a probability
distribution defined by means of a rational formal series in non-commutative
variables. In particular cases, this is simply the uniform distribution over the
set of words of given length in an arbitrary regular language. We recall that
there are well-known linear time algorithms that generate a word at random
under such a distribution [6]. The relevance of the rational stochastic model is
due to the connection with the classical Markovian random sourses in pattern
statistics. This relationship can be stated precisely as follows [3]: the frequency
problem of regular patterns in a text generated in the Markovian model (as
studied in [13]) is a special case of the frequency problem of a single symbol
in a text over a binary alphabet generated in the rational stochastic model; it
is also known that the two models are not equivalent.

The symbol frequency problem in the rational model is studied in [3] in the
primitive case, i.e. when the matrix associated with the rational formal se-
ries (counting the transitions between states) is primitive and hence it has a
unique eigenvalue of largest modulus, which is real positive. Under this hy-
pothesis asymptotic expressions for the mean value and the variance of the
statistics under investigation are known, together with their limit distributions
expressed in the form of both central and local limit theorems [3,4].

In the present paper we study the symbol frequency problem in the bicom-
ponent rational model, which is a non-primitive case of the rational model,
defined by a formal series that admits a linear representation with two primi-
tive components. In this context there are two special examples of particular
interest: they occur when the formal series defining the model is, respectively,
the sum or the product of two primitive formal series. We will call them the
sum and the product model, respectively, and they will represent the leading
examples of our discussion.

2



We determine the asymptotic evaluation of mean value and variance and the
limit distribution of the number of symbol occurrences in a word randomly
generated according to such a bicomponent rational model. The behaviour
of this random variable mainly depends on two conditions: whether there
exists a communication from the first to the second component and whether
one component is dominant, i.e. its main eigenvalue is strictly greater than
the main eigenvalue of the other one (if the main eigenvalues are equal we
say that the components are equipotent). The analysis of the dominant case
splits in two further directions according whether the dominant component is
degenerate or not 1 . The equipotent case has several subcases corresponding
to the possible differences between the leading terms of the mean values and
of the variances of the statistics associated with each component.

Our main results are summarized in a table presented in the last section. It
turns out that if one component is dominant and does not degenerate then it
determines the main terms of expectation and variance of our statistics, and
we get a Gaussian limit distribution. On the contrary, in the dominant degen-
erate case the limit distribution can assume a large variety of possible forms
depending even on the other (non-main) eigenvalues of the dominated compo-
nent and including the geometric law in some simple cases. In the equipotent
case, if the leading terms of the mean values (associated with the components)
are different, then the overall variance is of a quadratic order showing there is
not a concentration phenomenon around the average value of our statistics; in
this case the typical situation occurs when there is communication from the
first to the second component: here we obtain a uniform limit distribution.
On the contrary, when the leading terms of the mean values are equal, we
have again a concentration phenomenon with a limit distribution given by a
mixture of Gaussian laws, which reduces again to a normal distribution when
the local behaviour of our statistics in the two components is asympotically
equal.

The main contribution of these results is related to the non-primitive hypothe-
sis. To our knowledge, the pattern frequency problem in the Markovian model
is usually studied in the literature under primitive hypothesis and Gaussian
limit distributions are generally obtained. On the contrary, here we get in
many cases limit distributions quite different from the Gaussian one.

We think our analysis is significant also from a methodogical point of view:
we adapt methods and ideas introduced to deal with the Markovian model
to a more general stochastic model, the rational one, which seems to be the
natural setting for these techniques.

The material we present is organized as follows. After recalling some prelim-

1 Here, a component is degenerate if all its transitions are labelled by the same
symbol.
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inaries in Section 2 and the rational stochastic model in Section 3, we revisit
the primitive case in Section 4 by using a simple matrix differential calculus.
In Section 5 we introduce the bicomponent rational model and then we study
the dominant case, i.e. when the main eigenvalue of one component is greater
than the main eigenvalue of the other. In Section 7 we consider the equipotent
case, when the two main eigenvalues are equal. Finally Section 8 is devoted to
the analysis of the sum models while the last section contains the summary
and a comparison of the results.

The computations described in our examples are executed by using Mathe-
matica [18].

2 Preliminaries

In this section we recall some basic notions and properties concerning non-
negative matrices [16] and probability theory [9].

2.1 Perron–Frobenius theory

The Perron–Frobenius theory is a well-known subject widely studied in the
literature (see for instance [16]). To recall its main results we first establish
some notation. For every pair of matrices T = [Tij ], S = [Sij ], the expression
T > S means that Tij > Sij for every pair of indices i, j. As usual, we consider
any vector v as a column vector and denote by vT the corresponding row
vector. We recall that a nonnegative matrix T is called primitive if there
exists m ∈ N such that Tm > 0. The main properties of such matrices are
given by the following theorem [16, Sect.1].

Theorem 1 (Perron–Frobenius) Let T be a primitive nonnegative matrix.
There exists an eigenvalue λ of T (called Perron–Frobenius eigenvalue of T )
such that: i) λ is real and positive; ii) with λ we can associate strictly positive
left and right eigenvectors; iii) |ν| < λ for every eigenvalue ν 6= λ; iv) if
0 ≤ C ≤ T and γ is an eigenvalue of C, then |γ| ≤ λ, moreover |γ| = λ
implies C = T ; v) λ is a simple root of the characteristic polynomial of T .

The following proposition is a first consequence of the theorem above [16,
Theorem 1.2].

Proposition 2 If T is a primitive matrix and 1 is its Perron–Frobenius eigen-
value, then

T n = uvT +D(n) · n
s

hn
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where s ∈ N, h > 1, D(n) is a real matrix such that |D(n)ij| ≤ c for all n large
enough, every i, j and some constant c > 0, while vT and u are strictly positive
left and right eigenvectors of T corresponding to the eigenvalue 1, normed so
that vTu = 1.

Moreover, under the same hypotheses, the matrix D =
∑∞

n=0D(n)ns/hn is
well defined and, by the properties of v and u, satisfies the equality

vTD = Du = 0 . (1)

2.2 Notations on matrix functions

Assume that A(x) is a square matrix the entries of which are complex func-
tions in the variable x. The derivative of A(x) with respect of x is the matrix
DxA(x) = [A′(x)ij] of its derivatives. Thus, if A(x) and B(x) are square ma-
trices of the same size, then the following identities can be easily proved:

Dx(A(x) · B(x)) = DxA(x) · B(x) +A(x) ·DxB(x) , (2)

Dx(A(x)
n) =

n
∑

i=1

A(x)i−1 ·DxA(x) ·A(x)n−i ,

Dx(A(x)
−1) = −A(x)−1 ·DxA(x) · A(x)−1 . (3)

Moreover, the traditional big-O notation can be extended to matrix functions:
let A(x) be defined in an open domain E ⊆ C, let g(x) be a complex function
also defined in E and let x0 be an accumulation point of E; as x tends to
x0 in E, we write A(x) = O(g(x)) to mean that for every pair of indices
i, j, A(x)ij = O(g(x)), namely there exists a positive constant c such that
A(x)ij ≤ c g(x), for every x in E near x0. Thus, if the entries of A(x) are
analytic at a point x0, then A(x) = A(x0) + A′(x0)(x − x0) + O ((x− x0)

2).
On the contrary, if some entries of A(x) have a pole of degree 1 at a point x0,
while the others (if any) are analytic at the same point, then

A(x) =
R

x− x0
+ S +O(x− x0)

for suitable matrices R and S (R 6= 0).

2.3 Moments and limit distribution of discrete random variables

Let X be a random variable (r.v.) with values in a set {x0, x1, . . . , xk, . . .} of
real numbers and set pk = Pr{X = xk}, for every k ∈ N. We denote by FX its
distribution function, i.e. FX(τ) = Pr{X ≤ τ} for every τ ∈ R. If the set of
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indices {k | pk 6= 0} is finite we can consider the moment generating function
of X , given by

ΨX(z) = E(ezX) =
∑

k∈N
pke

zxk ,

which in our case is well-defined for every z ∈ C. This function can be used
to compute the first two moments of X ,

E(X) = Ψ′
X(0) , E(X2) = Ψ′′

X(0) . (4)

and yields the characteristic function of X , given by

ΦX(t) = E(eitX) = ΨX(it) .

The function ΦX(t) (well-defined for every t ∈ R) completely characterizes the
distribution function FX and represents the classical tool to prove convergence
in distribution. We recall that, given a sequence of random variables {Xn}n
and a random variable X , Xn converges to X in distribution (or in law) if
limn→∞ FXn(τ) = FX(τ) for every point τ ∈ R of continuity for FX . It is well-
known that Xn converges to X in distribution if and only if ΦXn(t) tends to
ΦX(t) for every t ∈ R. Several forms of the central limit theorem are classically
proved in this way [9,7].

A convenient approach to prove the convergence in law to a Gaussian random
variable relies on the so called “quasi-power” theorems introduced in [12] (see
also [7]) and implicitely used in the previous literature [1]. For our purpose it
is convenient to recall such a theorem in a simple form (for the proof see [7,
Theorem 9.6] or [1, Theorem 1]).

Theorem 3 Let {Xn} be a sequence of random variables, where each Xn takes
values in {0, 1, . . . , n} and assume there exist two functions r(z), u(z), both
analytic at z = 0, where they take the value r(0) = u(0) = 1, and two positive
constants c, ρ, such that for every |z| < c

ΨXn(z) = r(z) · u(z)n +O(ρn) and ρ < |u(z)|.

Also set
µ = u′(0) and σ = u′′(0) − (u′(0))2

and assume σ > 0 (variability condition). Then Xn−µn√
σn

converges in distribu-

tion to a normal random variable of mean 0 and variance 1, i.e. for every
x ∈ R

lim
n−→+∞

Pr

{

Xn − µn√
σn

≤ x

}

=
1√
2π

∫ x

−∞
e−

t2

2 dt .

Finally, we recall that a sequence of random variable {Xn} converges in prob-
ability to a random variable X if, for every ε > 0, Pr{|Xn −X| > ε} tends to
0 as n goes to +∞. It is well-known that convergence in probability implies
convergence in law.
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3 The rational stochastic model

The stochastic model we consider in this work is defined by using the notion
of linear representation of a rational formal series [2]. Let R+ be the semiring
of non-negative real numbers. We recall that a formal series over Σ with
coefficients in R+ is a function r : Σ∗ −→ R+. Usually, the value of r at ω
is denoted by (r, ω) and we write r =

∑

ω∈Σ∗(r, ω) · ω. Moreover, r is called
rational if it admids a linear representation, that is a triple (ξ, µ, η) where, for
some integer m > 0, ξ and η are (column) vectors in Rm

+ and µ : Σ∗ −→ Rm×m
+

is a monoid morphism, such that (r, ω) = ξTµ(ω) η holds for each ω ∈ Σ∗.
We say that m is the size of the representation. Observe that considering
such a triple (ξ, µ, η) is equivalent to defining a (weighted) non–deterministic
automaton, where the state set is given by {1, 2, . . . , m} and the transitions,
the initial and the final states are assigned weights in R+ by µ, ξ and η
respectively. Note that (ξ, µ, η) represents a deterministic finite automaton
when ξ and η are the characteristic arrays of the initial state and the final
states, respectively, and for every σ ∈ Σ and every i = 1, 2, . . . , m there exists
an index j such that µ(σ)ij = 1, while µ(σ)ij′ = 0 for any j′ 6= j: in this case
r is the characteristic series of the languages recognized by the automaton.

From now on we assume Σ = {a, b} and set A = µ(a), B = µ(b) and M =
A+B. Thus, for every positive integer n such that ξTMnη 6= 0, we can define
a probability space as follows. Let us define a computation path of length n as
a string ` of the form

` = q0x1q1x2q2 · · · qn−1xnqn

where qj ∈ {1, 2, . . . , m} and xi ∈ {a, b} for every j = 0, 1, . . . , n and every
i = 1, 2, . . . , n. We denote by Ωn the set of all computation paths of length n
and, for each ` ∈ Ωn, we define the probability of ` as

Pr{`} =
ξq0µ(x1)q0q1µ(x2)q1q2 · · ·µ(xn)qn−1qnηqn

ξTMnη
.

Denoting by P(Ωn) the family of all subsets of Ωn, it is clear that 〈Ωn,P(Ωn),
Pr〉 is a probability space.

Now, let us consider the random variable Yn : Ωn → {0, 1, . . . , n} such that
Yn(`) is the number of a occurring in `, for each ` ∈ Ωn. It is clear that, for
every integer 0 ≤ k ≤ n, we have

Pr{Yn = k} =
ϕ
(n)
k

∑n
j=0ϕ

(n)
j

, where ϕ
(n)
k =

∑

|w|=n,|w|a=k

ξTµ(w)η .

Note that when (ξ, µ, η) represents a deterministic finite automaton, Yn is
the number of occurrences of a in a word randomly chosen under uniform
distribution in the set af all strings of length n in the language recognized by
the automaton. This observation may suggest that Yn could be defined over

7



a sample space simpler than Ωn (a natural candidate would be Σn as in [3]).
However, the sample space Ωn is really necessary in our context, as it will
be clear in Sections 5 and 8, since we will have to distinguish different paths
having the same labelling word.

We remark that classical probabilistic models as the Bernoulli or the Markov
processes, frequently used to study the number of occurrences of regular pat-
terns in random words [11,15,13], are special cases of rational stochastic mod-
els. The relationship between Markovian processes and rational stochastic
models can be formally stated as follows (for the proof see [3, Sec. 2.1]).
Given a regular language R over a finite alphabet and a Markovian process Π
generating words at random over the same alphabet, let On(R,Π) denote the
number of (positions of) occurrences of elements of R in a word of length n
generated by Π. It turns out that for every such R and Π there exists a linear
representation (ξ, µ, η) over the alphabet {a, b} such that, for every n ∈ N,
the corresponding random variable Yn has the same probability function as
On(R,Π), i.e. Pr{Yn = k} = Pr{On(R,Π) = k} for any k = 0, 1, . . . , n.
The opposite inclusion is not true: there are rational stochastic models which
cannot be simulated by any Markovian process. This is due to the fact that
the generating function of the bivariate sequence {Pr{On(R,Π) = k}}n,k is
a rational analytic function for any R,Π, while there exist linear representa-
tions (ξ, µ, η) such that the generating function of the corresponding sequence
{Pr{Yn = k}}n,k is not algebraic.

To study the asymptotic behaviour of Yn, one should consider the moment
generating function of the random variable Yn which is defined as

ΨYn(z) =
hn(z)

hn(0)
where hn(z) =

n
∑

k=0

ϕ
(n)
k ezk = ξT (Aez +B)nη (5)

and observe that by (4) we have

E(Yn) =
h′n(0)
hn(0)

and Var(Yn) =
h′′n(0)
hn(0)

−
(

h′n(0)
hn(0)

)2

. (6)

In order to study the asymptotic behaviour of hn(0), h
′
n(0) and h′′

n(0), it is
useful to introduce the bivariate matrix function H(z, w), well-defined in a
neighbourhood of (0, 0), given by

H(z, w) =

+∞
∑

n=0

(Aez +B)nwn = [I − w(Aez +B)]−1. (7)

Denote by Hz and Hzz its partial derivatives ∂H
∂z

and ∂2H
∂z2

, respectively, and
observe that

+∞
∑

n=0

hn(z)w
n = ξT H(z, w) η. (8)
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Finally, the characteristic function of the random variable Yn is given by

ΦYn(t) = E(eitYn) =
hn(it)

hn(0)
.

4 The primitive case

The asymptotic behaviour of Yn is studied in [3] in the case when (ξ, µ, η) is a
primitive linear representation, i.e. when the matrix µ(a) + µ(b) is primitive.
In this section, we present some steps of those proofs by using a more general
approach. The discussion will be useful in subsequent sections.

As above, let A = µ(a) and B = µ(b). Since the matrixM = A+B is primitive
we can consider the Perron–Frobenius eigenvalue λ of M and, by Proposition
2, we have

Mn = λn
(

uvT + C(n)
)

(9)

where C(n) is a real matrix such that C(n) = O(εn) for some 0 ≤ ε < 1 and
vT and u are strictly positive left and right eigenvectors of M corresponding
to the eigenvalue λ, normed so that vTu = 1. Moreover, we know that the
matrix

C =

∞
∑

n=0

C(n)

is well-defined and, by (1), vTC = Cu = 0.

Since A+B is primitive, by Perron–Frobenius Theorem, the function H(0, w)
defined in (7) has a unique singularity of smallest modulus at w = 1/λ which
is a simple pole. Thus, by (3), also Hz(0, w) and Hzz(0, w) have a unique
singularity of smallest modulus at w = 1/λ. The following lemma gives a
more precise analysis.

Lemma 4 In a neighbourhood of w = 1/λ, the matrices H(0, w), Hz(0, w)
and Hzz(0, w) admit a Laurent expansion of the form

H(0, w) =
uvT

1− λw
+ C + O(1− λw) (10)

Hz(0, w) =
λw

(1− λw)2
· βuvT +

D

1− λw
+ O(1) (11)

Hzz(0, w) =
2λ2w2

(1− λw)3
· β2uvT + (12)

+
λw

(1− λw)2
· (βuvT + 2βD + 2uvT

ACA

λ2
uvT ) +O

(

1

1− λw

)
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where the matrix D and the constant β are defined by

D =
CA

λ
uvT + uvT

AC

λ
, β =

vTAu

λ
. (13)

Proof. First observe that relations (7) and (9) imply the following equalities:

H(0, w) =

+∞
∑

n=0

Mnwn =

+∞
∑

n=0

(uvT + C(n)) λnwn

=

+∞
∑

n=0

uvTλnwn +

+∞
∑

n=0

C(n)λnwn (14)

Since each entry of
∑

nC(n)xn converges uniformly for x near 1 to a rational
function, we have

∞
∑

n=0

C(n)xn = C +O(1− x)

and hence the second series in (14) equals C +O(1− λw), which proves (10).

Now observe that from (2) and (3) we get

Hz(0, w) = H(0, w) Aw H(0, w) ,

Hzz(0, w) = Hz(0, w) · [I + 2Aw H(0, w)] .

Replacing (10) in the previous expressions, one can easily find equations (11)
and (12). 2

Theorem 5 If M is primitive then the mean value and the variance of Yn

satisfy the relations

E(Yn) = βn+
δ

α
+O (εn) , Var(Yn) = γn+O(1) ,

where |ε| < 1 and β is defined in (13), while α, γ and δ are given by

α = (ξTu)(vT η) , γ = β − β2 + 2
vTACAu

λ2
, δ = ξTDη .

Proof. By equation (8), from the previous lemma it is easy to prove that

hn(0) = λn · α+O(ρn)

h′n(0) = nλn · αβ + λnδ +O(ρn) (15)

h′′n(0) = n2λn · αβ2 + nλn ·
(

αβ − αβ2 + 2βδ + 2α
vTACAu

λ2

)

+O(λn)

where |ρ| < λ gives the contribution of smaller eigenvalues of M . Then, the
result follows from (6). 2
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Notice that B = 0 implies β = 1 and γ = δ = 0, while A = 0 implies
β = γ = δ = 0; on the contrary, if A 6= 0 6= B then clearly 0 < β < 1 and one
can prove that also 0 < γ [3].

In [3] it is proved that Yn converges in law to a Gaussian random variable,
when M is primitive and A 6= 0 6= B. The proof is based on Theorem 3. To
see its main steps, consider the generating function of hn(z), given by

ξTH(z, w)η =
ξTAdj (I − w(Aez +B)) η

det (I − w(Aez +B))
.

Since A+B is primitive, its Perron-Frobenius eigenvalue λ is a simple root of
det(yI −A− B). Thus the equation

det (yI −Aez −B) = 0

defines an implicit function y = y(z) analytic in a neighbourhood of z = 0
such that y(0) = λ and y′(0) 6= 0.

A further property of primitive matrices (see for instance [16, page 7]) states
that Adj(λI −A−B) > 0 and hence, by continuity, all entries of H(z, w) are
different from 0 for every z near 0 and every w near λ−1. These properties
allow us to prove the following proposition [3].

Proposition 6 For every z near 0, as n tends to infinity we have

hn(z) = ξTR(z)η · y(z)n +O(ρn),

where ρ < |y(z)| and R(z) is a matrix function given by

R(z) = − y(z) ·Adj
(

I − y(z)−1(Aez +B)
)

∂
∂wdet (I − w(Aez +B)) |w=y(z)−1

.

Note that any entry of R(z) is analytic and non-null at z = 0. Moreover, from
the previous result one can also express the moments of Yn as function of y(z),
obtaining

β =
y′(0)
λ

, γ =
y′′(0)
λ

−
(

y′(0)
λ

)2

. (16)

Since in our case γ > 0, we can apply Theorem 3 which implies the following

Theorem 7 If M is primitive and A 6= 0 6= B, then Yn−βn√
γn

converges in

distribution to a normal random variable of mean 0 and variance 1.

We conclude this section observing that ξTH(z, w)η is the generating function
of {hn(z)} and hence, by Proposition 6, for every z near 0 we have

H(z, w) =
R(z)

1− y(z)w
+O(1), as w → y(z)−1 . (17)
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5 The bicomponent model

Here we consider a linear representation (ξ, µ, η) where the matrix µ(a) +
µ(b) consists of two primitive components. More formally, we consider a triple
(ξ, µ, η) such that there exist two primitive linear representations (ξ1, µ1, η1)
and (ξ2, µ2, η2), of size s and t respectively, satisfying the following relations:

ξT = (ξT1 , ξ
T
2 ) , µ(x) =





µ1(x) µ0(x)

0 µ2(x)



 , η =





η1

η2



 (18)

where µ0(x) ∈ Rs×t
+ for every x ∈ {a, b}. In the sequel, we say that (ξ, µ, η) is

a bicomponent linear representation.

For sake of brevity we use the notations Aj = µj(a), Bj = µj(b) and Mj =
Aj +Bj for j = 0, 1, 2. Hence, we have

A = µ(a) =





A1 A0

0 A2



 , B = µ(b) =





B1 B0

0 B2



 , M = A+B =





M1 M0

0 M2



 .

Intuitively, this linear representation corresponds to a weighted non-determi-
nistic finite state automaton (which may have more than one initial state) such
that its state diagram consists of two disjoint strongly connected subgraphs,
possibly equipped with some further arrows from the first component to the
second one.

To avoid trivial cases, throughout this work we assume ξ1 6= 0 6= η2 together
with the following significance hypothesis:

(A1 6= 0 or A2 6= 0) and (B1 6= 0 or B2 6= 0) . (19)

Note that if the last condition is not true then Yn may assume two values at
most (either {0, 1} or {n−1, n}). Assuming the significance hypothesis means
to forbid the cases when both components only have transitions labelled by
the same letter (either a or b).

In our automaton, a computation path ` = q0x1q1x2q2 · · · qn−1xnqn can be of
three different kinds:

(1) All qj ’s are in the first component (in which case we say that ` is contained
in the first component);

(2) There is an index 0 ≤ s < n such that the indices q0, q1, . . . , qs are in the
first component while qs+1, . . . , qn are in the second one. In this case xs+1

is the label of the transition from the first to the second component;
(3) All qj ’s are in the second component (in which case we say that ` is

contained in the second component).
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Using the notation introduced in the previous section, from now on we refer the
values hn(z) andH(z, w) to the triple (ξ, µ, η). We also agree to append indices
1 and 2 to the values associated with the linear representations (ξ1, µ1, η1) and
(ξ2, µ2, η2), respectively. Thus, for each j = 1, 2, the values λj , Cj, Dj, h

(j)
n (z),

H(j)(z, w), uj, vj , αj, βj, γj, δj , yj(z) and Rj(z) are well-defined and associated
with the linear representation (ξj, µj, ηj).

Now consider the matrixH(z, w). To express its value as a function ofH(1)(z, w)
and H(2)(z, w), we use the following identities, which can be proved by induc-
tion. For any matrices P,Q, S of suitable sizes, we have





P Q

0 S





n

=





Pn
∑n−1

i=0 P iQSn−1−i

0 Sn



 ;

moreover, also in the case of matrices, for any pair of sequences {pn}, {sn}
and any fixed q, we have

∞
∑

n=0

(

n−1
∑

i=0

piqsn−1−i

)

wn =

( ∞
∑

n=0

pnw
n

)

qw

( ∞
∑

n=0

snw
n

)

.

Then, a simple decomposition of H(z, w) follows from the previous equations:

H(z, w) =

+∞
∑

n=0

(Aez +B)nwn =





H(1)(z, w) G(z, w)

0 H(2)(z, w)





where
G(z, w) = H(1)(z, w) (A0e

z +B0)w H(2)(z, w) . (20)

Thus the function hn(z) defined in (5) now satisfies the equality

∞
∑

n=0

hn(z)w
n = ξTH(z, w)η = ξT1 H

(1)(z, w)η1 + ξT1 G(z, w)η2 + ξT2 H
(2)(z, w)η2

and setting
∑

n gn(z)w
n = ξT1 G(z, w)η2 we obtain

hn(z) = h(1)n (z) + gn(z) + h(2)n (z) . (21)

The bicomponent model includes two special cases which occur respectively
when the formal series r defined by (ξ, µ, η) is the sum or the product of two
rational formal series that have primitive linear representation.

Example 1 (Sum) Let r be the series defined by

(r, ω) = ξT1 µ1(ω)η1 + ξT2 µ2(ω)η2 ∀ω ∈ {a, b}∗

where (ξj, µj, ηj) is a primitive linear representation for j = 1, 2. Clearly, r
admits a bicomponent linear representation (ξ, µ, η) which satisfies (18) and

13



such that M0 = 0. As a consequence, the computation paths of type 2 cannot
occur and hence

hn(z) = h(1)n (z) + h(2)n (z) .

Example 2 (Product) Consider the formal series

(r, ω) =
∑

ω=xy

πT
1 ν1(x) τ1 · πT

2 ν2(y) τ2 ∀ω ∈ {a, b}∗

where (πj , νj , τj) is a primitive linear representation for j = 1, 2. Then, r
admits a bicomponent linear representation (ξ, µ, η) such that

ξT = (πT
1 , 0) , µ(x) =





ν1(x) τ1 π
T
2 ν2(x)

0 ν2(x)



 , η =





τ1 π
T
2 τ2

τ2



 . (22)

In this case, the three terms of hn(z) can be merged in a unique convolution

hn(z) =
n
∑

i=0

ξT1 (A1e
z +B1)

i τ1 π
T
2 (A2e

z +B2)
n−iη2 .

Now let us go back to the general case: we need an asymptotic evaluation
of hn and H . To this end, since M1 and M2 are primitive, we can first apply
equations (15) to h(1)

n (0) and h(2)
n (0) obtaining asymptotic evaluations for them

and their derivatives. As far as gn(0) and its derivatives are concerned, we have
to compute the derivatives of G(z, w) with respect to z, using equations (2)
and (3):

Gz(z,w) =H
(1)
z (z,w) · (A0e

z + B0)w ·H(2)(z,w) +H(1)(z, w) ·A0e
zw ·H(2)(z, w) +

+H(1)(z,w) · (A0e
z + B0)w ·H(2)

z (z,w), (23)

Gzz(z,w) =H
(1)
zz (z,w) · (A0e

z + B0)w ·H(2)(z,w) + 2H
(1)
z (z, w) · A0e

zw ·H(2)(z,w) +

+ 2H
(1)
z (z,w) · (A0e

z + B0)w ·H(2)
z (z, w) +H(1)(z, w) · A0e

zw ·H(2)(z,w) +

+ 2H(1)(z,w) ·A0e
zw ·H(2)

z (z, w) +H(1)(z, w) · (A0e
z +B0)w ·H(2)

zz (z,w). (24)

We shall see that the properties of Yn depend on whether the Perron-Frobenius
eigenvalues λ1, λ2 of M1 and M2 are distinct or equal. In the first case the
rational representation associated with the largest one determines the main
characteristics of Yn. We say that (ξi, µi, ηi) is the dominant component if
λ1 6= λ2 and λi = max{λ1, λ2}; we study this case in the next section. On the
contrary, if λ1 = λ2 we say that the components are equipotent and they both
give a contribution to the asymptotic behaviour of Yn. This case is considered
in Section 7.
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6 Dominant component

In this section we study the behaviour of {Yn} assuming λ1 > λ2 (the case
λ1 < λ2 is symmetric). We also assume M0 6= 0 since the case M0 = 0, corre-
sponding to Example 1, is treated in Section 8. We first determine asymptotic
expressions for mean value and variance of Yn and then we study its limit
distribution.

6.1 Analysis of moments in the dominant case

To study the first two moments of Yn we develop a singularity analysis for the
functions H(0, w), Hz(0, w) and Hzz(0, w), which yields asymptotic expres-
sions for hn(0), h

′
n(0) and h′′

n(0). In the following analysis a key role is played
by the matrix Q defined by

Q = (λ1I −M2)
−1 = λ−1

1 H(2)(0, λ−1
1 )

Note that Q is well-defined since λ1 > λ2. Moreover, we have

H(2)
w (0, λ−1

1 ) = λ2
1 ·QM2Q and H(2)

z (0, λ−1
1 ) = λ1 ·QA2Q .

First of all we can apply Lemma 4 to H(1)(0, w) and H(2)(0, w) and their
partial derivatives. Moreover we need asymptotic expression for G and its
derivatives. Since λ1 > λ2, by using (20) and applying (10) to H(1)(0, w), as
w tends to λ−1

1 , we get

G(0, w) =

(

u1vT1
1− λ1w

+ C1

)

M0

(

1

λ1
− 1− λ1w

λ1

)(

H(2)(0, λ−1
1 ) +H

(2)
w (0, λ−1

1 )(w − λ−1
1 )

)

+

+ O(1− λ1w) =
1

1− λ1w
· u1v

T
1 M0Q + O(1) . (25)

In a similar way one can prove that in a neighbourhood of w = 1/λ1, the
matrices Gz(0, w) and Gzz(0, w) admit a Laurent expansion of the form

Gz(0, w) =
λ1w

(1− λ1w)2
· β1u1v

T
1 M0 Q +

+
1

1− λ1w
·
[

D1M0Q+ u1v
T
1 (A0 − β1M0)Q + u1v

T
1 M0Q(A2 − β1M2)Q

]

+ O(1) (26)

Gzz(0, w) =
2λ2

1w
2

(1− λ1w)3
· β2

1u1v
T
1 M0Q +

+
λ1w

(1− λ1w)2
·
{

2β1 · [u1v
T
1 (A0 +M0QA2) +D1M0]Q− 2β2

1u1v
T
1 M0(I +QM2)Q

}

+

+
λ1w

(1− λ1w)2
· u1

(

β1 + 2vT1
A1C1A1

λ2
1

u1

)

vT1 M0 Q+O

(

1

1− λ1w

)

(27)
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Proposition 8 If λ1 > λ2 then the mean value and variance of Yn satisfy the
following relations:

E(Yn) = β1n+O(1) , Var(Yn) = γ1n+O(1) .

Proof. By applying elementary identities, the previous expansions yield asymp-
totic expressions for gn(0) and its derivatives, which by (21) lead to the fol-
lowing relations:

hn(0) = λn
1 · (ξT1 u1) · vT1 (η1 +M0Qη2) + O(ρn) ,

h′
n(0) = nλn

1 · β1 (ξT1 u1) · vT1 (η1 +M0 Q η2) +

+ λn
1 · (ξT1 u1) · vT1 (A0 +M0 QA2)Q η2 + λn

1 · ξT1 D1(η1 +M0 Q η2) +

− λn
1 · β1(ξ

T
1 u1) · vT1 M0(I +QM2)Qη2 + O(ρn) ,

h′′
n(0) = n2λn

1 · β2
1 (ξT1 u1) · vT1 (η1 +M0 Qη2) +

+ nλn
1 · 2β1

[

(ξT1 u1) · vT1 (A0 +M0 QA2)Q η2 + ξT1 D1 · (η1 +M0 Qη2)
]

+

− nλn
1 ·
[

2β1(ξ
T
1 u1) · vT1 M0(I +QM2)Qη2

]

+

+ nλn
1 ·
(

β1 − β2
1 + 2 vT1

A1C1A1

λ2
1

u1

)

· (ξT1 u1) · vT1 (η1 +M0 Qη2) + O(λn
1 ) ,

where |ρ| < λ1. Then, the result follows from (6). 2

From the last proposition we easily deduce expressions of the mean value for
degenerate cases. If B1 = 0 then β1 = 1, D1 = 0 and, by the significance
hypothesis, B2 6= 0; thus we get

E(Yn) = n − E + O(εn) , where E =
vT1 (B0 +M0QB2)Qη2

vT1 (η1 +M0Qη2)
and |ε| < 1.

(28)
On the contrary, if A1 = 0 then β1 = 0, D1 = 0, A2 6= 0 and we get

E(Yn) = E′ + O(εn) , where E′ =
vT1 (A0 +M0QA2)Qη2

vT1 (η1 +M0Qη2)
(|ε| < 1). (29)

Note that both E and E ′ are stricly positive since Q > 0.

Now the problem is to determine conditions that guarantee γ1 6= 0.

6.2 Variability conditions in the dominant case

To answer the previous questions we first recall that, by Theorem 3 in [3],
A1 6= 0 6= B1 implies γ1 6= 0. Thus, by Proposition (8), we know that if
λ1 > λ2 and A1 6= 0 6= B1 then Var(Yn) = γ1n+O(1) with γ1 > 0.

Clearly, if either A1 = 0 or B1 = 0 then γ1 = 0 and the question is whether
Var(Yn) keeps away from 0. To study the variability condition in this case (the
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degenerate dominant case), it is convenient to express the variance by means
of polynomials. Given a non-null polynomial p(x) =

∑

k pkx
k, where pk ≥ 0

for each k, consider the random variable Xp such that Pr{Xp = k} = pk
p(1)

. Let

V (p) be the variance of Xp and set V (0) = 0. Then

V (p) =
p′′(1) + p′(1)

p(1)
−
(

p′(1)
p(1)

)2

.

Moreover, in [3, Theorem 3] it is proved that for any pair of non-null polyno-
mials p, q with positive coefficients, we have

V (pq) = V (p) + V (q) , V (p + q) ≥ p(1)

p(1) + q(1)
V (p) +

q(1)

p(1) + q(1)
V (q) . (30)

In particular, V (p+ q) ≥ min{V (p), V (q)} holds.

A similar approach holds for matrices. Consider a matrix M(x) of polynomials
in the variable x with non-negative coefficients: we can define its matrix of
variances as

V (M(x)) = [V (M(x)ij)] .

Then, for each finite family of matrices {M (k)(x)}k∈I having equal size and
non-null polynomial entries, the following relation holds

V

(

∑

k∈I
M (k)(x)

)

≥
[

∑

k∈I

M (k)(1)ij
∑

s∈I M
(s)(1)ij

V (M (k)(x)ij)

]

.

Moreover, if M(x) and N(x) are matrices of non-null polynomials of suitable
sizes, then

V (M(x) ·N(x)) ≥
[

∑

k

M(1)ikN(1)kj
M(1)N(1)ij

{V (M(x)ik) + V (N(x)kj)}
]

. (31)

Finally, from Theorem 3 in [3] one can also deduce that, for every primitive
matrix M = A+B, if A 6= 0 6= B then

V (Ax+B)nij = Θ(n) (32)

for any pair of indeces i, j.( 2 )

Now we are able to establish the variability condition in the dominant degen-
erate case.

Proposition 9 If M0 6= 0, λ1 > λ2 and either B1 = 0 or A1 = 0 then
Var(Yn) = c+O(εn) for some c > 0 and |ε| < 1.

2 In this work we use the symbol Θ to represent the order of growth of sequences:
given two sequences {an} ⊆ C and {bn} ⊆ R+, the relation an = Θ(bn) means that
c1bn ≤ |an| ≤ c2bn, for two positive constants c1 and c2 and all n large enough.
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Proof. First observe that the asymptotic expression of the variance given in
Proposition 8 can be refined as

Var(Yn) = γ1n+ c+O(εn) (33)

where c is a constant and |ε| < 1. In order to prove it note that the se-
quences hn(0), h

′
n(0), h

′′
n(0) have a generating function with a pole of small-

est modulus at λ−1
1 of degree (at most) 1, 2, 3, respectively: hence their

asymptotic expressions are of the form c1λ
n
1 + O(ρn), b2nλ

n + c2λ
n
1 + O(ρn),

a3n
2λn + b3nλ

n + c3λ
n
1 + O(ρn), respectively, for some constants ai, bi, ci and

|ρ| < 1; thus, equation (33) follows by replacing these expressions in (6) and
taking into account Proposition 8.

Now, by our hypothesis, since either B1 = 0 or A1 = 0 we have γ1 = 0 and we
only have to prove c > 0. To this end we show that Var(Yn) ≥ Θ(1). Consider
the case B1 = 0 and first assume A2 6= 0. Note that, by the significance
hypothesis also B2 6= 0 holds, and hence γ2 > 0.

Moreover, we have

Var(Yn) = V
(

ξT1 A
n
1η1x

n + ξT1 Pn(x)η2 + ξT2 (A2x+B2)
nη2
)

where

Pn(x) =

n−1
∑

i=0

Ai
1x

i(A0x+B0)(A2x+B2)
n−1−i ;

hence, by equation (30),

Var(Yn) ≥
ξT2 M

n
2 η2

ξTMnη
(γ2n+O(1)) +

ξT1
∑n−1

i=0 Ai
1M0M

n−1−i
2 η2

ξTMnη
V (ξT1 Pn(x)η2) .

(34)
Now, applying equations (30) and (31), we get

V (ξT1 Pn(x)η2) ≥ min
(j,k)∈I











n−1
∑

i=0

(Ai
1M0M

n−1−i
2 )jk

(

∑n−1
s=0 A

s
1M0M

n−1−s
2

)

jk

(

V (A2x+B2)
n−1−i

)

jk











where I = {(j, k) : ξ1jPn(x)jkη2k 6= 0}. Replacing this value in (34), by relation
(32) we get

Var(Yn) ≥ Θ

(

∑n−1
i=0 λi

1λ
n−i
2 (n − i)

λn
1

)

= Θ(1) .

On the other hand, if A2 = 0 we have

Pr{Yn = n} =
ξT1 M

n
1 η1 + ξT1 M

n−1
1 A0η2

ξTMnη
= Θ(1) .

Moreover, equation (28) implies E(Yn) = n − E + O(εn), where E > 0, and
hence

Var(Yn) =

n
∑

k=0

(E − k)2Pr{Yn = n− k}+O(εn) ≥ E2Pr{Yn = n}+O(εn) = Θ(1)
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which completes the proof in the case B1 = 0.

Now, let us study the case A1 = 0. If B2 6= 0 then Var(Y (2)
n ) = Θ(n) and the

result can be proved as in the case B1 = 0 with A2 6= 0. If B2 = 0 then by
using (29) we can argue as in the case B1 = 0 with A2 = 0. 2

6.3 Limit distribution in the dominant case

Now we study the limit distribution of {Yn} in the case λ1 > λ2 still assuming
M0 6= 0. If the dominant component does not degenerate we obtain a Gaussian
limit distribution as in the primitive case [3]. On the contrary, if the dominant
component degenerates we obtain a limit distribution that may assume a large
variety of forms, mainly depending on the dominated component. In both cases
the proof is based on the analysis of the characteristic function of Yn, that is
hn(it)/hn(0).

Recalling that hn(z) = h(1)
n (z)+ gn(z)+h(2)

n (z), we can apply Proposition 6 to
h(i)
n (z) for i = 1, 2, and we need an analogous result for gn(z). First consider

the generating function of {gn(z)} that is

ξT1 G(z, w)η2 =
∑

gn(z)w
n = ξT1 H

(1)(z, w) (A0e
z +B0)w H(2)(z, w)η2 .

By applying equation (17) to H(1), since λ1 > λ2, for every z near 0, we get

ξT1 G(z, w)η2 =
ξT1 R1(z) (A0e

z +B0) y1(z)
−1 H(2)(z, y1(z)

−1)η2
1− y1(z)w

+O(1)

as w tends to y1(z)
−1. The contribution of both h(1)

n and gn yields a quasi-power
condition for Yn.

Proposition 10 If M0 6= 0 and λ1 > λ2, then for every z near 0, as n tends
to infinity we have

hn(z) = s(z) y1(z)
n +O(ρn),

where ρ < |y1(z)| and s(z) is a rational function given by

s(z) = ξT1 R1(z)
{

η1 + (A0e
z +B0) y1(z)

−1 H(2)(z, y1(z)
−1)η2

}

.

Observe that the function s(z) is analytic and non-null at z = 0.

Then, if A1 6= 0 6= B1 then β1 > 0, γ1 > 0 and by the previous proposition we
can apply Theorem 3 which yields the following

Theorem 11 If M0 6= 0, λ1 > λ2 and A1 6= 0 6= B1 then Yn−β1n√
γ1n

converges in

distribution to a normal random variable of mean 0 and variance 1.
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On the other hand, if either A1 = 0 or B1 = 0 then γ1 = 0 and Theorem 3
cannot be applied. Thus, we study two cases separately, dealing directly with
the characteristic function of {Yn}. First, let B1 = 0 and set Zn = n− Yn. We
have

h(1)n (z) = ξT1 (M1e
z)nη1 = (λ1e

z)nξT1 (u1v
T
1 +C1(n))η1 ,

gn(z) =

n−1
∑

j=0

(λ1e
z)jξT1 (u1v

T
1 + C1(n))

j(A0e
z +B0)(A2e

z +B2)
n−1−jη2 ,

h(2)n (z) = ξT2 (A2e
z +B2)

nη2 .

Hence the characteristic function of Zn can be computed by replacing the
previous values in E(ezZn) = eznhn(z)/hn(0). A simple computation shows
that, as n goes to +∞, for every t ∈ R we have

E(eitZn) =
vT1 η1 + vT1 (A0 +B0e

it)(λ1I −A2 −B2e
it)−1η2

vT1 (η1 +M0Qη2)
+ o(1) .

Note that by (19) this function cannot reduce to a constant. The case A1 = 0
can be treated in a similar way. Hence we have proved the following

Theorem 12 Let M0 6= 0 and λ1 > λ2. If B1 = 0 then n − Yn converges in
distribution to a random variable W of characteristic function

ΦW (t) =
vT1 η1 + vT1 (A0 +B0e

it)(λ1I −A2 −B2e
it)−1η2

vT1 (η1 +M0Qη2)
.

If A1 = 0, then Yn converges in distribution to a random variable Z of char-
acteristic function

ΦZ(t) =
vT1 η1 + vT1 (A0e

it +B0)(λ1I −A2e
it −B2)

−1η2

vT1 (η1 +M0Qη2)
. (35)

Now, let us discuss the form of the random variables W and Z introduced
in the previous theorem. The simplest cases occur when the matrices M1 and
M2 have size 1 × 1 and hence M1 = λ1, M2 = λ2 and both A2 and B2 are
constants. In this case W = R(S +G), where R and S are Bernoullian r.v. of
parameter pr and ps, respectively given by

pr =
M0(λ1 − λ2)

−1η2
η1 +M0(λ1 − λ2)−1η2

and ps = B0/M0 ,

while G is a geometric r.v. of parameter B2/(λ1 − A2). Clearly a similar ex-
pression holds for Z.

Moreover, in the product model W and Z further reduce to simple geometric
r.v.’s (still in the monodimensional case). More precisely, if (ξ, µ, η) is defined
as in Example 2 and both M1 and M2 have size 1×1, then one can prove that

ΦZ(t) =
1− A2

λ1−B2

1− A2
λ1−B2

eit
and ΦW (t) =

1− B2
λ1−A2

1− B2
λ1−A2

eit
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which are the characteristic functions of geometric random variables of pa-
rameter A2

λ1−B2
and B2

λ1−A2
respectively.

However, the range of possible forms of W and Z is much richer than a simple
geometric behaviour. To see this fact consider the function ΦZ(t) in (35); in
the product model it can be expressed in the form

ΦZ(t) =
πT
2 (λ1I −A2e

it −B2)
−1τ2

πT
2 (λ1I −M2)−1τ2

=

∞
∑

j=0

πT
2 (M2/λ2)

j τ2 · (λ2/λ1)
j

∑∞
i=0 π

T
2 (M2/λ2)

i τ2 · (λ2/λ1)i
Φ
Y

(2)
j

(t)

where π2 and τ2 are defined as in Example 2. This characteristic function

actually describes the random variable Y
(2)
N , where N is the random variable

with probability law

Pr{N = j} =
πT
2 (M2/λ2)

j τ2 · (λ2/λ1)
j

∑∞
i=0 π

T
2 (M2/λ2)

i τ2 · (λ2/λ1)i
. (36)

If B2 = 0 then by (35) Z reduces to N , and an example of the rich range
of its possible forms is shown by considering the case where (A1 = 0 = B2)
λ1 = 1.009, λ2 = 1 and the second component is represented by a generic
(2 × 2) - matrix with eigenvalues 1 and µ such that −1 < µ < 1. In this
case, since the two main eigenvalues have similar values, the behaviour of
Pr{N = j} for small j depends on the second component and in particular
on its smallest eigenvalue µ. In Figure 1 we plot the probability law of N
defined in (36) for j = 0, 1, . . . , 200 in three cases: µ = −0.89, µ = 0.00001
and µ = 0.89; the first picture compares the curves in the cases µ = −0.89 and
µ = 0.00001, while the second picture compares the curves when µ = 0.00001
and µ = 0.89. Note that in the second case, when µ is almost null, we find a
distribution similar to a geometric law while, for µ = −0.89 and µ = 0.89, we
get a quite different behaviour which approximates the previous one for large
values of j.

50 100 150 200
j

Pr{N=j}

50 100 150 200
j

Pr{N=j}

Fig. 1. Probability law of the random variableN defined in (36), for j = 0, 1, . . . , 200.
In the first picture we compare the case µ = 0.00001 and µ = −0.89. In the second
one we compare the case µ = 0.00001 and µ = +0.89.
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7 Equipotent components

Now, we study the behaviour of Yn in the case λ1 = λ2, still assuming M0 6= 0.
Under these hypotheses two main subcases arise. They are determined by the
asymptotic mean values associated with each component, namely the con-
stants β1 and β2. If they are different the variance of Yn is of the order Θ(n2)
and Yn itself converges in distribution to a uniform random variable. On the
contrary, when β1 = β2 the order of growth of the variance reduces to Θ(n)
and hence the asymptotic behaviour of Yn is again concentrated around its
expected value. As before we first study the asymptotic behaviour of the mo-
ments of Yn and then we determine the limit distributions.

7.1 Analysis of moments in the equipotent case

For sake of brevity let λ = λ1 = λ2. As in the dominant case, to study
the first two moments of Yn we can apply equations (15) to get asymptotic
evaluations for h(1)

n (0), h(2)
n (0) and their derivatives. We need an analogous

result concerning the function gn(0). In this case, since M0 6= 0, G(0, w) has a
pole of degree 2 in λ−1 and then it gives the main contribution to hn(0).

Proposition 13 Assume λ1 = λ2 = λ and let M0 6= 0. Then the following
statements hold:

(1) If β1 6= β2, then E(Yn) =
β1+β2

2
n+O(1) and Var(Yn) =

(β1−β2)2

12
n2+O(n);

(2) If β1 = β2 = β, then E(Yn) = β n+O(1) and Var(Yn) =
γ1+γ2

2
n+O(1),

where γi > 0 for each i ∈ {1, 2}.

Proof. We argue as in the proof of Proposition 8. For this reason we avoid
many details and give a simple outline of the proof. First consider the case
β1 6= β2. From relations (15) one gets the asymptotic expressions of h(1)

n (0),
h(2)
n (0) and corresponding derivatives. In order to evaluate gn(0), g

′
n(0) and

g′′n(0), one can proceed as in the dominant case: use equations (20), (23) and
(24) and apply Lemma 4 to H(1)(0, w) and H(2)(0, w). It turns out that, in
a neighbourhood of w = 1/λ, the matrices G(0, w), Gz(0, w) and Gzz(0, w)
admit a Laurent expansion of degree 2, 3 and 4, respectively. This leads to
asymptotic expressions for gn(0), g

′
n(0) and g′′n(0), which can be used together

with (21) to get the following expressions:

hn(0) = nλn · ξT1 u1 vT1
M0

λ
u2 v

T
2 η2 +O(λn) ,

h′n(0) = n2λn · β1 + β2
2

· ξT1 u1 vT1
M0

λ
u2 v

T
2 η2 +O(nλn) ,

h′′n(0) = n3λn · β
2
1 + β1β2 + β2

2

3
· ξT1 u1 vT1

M0

λ
u2 v

T
2 η2 +O(n2λn) .
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Point 1 now follows by applying (6).

If β1 = β2 = β, the previous evaluations yield E(Yn) = βn + O(1) but
Var(Yn) = O(n). Then, terms of lower order are now necessary to evalu-
ate the variance. These can be obtained as above by a singularity analysis
of G(0, w), Gz(0, w) and Gzz(0, w) and recalling that βC1 = βC2 = 0. The
overall computation leads to the following relations:

E(Yn) = n · β +

{

vT1 M0D2η2

vT1 M0u2vT2 η2
+

ξT1 D1M0u2

ξT1 u1vT1 M0u2
+

vT1 A0u2

vT1 M0u2
− β

}

+ O(εn) ,

Var(Yn) = n ·
(

β − β2 + vT2
A2C2A2

λ2
u2 + vT1

A1C1A1

λ2
u1

)

+ O(1) =
γ1 + γ2

2
n+ O(1) .

Finally observe that, since β1 = β2 equation (19) implies Ai 6= 0 6= Bi for each
i = 1, 2 and hence also γi 6= 0, which proves point 2. 2

7.2 Limit distribution in the equipotent case

To study the limit distribution in the equipotent case (λ1 = λ2 = λ) with the
assumption M0 6= 0, we consider again the characteristic function of Yn, that
is hn(it)/hn(0). In this case, we do not obtain a quasi-power Theorem, since
the contribution of gn(z) to the behaviour of hn(z) has a different form. In
fact, consider the generating function

ξT1 G(z, w)η2 =
∑

gn(z)w
n = ξT1 H

(1)(z, w) (A0e
z +B0)w H(2)(z, w)η2 .

We study its behaviour for z near 0 and w near λ−1. To this end, first define
the analytic function

s(z) = ξT1 R1(z)(A0e
z +B0)R2(z)η2 (37)

and observe that s(0) 6= 0. Then apply equation (17) to H(1) and H(2). Since
λ1 = λ2 = λ, for every z near 0 we get

ξT1 G(z, w)η2 =
s(z)w

(1− y1(z)w) (1 − y2(z)w)
+ O

(

1

1− y1(z)w

)

+O

(

1

1− y2(z)w

)

+O(1) (38)

= s(z)

∞
∑

n=1

n−1
∑

k=0

y1(z)
ky2(z)

n−1−kwn +O

(

1

1− y1(z)w

)

+O

(

1

1− y2(z)w

)

+O(1)

as w tends to λ−1. Thus, at z = 0, since y1(0) = y2(0) = λ by (21) we have

hn(0) = s(0) · nλn−1 +O(λn) . (39)

However, for z 6= 0, the asymptotic behaviour of gn(z) depends on the condi-
tion β1 6= β2.
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Proposition 14 If M0 6= 0, λ1 = λ2 = λ and β1 6= β2, then for every z near
0, different from 0, we have

hn(z) = s(z) · y1(z)
n − y2(z)

n

λ(β1 − β2)z +O(z2)
+O (y1(z)

n) +O (y2(z)
n) +O(ρn),

where 0 ≤ ρ < λ.

Proof. Since β1 6= β2, from (38) we get, for any z near 0 different from 0

gn(z) = s(z) · y1(z)
n − y2(z)

n

y1(z)− y2(z)
+ O (y1(z)

n) + O (y2(z)
n) + O(ρn) . (40)

Also observe that, by (16), for any i = 1, 2 and every z near 0 we can write

yi(z) = λ+ λβiz +O(z2) . (41)

Hence, the result follows by replacing the previous relations into (40) and
recalling that the contribution of h(1)

n (z) and h(2)
n (z) is of the order O(y1(z)

n)
and O(y2(z)

n), respectively. 2

Theorem 15 If M0 6= 0, λ1 = λ2 = λ and β1 6= β2, then Yn/n converges
in distribution to a random variable uniformly distributed over the interval
[b1, b2], where b1 = min{β1, β2} and b2 = max{β1, β2}.

Proof. By Proposition 14 and equation (41), for every non-null t ∈ R, we have

hn

(

it

n

)

= s(0) · nλn−1

(

1 + itβ1

n +O
(

1
n2

)

)n
−
(

1 + itβ2

n +O
(

1
n2

)

)n

it(β1 − β2) + O
(

1
n

) +O(λn)

which, by (39), yields the following expression for the characteristic function
of Yn/n:

E(itYn/n) =
hn(it/n)

hn(0)
=

eitβ1 − eitβ2

it(β1 − β2)
+ O

(

1

n

)

.

Observe that the main term of the right hand side is the characteristic function
of a uniform distribution in the required interval. 2

Now, let us consider the case β1 = β2 = β. Then point 2) of Proposition 13
holds and hence there is a concentration phenomenon around the mean value
of Yn. The limit distribution can be deduced from equation (40), which still
holds in our case but assumes different forms according whether γ1 6= γ2 or
not. In the following theorem, let γ be defined by γ = γ1+γ2

2
.

Theorem 16 If M0 6= 0, λ1 = λ2, β1 = β2 and γ1 6= γ2 then Yn−βn√
γn

converges

in distribution to a random variable T of characteristic function

ΦT (t) =
e
− γ2

2γ
t2 − e

− γ1
2γ

t2

( γ12γ − γ2
2γ )t

2
. (42)
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Proof. First observe that in our case, for i = 1, 2,

yi(z) = λ

(

1 + βz +
γi + β2

2
z2 +O(z3)

)

.

Hence, replacing these values into (40), for each t ∈ R different from 0 we get

hn

(

it√
γn

)

= s(0) · nλn−1 · eiβt
√

n/γ · e
− γ2

2γ
t2 − e−

γ1
2γ

t2

( γ12γ − γ2
2γ )t

2

(

1 +O(n−1/2)
)

,

where s(z) is defined as in (37). The required result follows from the previous

equation and from relation (39), recalling that e
−itβ

√
n
γ · hn

(

it√
γn

)

/hn(0) is

the characteristic function of Yn−βn√
γn

. 2

By direct inspection, one can see that the probability density corresponding
to the characteristic function (42) is a mixture of Gaussian densities of mean
0, with variances uniformly distributed over the interval with extremes γ

γ1
and

γ
γ2
. Indeed, we have

ΦT (t) =
γ

γ2 − γ1

∫
γ2
γ

γ1
γ

e−
1
2
vt2dv . (43)

Finally we deal with the case where also the main terms of the variances are
equal.

Theorem 17 If M0 6= 0, λ1 = λ2, β1 = β2 and γ1 = γ2 then Yn−βn√
γn

converges

in distribution to a normal random variable of mean 0 and variance 1.

Proof. In this case, for z = Θ(n−1/2), the convolution in (38) satisfies the
relation

n−1
∑

j=0

y1(z)
jy2(z)

n−1−j = nλn−1

(

1 + βz +
γ + β2

2
z2
)n−1

(1 + O(z3))n−1 .

Replacing this value in the same equation, we get

hn

(

it√
γn

)

= s(0) · nλn−1exp

{

iβt
√

n/γ − t2

2

}

(

1 +O(n−1/2)
)

.

Hence, reasoning as in the previous proof one can see that the characteristic
function of Yn−βn√

γn
converges to e−t2/2. 2

We conclude this section with some examples which illustrate the result ob-
tained in the equipotent case when β1 = β2. In Figure 2 we illustrate the form
of the limit distributions obtained in Theorems 16 and 17. We represent the
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density of the random variable having characteristic function (42), for differ-
ent values of the ratio p = γ2/γ1. When p approaches 1, the curve tends to a
Gaussian density according to Theorem 17; if γ2 is much greater than γ1, then
we find a density with a cuspid in the origin corresponding to Theorem 16.

50

100

150

200

p -2

0

2

0

0.2

0.4

50

100

150p

0

0.2

0.4

Fig. 2. The first picture represents the density of the random variable having char-
acteristic function (42), according to the parameter p = γ2/γ1. The second picture
represents some sections obtained for p = 1.0001, 5, 15, 50, 20000.

One may also ask whether the hypotheses of Theorem 16 are satisfied for
some pairs of primitive linear representations. As an example of such a pair,
consider the triple (ξ1, µ1, η1) where

ξ1 = η1 =





1/2

0



 , A1 = µ1(a) =





3/20 1

1/16 9/40



 , B1 = µ1(b) =





3/5 0

0 21/40





and the triple (ξ2, µ2, η2) such that ξ2 = ξ1 = η2,

A2 = µ2(a) =





3/40 1

1/16 3/10



 and B2 = µ2(b) =





27/40 0

0 9/20



 .

In this case M1 = M2 and hence λ1 = λ2; moreover, by direct computation
one can show that β1 = β2 = 7/16, while γ1 = 1611

6400
and γ2 = 1899

6400
. Thus the

hypotheses of the theorem are satisfied for any possible non-negative value of
M0 6= 0.

8 The sum model

In this section we study the behaviour of Yn assuming M0 = 0. This case
corresponds to Example 1, where the stochastic model is defined by the sum
of two primitive formal series, having linear representations (ξ1, µ1, η1) and
(ξ2, µ2, η2), respectively. Since here M0 = 0, to avoid trivial cases, we also
assume ξ2 6= 0 6= η1.
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The main difference with respect to the general analysis is that here gn(z)
disappears and hence

hn(z) = h(1)n (z) + h(2)n (z) . (44)

Thus, if λ1 > λ2 the leading term is h(1)
n (z) and hence hn(z) behaves almost

as in the case M0 6= 0. On the other hand, if λ1 = λ2 the analysis of the sum
model differs significantly from the general case: without the contribution of
gn(z) the function hn(z) now has a simple pole in the main singularity, rather
than a pole of order 2.

8.1 Dominant case in the sum model

Let us assume λ1 > λ2. First, reasoning as in the proof of Proposition 8, we
easily get the following expressions for mean value and variance:

E(Yn) = β1n+
δ1
α1

+O(εn) , Var(Yn) = γ1n+O(1) (|ε| < 1)

where, according to our notation, α1, β1, γ1, δ1 are the constants associated
with the first component defined as in Theorem 5.

As far as the limit distribution is concerned, observe that h(1)
n (z) satisfies

Proposition 6 and hence the following theorem holds.

Theorem 18 If M0 = 0, λ1 > λ2 and A1 6= 0 6= B1 then Yn−β1n√
γ1n

converges in

distribution to a normal random variable of mean 0 and variance 1.

Now consider the degenerate cases A1 = 0 or B1 = 0. If B1 = 0 then β1 = 1
and γ1 = δ1 = 0, hence we get E(Yn) = n + O(εn). On the other hand, if
A1 = 0 then β1 = γ1 = δ1 = 0 and hence we get E(Yn) = O(εn). In both cases
we have γ1 = 0 and a direct computation proves Var(Yn) = O(εn), showing
that Yn almost surely reduces to a single value (n or 0, respectively). In fact,
by Chebyshev’s inequality, if B1 = 0 we have for every c > 0

Pr{|Yn − n| > c} ≤ Var(Yn)

c2
= O(εn)

and hence, Yn − n = o(1) in probability. A similar result can be obtained in
the case A1 = 0.

Theorem 19 Assume M0 = 0 and λ1 > λ2. If B1 = 0 (resp. A1 = 0) then
n− Yn (resp. Yn) tends to 0 in probability.

8.2 Equipotent case in the sum model

Here we study the equipotent case λ1 = λ2 = λ. The first moments of Yn

can be obtained from (6) and (44) by recalling that h(1)
n (0), h(2)

n (0) and their
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derivatives satisfy (15). Thus, we get the following

Proposition 20 Assume M0 = 0 and λ1 = λ2. If β1 6= β2 then

E(Yn) = n · α1β1 + α2β2
α1 + α2

+ O(1) , Var(Yn) = n2 · α1α2 (β1 − β2)
2

(α1 + α2)2
+ O(n) .

If β1 = β2 = β then

E(Yn) = n · β + O(1) , Var(Yn) = n · α1γ1 + α2γ2
α1 + α2

+ O(1) .

Now, let us study the limit distribution. Let Un be the Bernoullian random
variable Un : Ωn → {0, 1} such that for each ` ∈ Ωn

Un(`) =







1 if ` is entirely contained in the first component,

0 if ` is entirely contained in the second component.

It is easy to show that

Pr{Un = x} =



















ξT1 Mn
1 η1

ξTMnη
if x = 1 ,

ξT2 Mn
2 η2

ξTMnη
if x = 0 .

We also define Ln = β1Un + β2(1 − Un) and observe that if β1 = β2 then
Ln = β1 = β2. Moreover, it is clear that Ln converges in distribution to a
random variable β1U + β2(1− U), where U is a Bernoullian r.v. of parameter
p = α1/(α1 + α2). These random variables occur in the following

Proposition 21 If M0 = 0 and λ1 = λ2 then the random variable Yn

n
− Ln

converges to 0 in probability.

Proof. We first evaluate the variance of Yn − nLn. Clearly Yn and Ln are not
independent, but we can express their dependence by writing Yn = UnY

(1)
n +

(1− Un)Y
(2)
n and hence

Yn − nLn = Un · (Y (1)
n − nβ1) + (1− Un) · (Y (2)

n − nβ2) .

Moreover, by the previous proposition E(Yn − nLn) = O(1) and hence

Var(Yn − nLn) =
∑

i=0,1

E((Yn − nLn)
2 | Un = i) · Pr{Un = i}+O(1) =

=
∑

j=1,2

E((Y (j)
n − nβj)

2) · αj

α1 + α2
+O(1) = n · α1γ1 + α2γ2

α1 + α2
+O(1) .

Thus, by Chebyshev’s inequality, for every c > 0 one gets

Pr

{∣

∣

∣

∣

Yn

n
− Ln

∣

∣

∣

∣

≥ c

}

= O

(

1

n

)

.

2
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Corollary 22 If M0 = 0 and λ1 = λ2 then the distribution of Yn/n converges
to the distribution having probability mass α1

α1+α2
at β1 and probability mass

α2

α1+α2
at β2.

The above results intuitively state that Yn asymptotically behaves like nLn,
where Ln may only assume two values. Thus, a natural question concerns the
limit distribution of Yn − nLn. To deal with this problem assume γ1 6= 0 6= γ2
and consider the random variable Υ constructed by considering a Bernoullian
r.v. U of parameter p = α1/(α1+α2), two normal r.v.’s N1, N2 of mean 0 and
variance γ1 and γ2, respectively, and setting

Υ = U ·N1 + (1− U) ·N2 (45)

where we assume U,N1, N2 independent of one another. Note that, if γ1 = γ2
then Υ has a normal distribution of mean 0 and variance γ1. The characteristic
function of Υ is given by

E(eitΥ) =
α1

α1 + α2
e−

γ1
2
t2 +

α2

α1 + α2
e−

γ2
2
t2 .

It turns out that Yn−nLn√
n

converges in distribution to Υ.

Proposition 23 If M0 = 0, λ1 = λ2 and γ1 6= 0 6= γ2 then the distribution of
Yn−nLn√

n
converges to the mixture, with weights α1

α1+α2
and α2

α1+α2
, of two normal

distributions with mean zero and variance γ1 and γ2 respectively. In particular,
if γ1 = γ2 = γ then Yn−nLn√

nγ
converges in law to a standard normal random

variable.

Proof. Let us define the r.v. Υn = Yn−nLn√
n

. Its characteristic function is given

by

E(eitΥn ) =
∑

i=0,1

E(eitΥn | Un = i) · Pr{Un = i} =
∑

j=1,2

E

(

e
it

Y
(j)
n −nβj

√

n

)

·
(

αj

α1 + α2
+ O(εn)

)

=
α1

α1 + α2
e−

γ1
2

t2 +
α2

α1 + α2
e−

γ2
2

t2 + O
(

n−1/2
)

.

2

The previous results hold also when β1 = β2 = β; clearly in that case Ln

reduces to the constant β and γ1 6= 0 6= γ2 otherwise either A = 0 or B = 0.
Hence we obtain the following

Corollary 24 Assume M0 = 0, λ1 = λ2 and β1 = β2 = β. Then the distribu-
tion of Yn−nβ√

n
converges to the mixture, with weights α1

α1+α2
and α2

α1+α2
, of two

normal distributions with mean zero and variance γ1 and γ2 respectively. In
particular, if γ1 = γ2 = γ then Yn−nβ√

nγ
converges in law to a standard normal

random variable.
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9 Summary and conclusions

Most results presented in this work are summarized in Table 1. To explain
them intuitively, first recall that in a primitive rational model the limit dis-
tribution of our statistics is Gaussian. Thus, in a model consisting of two
primitive components the limit behaviour is determined by the way how their
separate contributions mix together. This combination may produce quite dif-
ferent limit distributions depending on two main conditions: (i) whether there
is a communication from the first to the second component (i.e. M0 6= 0) and
(ii) whether there exists a dominant component (i.e. λ1 > λ2 or viceversa).
The analysis of the dominant case splits in two further directions according
whether the dominant component is degenerate or not. The equipotent case
(occurring when λ1 = λ2) has several subcases corresponding to the possible
differences between the leading terms of the mean values and of the variances
associated with each component.

We obtain Gaussian limit distributions only when the dominant component
does not degenerate and hence we can neglect the other component, or when
the two components essentially have the same asymptotic behaviour (i.e. in
the equipotent case with equal leading terms of mean values and variances).

Notice that the existence of a connection between the two components is less
relevant when one is dominant. On the contrary, condition (i) concerning M0

is particularly meaningful in the equipotent case. Here, if M0 6= 0 the main
contribution to the bivariate generating function is given by G(z, w), which
represents the connection from the first to the second component and is es-
sentially given by the convolution of the two contributions. On the contrary,
when M0 = 0 the function G(z, w) vanishes and the two components con-
tribute separately to the overall behaviour of the system.

As a consequence, when the leading terms of the mean values are different,
we get a uniform limit distribution in the case M0 6= 0, while, if M0 = 0,
we obtain a limit distribution concentrated in two values that correspond to
the separate components. Analogously, when the main terms of the average
values are equal but the leading terms of the variances are different, we get
a mixture of Gaussian distributions having the same mean value: if M0 6= 0
such distributions have variance uniformly distributed over a given interval;
on the contrary, if M0 = 0 they reduce to two Gaussian distributions, with
variances corresponding to the separate components.

We observe that the dominance condition (ii) plays a key role to determine
the limit distribution in two main cases of the previous classification: the
dominant non-degenerate case and the equipotent case with different leading
terms of the mean values. We present the following example to show how the
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Conditions Results

Dominance Degeneracy Mean value Variance Limit distribution

A1 6= 0 6= B1 β1n+ O(1) γ1n+O(1) Yn−β1n√
γ1n

−→d N0,1

0 < β1 < 1 0 < γ1

λ1 > λ2 B1 = 0 n−E + O(εn) c+O(εn) n− Yn −→d W

E > 0 c > 0 Theorem 12

M0 A1 = 0 E′ + O(εn) c′ +O(εn) Yn −→d Z

6= E′ > 0 c′ > 0 Theorem 12

0

β1 6= β2
β1+β2

2
n+O(1)

(β1−β2)
2

12
n2 + O(n) Yn

n
−→d Unif(b1, b2)

Theorem 15

λ1 = λ2 β1 = β2 = β βn+O(1) γn+ O(1) Yn−βn√
γn

−→d T

γ1 6= γ2 γ = γ1+γ2
2

Theorem 16

β1 = β2 = β βn+O(1) γn+ O(1) Yn−βn√
γn

−→d N0,1

γ1 = γ2 = γ

A1 6= 0 6= B1 β1n+ O(1) γ1n+O(1) Yn−β1n√
γ1n

−→d N0,1

0 < β1 < 1 0 < γ1

λ1 > λ2 B1 = 0 n+ O(εn) O(εn) n− Yn −→p 0

Theorem 19

A1 = 0 O(εn) O(εn) Yn −→p 0

M0 Theorem 19

= β1 6= β2 c1n+ O(1) c2n2 + O(n) Yn

n
−→d

0 c1 = α1β1+α2β2
α1+α2

c2 =
α1α2(β1−β2)

2

(α1+α2)2
β1U + β2(1 − U)

Corollary 22

λ1 = λ2 β1 = β2 = β βn+O(1) c3n+O(1) Yn−βn√
n

−→d

γ1 6= γ2 c3 = α1γ1+α2γ2
α1+α2

UN0,γ1 + (1− U)N0,γ2

Corollary 24

β1 = β2 = β βn+O(1) γn+ O(1) Yn−βn√
γn

−→d N0,1

γ1 = γ2 = γ Corollary 24

Table 1
This picture summarizes most results presented in this paper. To specify the limit distributions in some cases
we refer to theorems proved in the previous sections. Moreover, we use Nm,s and U to denote, respectively,
a normal r.v. of mean value m and variance s and a Bernoullian r.v. of parameter p = α1/(α1 + α2).

equipotent case can be considered as a sort of equilibrium point between two
(opposite) dominant cases.

Consider the product model of Example 2 and define the “factor” components
(πi, νi, τi), i = 1, 2, by means of the weighted finite automata described in
Figure 3. The matrices Ai = νi(a) and Bi = νi(b) are defined by the labels
associated with transitions in the pictures. The values of the components of
the arrays πi and τi are included in the corresponding states. Multiplying
the matrices Ai = νi(a) and Bi = νi(b) (for i = 1, 2) by suitable factors,
it is possible to build from (22) a family of primitive linear representations
(ξ, µ, η) where we may have λ1 = λ2 or λ1 6= λ2. In all cases, it turns out
that β1 = (1 + (1 +

√
2)2)−1 ' 0.146 and β2 = 11/15 ' 0.733 (and hence
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β1 6= β2). Figure 4 illustrates the probability function of the random variable
Y50 in three different cases. If λ1 = 2 and λ2 = 1 we find a normal density of
mean asymptotic to 50 β1. If λ1 = 1 and λ2 = 2 we have a normal density
of mean asymptotic to 50 β2. Both situations correspond to Theorem 11. If
λ1 = λ2 = 1, we recognize the convergence to the uniform distribution in the
interval [50 β1, 50 β2] according to Theorem 15.

      

( a, 1/4 )

( b,1) ( b,1)

1, 1 1/2, 6
      

( a, 1)

( b, 1 )

( a, 5)

( b,1)

1, 19  1/2, 3

Fig. 3. Two weighted finite automata over the alphabet {a, b}, defining the primitive
linear representations (πi, νi, τi), i = 1, 2.

k

Pr{Y50=k}

Fig. 4. Probability functions of Y50 in the product model where the two factor
components are defined by Figure 3 with weighted expanded by a constant factor.
The vertical bars have abscissas 50β1 and 50β2. The curves correspond to the cases
where (λ1, λ2) are equal to (2,1), (1,2) and (1,1), respectively.

We conclude observing that some of the previous results clearly extend to
rational stachastic models given by more than two primitive components. For
instance the result given in Theorem 11 also holds in the multicomponent
case when only one dominant component exists and this is not degenerate.
Analogously, if two (non-degenerate) equipotent components dominate the
others then a result similar to Theorem 15 or Proposition 23 holds (according
whether there exists a communication from the first to the second compo-
nent). However, in the multicomponent model the number of subcases grows
exponentially since more than two equipotent components can dominate the
others; then the limit distribution depends on several parameters and prop-
erties: the number of dominant components, the geometry of communication
among them, the values of the main constants of mean value and variance
associated with these components and the occurrence of degenerate cases. For
this reason, we think that the general multicomponent model should be first
studied by considering a set of typical situations, rather than by an exhaustive
analysis of all possible subcases (as done in this work).
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