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1 Introduction

The aim of this work is to asymptotically estimate the distribution of the num-
ber Yn of occurrences of a given letter in a random text of length n. We consider
probability distributions obtained, up to normalization, via R+-rational series,
thus extending the so-called Markovian model [18]. In particular, if the series is
the characteristic function of a regular language, then our problem reduces to
asymptotically estimate the number of words of length n in a regular language
L with k occurrences of the given symbol.

Results concerning this problem are meaningful in three different contexts. The
first one is related to the study of ambiguity in formal languages: it is well-
known that, for any rational series in non-commutative variables r ∈ N〈〈Σ〉〉,
the maximal value of the coefficients associated with words of length n ( 1 )

grows as either an exponential or a polynomial expression with respect to n
[21,19,15] . This property does not hold in the algebraic case since it has been
recently proved that there are context-free grammars that have a logarithmic
degree of ambiguity [23]. Similarly, the result cannot be extended to rational
series over free partially commutative monoids [8]: from an example given in
[23] one can prove that there exists a regular trace language, defined over
the monoid generated by the independence alphabet ({a, b, c, d}, {(a, b), (b, a),
(b, c), (c, b), (c, d), (d, c), (a, d), (d, a)}), that has a logarithmic ambiguity de-
gree. In our paper we study the asymptotic behaviour of the ambiguity degree
of rational series over the free commutative monoid with two generators. This
is equivalent to estimating the largest coefficient associated with a monomial
of degree n in a rational bivariate function. In particular we show that this
value is of the order Θ

(
λn√
n

)
, with λ > 1, for a nontrivial subclass of rational

series.

Another context for which our problem is significant concerns the design and
the analysis of algorithms for random generation. It is well known that ran-
dom generation and approximate counting are deeply related [16]. Asymptotic
results of the type we present, can be useful to design algorithms for the ran-
dom generation of words in a regular language containing a given number of
occurrences of each letter [7]. We also recall that the degree of ambiguity in
a context-free language is a critical parameter for the performance of algo-
rithms for random generation. For instance, a polynomial time algorithm for
this problem exists whenever the ambiguity of the language is polynomially
bounded. For finitely ambiguous context-free languages, the problem can be
solved in an average time of the same order of growth as in the unambiguous
case [5].

1 i.e. the value max{(r, w) | w ∈ Σ∗, |w| = n} where, as usual, we denote by (r, w)
the coefficients of r associated with the word w ∈ Σ∗.
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A third research area involved by our work concerns the analysis of pattern
statistics in combinatorics of words (see for instance [12,2,17,18]). There, the
main goal is the analysis of the number of occurrences of one or various pat-
terns in a random string generated by a given stochastic process. Many pat-
tern statistic are analyzed in the case of random words generated by symmet-
ric Bernoulli [12], Bernoulli or Markov processes [18]. In particular in [17] a
pattern statistics is analyzed which represents the number of (positions of)
occurrences of words from a regular language in a random string of length n
generated by a Bernoulli or a Markov process. Many results in this area give
conditions under which such statistics asymptotically have a normal distribu-
tion in the sense of the central or local limit theorem [11,1]. Our model allows
in particular to analyze pattern statistics representing the number of words of
a regular language in a random text generated by processes which are slightly
more general than Markov processes (see section 2.1).

We now proceed to state our stochastic model. Let r be a R+-rational formal
series in the non-commutative variables a, b and let n be a positive integer;
we denote by Yn the random variable representing the number of occurrences
of a in a word w ∈ {a, b}∗ of length n randomly generated with probability
(r,w)
cr(n)

, where cr(n) =
∑
|x|=n(r, x). E. g., when r is the characteristic series of a

language L, w is randomly chosen in L ∩ {a, b}n under uniform distribution.
Our main aim is to estimate the asymptotic distribution of Yn, its mean value
and variance for the following significant subclass of rational series. Consider
a linear representation for the series r, let m be its size and let A and B be
the m × m real matrices associated with symbols a and b, respectively. In
order to avoid trivial cases we assume that both A and B are different from
0. Our main assumption is that the matrix M = A + B is primitive (i.e.,
there exists an integer k such that all entries of Mk are nonzero). Then, by
the Perron–Frobenius Theorem, M admits a unique eigenvalue λ of largest
modulus. Under the present assumptions, we are able to determine expressions
for the mean value and the variance of Yn of the form

E(Yn) = βn+ O(1), Var(Yn) = αn + O(1) (1)

where α and β are positive constants. We then use these evaluations to prove
a central limit theorem showing that Yn approximates the normal distribution
of mean value βn and variance αn. Under a further mild condition on the
matrix M, we also show a local limit theorem for the probability function of
Yn in the sense of the DeMoivre–Laplace Theorem (see for instance [11, Sec.
12]). More precisely, suppose the following condition holds:

|ν| < λ for every eigenvalue ν of Aeiθ + B and every 0 < θ < 2π. (2)
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Then, as n tends to +∞, the relation

Pr{Yn = k} =
e−

(k−βn)2

2αn

√
2παn

+ o

(
1√
n

)
(3)

holds uniformly for every k ∈ {0, 1, . . . , n}.

Even if our problem in its generality does not seem to have been explicitly
studied before, several properties we present here already appeared in various
forms in the literature and some of our results can be actually obtained by
applying more general analyses. In particular, once relations (1) and inequal-
ities α 6= 0 6= β are proved, the central limit theorem for Yn can be proved by
applying a general result due to Bender [1] together with a so-called “quasi-
power” theorem whose proof is actually sketched in [17]. Analogously, the local
limit property (3) can be obtained as a particular case of Theorem 9.10 in [10]
proved by using the machinery of saddle point method [9].

The main contributions of our work are: (i) a direct elementary proof of the
variability condition α > 0, (ii) a precise expression of α and β as functions
of A and of the left and right eigenvectors of M, and (iii) a new proof of the
local limit theorem for Yn based on the use of the discrete Fourier transform
and on an approximation of the characteristic function of Yn. We also stress
the fact that condition (2) is necessary to prove (3) in the sense that there
exist “primitive” rational series r that do not satisfy (2), for which relation
(3) does not hold. We give an example of such a series in the last section and
refer back to a companion paper [4] for the study of this phenomenon which
is related to a special notion of symbol-periodicity for finite automaton that
extends the standard notion of periodicity of non-negative matrices.

At last, we observe that relation (3) has several consequences in the analysis
of the ambiguity of formal series. In particular, it implies

max
0≤k≤n

 ∑
|w|=n,|w|a=k

(r, w)

 = Θ

(
λn√
n

)
(4)

and hence, if r is the characteristic series of a language L ⊆ {a, b}∗ then

max
0≤k≤n

{ ]{x ∈ L ∩ {a, b}n | |x|a = k} } = Θ

(
λn√
n

)
. (5)

In the context of trace theory, relation (5) yields the growth of the degree of
ambiguity of the trace language generated by L over the commutative monoid
with generators {a, b}.

This paper is organized as follows. Section 2 contains a precise statement of the
problem which shows in particular that the analysis of the statistics studied in
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[17] can be reduced to the study of the behaviour of Yn in some special cases.
It recalls the basics of the theory of matrices with positive entries with the
Perron-Frobenius theorem and the notion of discrete Fourier transform. Then
we study the asymptotic behaviour of the random variable Yn assuming the
matrix M primitive. In Section 3 we first determine the asymptotic expressions
for the mean value and the variance. In section 4 we state the central limit
theorem and discuss the main points of its proof. Finally, in Section 5 we give
our approximation of the characteristic function of Yn and prove the local limit
theorem for its probability function.

2 Preliminaries

2.1 Statement of the problem

In this section we state our problem formally and study how it compares to
those, already considered in the literature, related with pattern occurrence
counting. This requires the definition of a probability space given via a so-
called rational series, which we now turn to recall (see [3] for more details).

A formal series r over the non-commutative variables a, b with coefficients in
the semi-ring of nonnegative reals R+ is a function r : {a, b}∗ −→ R+, usually
represented in the form ∑

w∈{a,b}∗
(r, w)w ,

where each coefficient (r, w) denotes the value of r at the point w. It is well-
known that the set R+〈〈a, b〉〉 of all such formal series forms a semi-ring w.r.t.
the operations of sum and Cauchy product. We recall that r is rational if for
some positive integer m there exists a monoid morphism µ : {a, b}∗ −→ R

m×m
+

and a pair of vectors ξ, η of sizem with entries in R+ such that (r, w) = ξ′µ(w)η
for every w ∈ {a, b}+. We say that the triple (ξ, µ, η) is a linear representation
of r. If the components of ξ, µ(a), µ(b) and η are in {0, 1} then a linear
representation can be viewed as a non-deterministic finite automaton.

We now present our model formally. Let r be a R+-rational formal series in
the non-commutative variables a, b and consider a positive n ∈ N such that
(r, w) 6= 0 for some string w ∈ {a, b}∗ of length n. Then, for every integer
0 ≤ k ≤ n, set

ϕ
(n)
k =

∑
|w|=n,|w|a=k

(r, w) (6)
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and define the random variable (r.v.) Yn such that

Pr{Yn = k} =
ϕ

(n)
k∑n

j=0 ϕ
(n)
j

. (7)

The rational symbol frequency problem (r.s.f.p.) consists in studying the dis-
tribution of the r.v. Yn associated with the rational series r.

Example 1 Consider the following representation:

ξ′ = (10) , µ(a) =

 0 1

0 0

 , µ(b) =

 1 0

0 1

 , η =

 1

1

 .

The rational series r thus defined satisfies

(r, w) =

 1 if |w|a ≤ 1

0 otherwise

leading to the probability distribution

Pr{Yn = k} =


1

n+1
if k = 0

n
n+1

if k = 1

0 otherwise.

In order to compare the present problem with those previously dealt with in
the literature, we show how our model can be viewed as a proper extension of
the Markovian model as far as counting the occurrences of a regular set in a
random text is concerned. We refer to [18,17] for a more complete exposition of
the Markov models, in the case of a single and of various patterns respectively.
Recall that a Markov process over an alphabet Σ, is used to produce a random
sequence of letters. Formally, in the present setting, it is given by a pair (π, P ),
where P = {pσ,τ}σ,τ∈Σ×Σ is a stochastic matrix and π is a stochastic vector
indexed by Σ. The matrix is interpreted as saying that if the letter at position
k is σ, then with probability pσ,τ the letter at position k+ 1 is τ and the value
πσ as the probability of the first letter to be equal to σ. The pair (π, P ) induce
a probability distribution Πn over Σn

Πn(x1 . . . xn) = πx1px1,x2 . . . pxn−1,xn .

Now we are given a regular set of patterns R ⊆ Σ∗ and we are asked to count
the number On(x1 . . . xn) of occurrences of R in a random text x1 . . . xn gener-
ated by the above Markov process, where by occurrence is meant a position k
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in the text where a match with an element of R ends. Observe that the values
of On(x1 . . . xn) range from 0 to n.

In this context the Markovian pattern frequency problem consists in studying
the distribution

Pr{On = k}
associated with the triple (π, P,R).

Now we show how this problem can be translated into the problem we tackle
in this paper. Given the triple (π, P,R), we construct a triple (ξ, µ, η) repre-
senting a rational series r such that the r.v. Yn associated with r satisfies the
following equality for every k = 0, 1, . . . , n:

Pr{On = k} = Pr{Yn = k} .

We first construct a (fully defined) finite deterministic automaton recognizing
Σ∗R whose set of states is Q, the initial state is p and set of final states
is F . As usual, we denote by q · σ the transition defined by the letter σ in
state q ∈ Q. Define the linear representation µ : {a, b}∗ −→ R

Q′×Q′
+ where

Q′ = {p} ∪ {(q, σ) | q ∈ Q, σ ∈ Σ} and all entries of the matrices µ(a) and
µ(b) are zero except the entries of the form

µ(x)p,(q′,σ) = πσ and µ(x)(q,σ),(q′,τ) = pσ,τ

such that p · σ = q′ and q · τ = q′ respectively, and (in both cases)

x =

 a if q′ ∈ F

b otherwise.

Denoting by ξ and 1 the characteristic vector of {p} and Q′ respectively, the
triple we were looking for is (ξ, µ,1). Indeed, it is easy to see that

Pr{Yn = k} =

∑
w∈{a,b}n,|w|a=k

ξµ(w)1

∑
w∈{a,b}n

ξµ(w)1
=

∑
x∈Σn,|x|R=k

Πn(x)

∑
x∈Σn

Πn(x)
= Pr{On = k}.

In the case of a Bernoulli model a simplified construction is described by the
following example.

Example 2 Let Σ = {a, b}, define R = {ba, baa, bab}, π = (1/2, 1/2) and let
P = [pστ ] be given by pστ = 1/2 for every σ, τ ∈ Σ. Consider the Markovian
pattern frequency problem associated with (π, P,R). To define an equivalent
r.s.f.p. let T be the smallest deterministic finite automaton recognizing the
language Σ∗R. Let us transform T so that each transition entering a final
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state is labelled by a and any other transition is labelled by b. Consider as
final all states of the new automaton and reduce it by collapsing into a unique
state any pair of equivalent states( 2 ). We obtain the following (weighted) non-
deterministic finite automaton where all states are final and all transitions
have weight 1/2.

����
6

q1
�
�
�
�
�
��3b
����q2

?

a

����q3
Q
Q
Q

Q
Q

QQk

a

6

a

��
�� b

��
�-b

The corresponding linear representation (ξ, µ, η) defines a r.s.f.p. equivalent
to the original problem.

The converse does not hold in general. Indeed, for each triple (π, P,R) carry-
ing out the previous construction yields a rational series in non-commutative
variables a, b. Taking its commutative image

∞∑
n=0

n∑
k=0

Pr{On = k}xkyn

and considering it as a real valued function in two variables, it can be easily
verified that it is rational in the variables x, y. On the other hand, consider
the rational series of Example 1. It leads to the non-rational function

∞∑
n=0

n∑
k=0

Pr{Yn = k}xkyn = (x− 1)
log(1− y)

y
+

x

1− y

which cannot be obtained in the Markovian model.

Now, we introduce the formalism we use throughout this paper. Let A and B
be matrices associated with the symbols a and b, respectively, i.e., A = µ(a)
and B = µ(b). To avoid trivial cases we assume that bothA and B are non-null.

2 i.e., those with equal outgoing transitions.
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Then, the commutative image of r is given by the bivariate series

∞∑
n=0

n∑
k=0

ϕ
(n)
k akbn−k =

∞∑
n=0

ξ′(Aa+ Bb)nη.

Replacing the variables a and b by the monomials xy and y respectively, we
obtain the series

∞∑
n=0

(
n∑
k=0

ϕ
(n)
k xk

)
yn =

∞∑
n=0

ξ′(Ax+ B)nη · yn (8)

which implies that the values ϕ
(n)
k are defined by

n∑
k=0

ϕ
(n)
k xk = ξ′ (Ax+ B)nη. (9)

In the next two subsections we present two classical mathematical tools we
use throughout this work. The first one is the Perron–Frobenius Theory for
nonnegative matrices while the second is the discrete Fourier transform.

2.2 The Perron-Frobenius theorem

The Perron–Frobenius theory is a well-known subject widely studied in the
literature (see for instance [20]). To recall its main results we first fix some
notation. For every pair of matrices T, S, the expression T > S means that
Tij > Sij for every pair of indices i, j. As usual, we consider any vector v as
a column vector and denote by v′ the corresponding row vector. We recall
that a nonnegative matrix T is called primitive if there exists m ∈ N such
that Tm > 0. The main properties of such matrices are given by the following
theorem [20, Sect.1].

Theorem 1 (Perron–Frobenius) Let T be a primitive nonnegative matrix.
There exists an eigenvalue λ of T (called Perron–Frobenius eigenvalue of T )
such that:

(1) λ is real and positive;
(2) with λ we can associate strictly positive left and right eigenvector;
(3) |ν| < λ for every eigenvalue ν 6= λ;
(4) if 0 ≤ C ≤ T and γ is an eigenvalue of C, then |γ| ≤ λ; moreover |γ| = λ

implies C = T ;
(5) λ is a simple root of the characteristic polynomial of T .

The following proposition is a direct application of the theorem above [20,
Exercise 1.9].
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Proposition 1 Let C = {cij} be a m ×m complex matrix and let T = {tij}
be a primitive matrix of the same size, such that |cij| ≤ tij for every i, j. If λ
is the Perron–Frobenius eigenvalue of T , then for every eigenvalue γ of C we
have |γ| ≤ λ. Moreover, if |γ| = λ for some eigenvalue γ of C, then |cij| = tij
for every i, j.

Another consequence of the Perron–Frobenius Theorem concerns the asymp-
totic growth of the entries of the n-th power of a primitive matrix T ; this is
of the order Θ(λn), where λ is the Perron–Frobenius eigenvalue of T . More
precisely, the following property holds [20, Theorem 1.2].

Proposition 2 If T is a primitive matrix and 1 is its Perron–Frobenius eigen-
value, then

T n = uv′ + C(n) · n
s

hn
+ o

(
ns

hn

)
for n→ +∞

where s ∈ N, h > 1, C(n) is a complex matrix such that |C(n)ij| ≤ c (for
a fixed constant c and for any i, j, n) and v′ and u are strictly positive left
and right eigenvectors of T corresponding to the eigenvalue 1, normed so that
v′u = 1.

Throughout this work we assume the matrix M = A + B primitive. Then,
by the Perron–Frobenius Theorem, M admits exactly one eigenvalue λ of
maximum modulus, which is real and positive. DividingM,A,B and ϕ

(n)
k by

λ, we get

M =
M
λ

, A =
A
λ
, B =

B
λ
, φ

(n)
k =

ϕ
(n)
k

λn
. (10)

In particular, equations (7) and (9) become

Pr{Yn = k} =
φ

(n)
k∑n

j=0 φ
(n)
j

(11)

and

n∑
k=0

φ
(n)
k xk = ξ′ (Ax+B)nη . (12)

2.3 The Fourier transform

The characteristic function of a random variable X is defined by

FX(θ) = E(eiθX) .
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Thus, if X is a discrete r.v. assuming values in N, then

FX(θ) =
∑
k∈N

Pr {X = k}eiθk .

We recall that FX is always well-defined for every θ ∈ R, it is periodic of
period 2π and it completely characterizes the r.v. X. Moreover it represents
the classical tool to prove convergence in distribution: a sequence of r.v.’s
{Xn}n converges in distribution to a r.v. X (i.e. limn→∞ Pr {Xn ≤ t} = Pr
{X ≤ t} for every t ∈ R) if and only if FXn(θ) tends to FX(θ) for every θ ∈ R.
Several forms of the central limit theorem are classically proved in this way
[11].

In the following, for the sake of brevity, we denote by Fn(θ) the characteristic
function of Yn:

Fn(θ) =

∑n
k=0 φ

(n)
k eiθk∑n

j=0 φ
(n)
j

. (13)

Now, let us recall the definition of the discrete Fourier transform (for more
details see [6]). For any positive integer n, the n-th discrete Fourier transform
is the transformation Dn : Cn → C

n such that, for every u = (u0, · · · , un−1) ∈
C
n, Dn(u) = (v0, · · · , vn−1) where

(Dn(u))s = vs =
n−1∑
k=0

ωskn uk,

ωn being the n-th principal root of unity (i.e. ωn = e
i2π
n ). It is well-known that

Dn admits an inverse transformation D−1
n given by

(
D−1
n (v)

)
k

=
1

n

n−1∑
s=0

ω−ksn vs.

We may apply these notions to the coefficients φ
(n)
k defined in (12): consider

the vector (φ
(n)
0 , · · · , φ(n)

n ) as an element of Cn+1 and let

(f
(n)
0 , · · · , f (n)

n ) = Dn+1(φ
(n)
0 , · · · , φ(n)

n )

be its discrete Fourier transform. Then

f (n)
s =

n∑
k=0

ωskn+1φ
(n)
k for s = 0, . . . , n.

Thus, when applying D−1 to the vector (f
(n)
0 , · · · , f (n)

n ) ∈ Cn+1, we have

φ
(n)
k =

1

n+ 1

n∑
s=0

ω−ksn+1f
(n)
s for k = 0, . . . , n. (14)
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In this way we obtain an explicit expression for the values φ
(n)
k , while in (12)

they just appear as coefficients of a polynomial. Observe that, for each s =
0, · · · , n, the component f (n)

s satisfies the relation

f (n)
s =

 n∑
j=0

φ
(n)
j

 · Fn ( 2πs

n+ 1

)
(15)

and can be directly computed from the matrices A and B:

f (n)
s =

n∑
k=0

ωskn+1φ
(n)
k = ξ′ (A e

i2πs
n+1 +B)nη. (16)

We will use these coefficients f (n)
s in section 5 in order to prove a local limit

theorem for the probability distribution of Yn. This is given by an asymptotic
evaluation of the coefficients φ

(n)
k obtained by first determining an approxima-

tion of the values Fn
(

2πs
n+1

)
in (15) and then applying (14).

3 Analysis of mean value and variance

In this section we give an asymptotic evaluation of the expected value and of
the variance of Yn. To this end consider the function

hn(z) =
n∑
k=0

φ
(n)
k ezk = ξ′(Aez +B)nη . (17)

Note that hn(z) is related to the characteristic function of Yn:

Fn(θ) =
hn(iθ)

hn(0)
.

It is also well-known that the first two moments of Yn can be obtained by
evaluating hn and its derivatives at z = 0:

E(Yn) =
h′n(0)

hn(0)
, E(Y 2

n ) =
h′′n(0)

hn(0)
. (18)

From (17), recalling the algebra of matrices is non-commutative, one easily
obtains the following equations:

hn(0) = ξ′Mnη , h′n(0) = ξ′
n−1∑
i=0

M iAMn−1−iη , (19)

h′′n(0)− h′n(0) = 2ξ′
n−2∑
l=0

n−2−l∑
r=0

M lAM rAMn−2−r−l η . (20)
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Now, since M is a primitive matrix with maximum eigenvalue 1, by Proposi-
tion 2 we have

Mn = uv′ + C(n) · n
s

hn
(21)

where s ∈ N, h > 1, C(n) is a complex matrix such that |C(n)ij| ≤ c (for
a fixed constant c and for any i, j, n) and v′ and u are strictly positive left
and right eigenvectors of M corresponding to the eigenvalue 1, normed so that
v′u = 1. Moreover, the following matrix is well-defined:

C =
∞∑
n=0

C(n) · n
s

hn
. (22)

Thus, replacing (21) in equations (19) and (20), a rather long but conceptually
simple computation shows the following

Lemma 1

hn(0) = (ξ′u)(v′η) + O
(
ns

hn

)
,

h′n(0) =n(ξ′u)(v′Au)(v′η) + (ξ′CAu)(v′η) + (ξ′u)(v′ACη) + O

(
n2s+1

hn

)
,

h′′n(0) =n(n− 1)(ξ′u)(v′Au)2(v′η) + n(ξ′u)(v′Au)(v′η)+

+ 2n [(ξ′CAu)(v′Au)(v′η) + (ξ′u)(v′ACAu)(v′η) + (ξ′u)(v′Au)(v′ACη)]+O(1) .

This allows us to evaluate the mean value and the variance of Yn as function
of the matrices A and C and of the eigenvectors v′ and u of M . The following
theorem is easily derived from (18) by applying the previous lemma.

Theorem 2 There exist s ∈ N and h > 1 such that

E(Yn) = (v′Au)n+
ξ′CAu

ξ′u
+
v′ACη

v′η
+ O

(
n2s+1

hn

)
, (23)

Var(Yn) = {(v′Au)− (v′Au)2 + 2(v′ACAu)}n+ O(1) . (24)

Observe that in the case where we count the number of occurrences of the
letter a in a random word belonging to a rational language L, then the main
terms of both E(Yn) and Var(Yn) do not depend on the initial and final states
of the automaton recognizing L. If, further, the automaton is totally defined
( 3 ) then E(Yn) = n

2
+O(1).

3 I.e. for every state q and every σ ∈ {a, b} there is exactly one state reachable from
q by an arrow labelled by σ.
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Moreover, both E(Yn) and Var(Yn) always have strictly linear behaviour as
shown now.

Theorem 3 The constants of the main terms of mean value and variance of
Yn

β = v′Au , α = (v′Au)− (v′Au)2 + 2(v′ACAu) (25)

are non-null.

Proof. Since A is non-null and both v and u are stricly positive (point 2
of Theorem 1), it is clear that β > 0. Proving that α is strictly positive
is equivalent to proving that Var(Yn) ≥ cn for some c > 0 and for infinitely
many n. Recall that the r.v. Yn is associated with the polynomial ξ′(Ax+B)nη
having coefficients in R+ and degree equal to n. This leads us to consider for
any non-null polynomial p(x) =

∑
k∈I pkx

k, where I ⊆ N and pk ≥ 0 for each
k ∈ I, the associated random variable Xp such that Pr{Xp = k} = pk

p(1)
. Let

V (p) be the variance of Xp. Then

V (p) =
p′′(1) + p′(1)

p(1)
−
(
p′(1)

p(1)

)2

. (26)

Claim: For any pair of non-null polynomials p, q with nonnegative coeffi-
cients, we have

V (pq) = V (p) + V (q) , V (p+ q) ≥ p(1)

p(1) + q(1)
V (p) +

q(1)

p(1) + q(1)
V (q) .

In particular, we have V (p+ q) ≥ min{V (p), V (q)}.

Proof of the claim. The first equation follows immediately from (26). Further,
observe that

(p(1) + q(1))V (p+ q) = p′′(1) + q′′(1) + p′(1) + q′(1)− (p′(1) + q′(1))2

p(1) + q(1)
.

Thus, the second relation follows again from (26) by recalling that (a+b)2

c+d
≤

a2

c
+ b2

d
, for every four-tuple of positive values a, b, c, d. 2

Now, let’s return to the Theorem. Since A + B is primitive and both A and
B are non-null, there exists an integer t such that all the entries of the matrix
C = (Ax + B)t are polynomials with at least two non-null coefficients. This
implies that the value

c = min{V (Cij) | i, j = 1, 2, . . . ,m}

14



is strictly positive. Then, by the previous claim, for every n ∈ N and every
pair of indices i, j we have

V (Cn+1
ij ) ≥ min {V (Cn

ik) + V (Ckj) | k = 1, 2, . . . ,m} .

As a consequence, V (Cn+1
ij ) ≥ c+min {V (Cn

ik) | k = 1, 2, . . . ,m} proving that
V (Cn

ij) ≥ nc. Since ξ′(Ax+ B)nη is a polynomial associated with the r.v. Yn,
we get

Var(Ytn) ≥ min{V (Cn
ij) | i, j = 1, 2, . . . ,m} ≥ nc

for every n ∈ N. Together with (24) this proves Var(Yn) = Θ(n) and hence
α > 0. 2

4 Integral limit theorem

In this section we show that a central limit theorem for the sequence {Yn}
holds under the simple hypothesis that M is primitive. The result can be
obtained by applying Theorem 1 in [1] and is actually a special case of a more
general analysis [10]. However we present it here in some details for sake of
completeness and because several identities encountered in the proof will be
useful in the following section. In particular we will need some properties used
to prove Proposition 3 and its corollary; that proposition is a quasi-power
theorem of the type studied in [13] and its proof, sketched in [17], applies to
our case also.

First we study the behaviour of hn(z) near z = 0; to this end consider the

bivariate generating function of {φ(n)
k }k,n , given by

G(x, y) =
+∞∑
n=0

n∑
k=0

φ
(n)
k xkyn =

+∞∑
n=0

ξ′(Ax+B)nη · yn .

Such a function can be written in the form

G(x, y) = ξ′ (I − y(Ax+B))−1 η =
Q(x, y)

P (x, y)
,

where P (x, y) = Det (I − y(Ax+B)) andQ(x, y) = ξ′ Adj (I − y(Ax+B)) η.
Moreover, observe that G(ez, y) is also the generating function of the sequence
{hn(z)}n; hence we have

G(ez, y) =
+∞∑
n=0

hn(z)yn =
Q(ez, y)

P (ez, y)
.

15



Now recall that A+B is primitive and 1 is its eigenvalue of largest modulus;
then, by the Perron–Frobenius Theorem, the equation

Det(uI − (Aez +B)) = 0 (27)

implicitly defines an analytic function u = u(z) in a neighbourhood of z = 0
such that u(0) = 1 and u′(0) 6= 0. Such a function satisfies the following
property:

Proposition 3 There are two positive constants c, ρ and a function R(z)
non-null at z = 0, rational with respect to ez and u(z), such that for every
|z| ≤ c

hn(z) = R(z) u(z)n +O(ρn)

and ρ < |u(z)|.

Proof. By the Perron–Frobenius Theorem and a continuity property, there
exists ρ > 0 such that, for every z near 0, all roots µ of (27) different from 1
(i.e. all other eigenvalues of Aez +B) satisfy the relation |µ| < ρ < |u(z)|.

This means that, for a suitable constant c > 0 and for every |z| ≤ c, the
polynomial (w.r.t. the variable y)

Det(I − y(Aez +B))

1− u(z)y
=

P (ez, y)

1− u(z)y

only has roots of modulus greater than ρ−1 > |u(z)|−1.

Thus, since Q(1, 1) 6= 0, the function G(ez, y) = Q(ez ,y)
P (ez ,y)

can be expressed in
the form

G(ez, y) =
R(z)

1− u(z)y
+ E(z, y) (28)

where, for every |z| ≤ c, E(z, y) has singularities µ−1 of modulus greater than
ρ−1 and, by l’Hôpital’s rule, R(z) is given by

R(z) =
−u(z) ·Q(ez, u(z)−1)

P ′y(e
z, u(z)−1)

. (29)

Since G(ez, y) is the generating function of {hn(z)}, from (28) we have

hn(z) = R(z) u(z)n + En(z) (30)

where En(z) is the n-th coefficient of E(z, y). Now, to evaluate En(z), let C be
the circle of center in 0 and radius ρ−1 and apply Cauchy’s integral formula
choosing C as contour; we obtain

|En(z)| = 1

2πi

∫
C

E(z, y)

yn+1
dy ≤ K(z)ρn

16



for a suitable constant K(z). Then, denoting by K the value max|z|≤c |K(z)|,
we obtain |En(z)| ≤ Kρn and this completes the proof. 2

To study the limit distribution of Yn it is convenient to express its moments as
function of u(z) and the corresponding derivatives. We can do that by simply
developing the previous proof.

Corollary 1 For some 0 < ρ < 1, we have

E(Yn) =u′(0)n+
R′(0)

R(0)
+O(ρn),

Var(Yn) =
(
u′′(0)− u′(0)2

)
n+

R′′(0)

R(0)
−
(
R′(0)

R(0)

)2

+O(ρn).

Proof. Let R(z) and u(z) be defined as in Proposition 3. Then, for some
0 < ρ < 1, we have

hn(0) = R(0) + O(ρn) , (31)

h′n(0) = R(0) u′(0) n + R′(0) + O(ρn) ,

h′′n(0) = R(0) u′(0)2 n2 +
{

2R′(0)u′(0) +R(0)
(
u′′(0)− u′(0)2

)}
n +

+ R′′(0) + O(ρn) .

Indeed, since u(0) = 1, the first equation is a straightforward consequence of
Proposition 3. Moreover from (30) we get

h′n(z) = (R′(z)u(z) + nR(z)u′(z))u(z)n−1 + E ′n(z)

Note that E ′(0, y) has the same singularities of E(0, y) and hence E ′n(0) =
O(ρn) for some 0 < ρ < 1. This proves the second equation and the third one
follows from a similar reasoning. Thus, the result is a consequence of equations
(18). 2

By Theorem 3, this corollary implies

u′(0) = β , u′′(0)− u′(0)2 = α . (32)

Hence we are able to prove the following

Theorem 4 If the matrix M is primitive then there exists two positive alge-
braic numbers α, β such that the r.v. Yn−βn√

αn
converges in distribution to the

17



normal r.v. of mean 0 and variance 1, i.e. for every x ∈ R

lim
n−→+∞

Pr

{
Yn − βn√

αn
≤ x

}
=

1√
2π

∫ x

−∞
e−

t2

2 dt.

Proof. We argue as in [1]. Let F̄n(t) be the characteristic function of Yn−βn√
αn

.
Then

F̄n(t) =
n∑
k=0

Pr{Yn = k}eit
k−βn√
αn =

e−itβ
√

n
α · hn

(
it√
αn

)
hn(0)

.

By Proposition 3, as n tends to +∞, we have (for some 0 < ρ < 1)

F̄n(t) = exp

{
−itβ

√
n

α
+ logR

(
it√
αn

)
+ n log u

(
it√
αn

)
− logR(0) +O(ρn)

}
.

(33)

Now observe that the Taylor expansion of log u(z) at the point z = 0 is

log u(z) = zu′(0) +
z2

2

{
u′′(0)− u′(0)2

}
+O(z3) .

Thus, since R(z) is analytic in 0, from (33) and(32) we obtain

F̄n(t) = exp

−t22 +O

√ 1

n

 ,

showing that F̄n pointwise converges to the characteristic function of the stan-
dard normal random variable. 2

5 Local limit theorem

In this section we prove a local limit theorem for the r.v. Yn, assuming con-
dition (2) stated in the Introduction. Using the notation of Section 2 such a
condition can be stated as follows:

|µ| < 1 for every eigenvalue µ of Aeiθ +B and every 0 < θ < 2π. (34)

Note that such hypothesis is often verified, as the following example shows.

Example 3 Let us consider the formal series having a linear representation
defined by a finite automaton over the alphabet {a, b} with set of states Q. If
the associated matrixM is primitive and one of the following conditions holds
for some pair of distinct states q, p ∈ Q:

18



(1) q · a = q · b = p ;
(2) q · a = q and p · b = p ,

then Aeiθ + B satisfies condition (2).

����q ����p
� �

?

a

� �6
b

Case 1.

����q ����p
��
��6

a -w

��
��6

b

Case 2.

Proof.

1. Let us define M(θ) = Aeiθ + B. Clearly |M(θ)ij| ≤ Mij for any i, j, θ.
Moreover, since M(θ)qp = eiθ + 1 and Mqp = 2, we have |M(θ)qp| 6=Mqp for
any θ 6= 2kπ. Therefore, if ν is an eigenvalue of M(θ), we have |ν| < λ by
Proposition 1.

2. Since M is primitive, there exists a word w such that δ(q, w) = p. Let
h = |w|a and consider the words aw and wb: they have the same length
H = |w| + 1 and δ(q, aw) = δ(q, wb) = p. Now we can suppose that case 1
holds for no pair of states (else condition (2) is already proved); then we can
compute the polynomial

M(θ)Hqp =
∑

|v|=H, δ(q,v)=p

eiθ|v|a = eiθh + eiθ(h+1) + · · · = eiθh(1 + eiθ) + · · · .

Then, since MH
qp ∈ N, we have |M(θ)Hqp| 6= MH

qp for any θ 6= 2kπ, while

clearly |M(θ)Hij| ≤ MH
ij for any i, j, θ. Now, since M is primitive and λ is

its Perron–Frobenius eigenvalue, MH is also primitive and λH is its Perron–
Frobenius eigenvalue. On the other hand, if ν is an eigenvalue of M(θ) for
some θ 6= 2kπ, then also νH is an eigenvalue of M(θ)H ; therefore |νH | < λH

by Proposition 1 and this proves condition (2). 2

We now present an example where condition (2) does not hold.

Example 4 Consider the following automaton

����q4 ����q1

� �
?

a

� �6

a ����q3

�
�
��3b

Q
Q
QQk
b ?

a

����q2

19



and the associated varied transition matrix M(θ) = Aeiθ + B. Then the ma-
trices M(π

2
), M(π), M(3π

2
) admit eigenvalues of modulus equal to λ.

Proof. Indeed the matrixM(θ) and its characteristic polynomial are given by

M(θ) =



0 1 0 eiθ

0 0 eiθ 0

1 0 0 0

eiθ 0 0 0


, Det (yI −M(θ)) = y4 − y2ei2θ − yeiθ.

Let λ be the Perron–Frobenius eigenvalue ofM, hence λ4−λ2−λ = 0. Thus, it
is easy to prove that −iλ is a root of the polynomial Det

(
yI −M(π

2
)
)

= y4 +

y2− iy. Analogously, −λ and iλ are roots of the polynomials Det (yI −M(π))

and Det
(
yI −M(3π

2
)
)
, respectively. 2

We now illustrate the proof of the local limit theorem for Yn. This consists
of three main steps. First we study the behaviour of the function λ(θ)n near
0, λ(θ) being the eigenvalue of maximum modulus of Aeiθ + B. Then, in
Subsection 5.2 we use this analysis to obtain a pointwise approximation of
the function Fn, which in view of (15) applies to the coefficients f (n)

s as well.

This result will lead in Subsection 5.3 to an evaluation of the values φ
(n)
k by

anti-transforming the coefficients f (n)
s via equation (14).

5.1 Main eigenvalue analysis

In this subsection we study the behaviour of the function

λ(θ) = u(iθ)

in a real neighbourhood of θ = 0, where u is implicitly defined by equation
(27). For this reason, we do not need here the hypothesis (2). Also observe
that, by Proposition 3, λ(θ) determines the main term of the characteristic
function of Yn.

First note that, by a continuity property, λ(θ) is the eigenvalue of maximum
modulus of Aeiθ + B for any θ near 0. Also, for every non-null θ near 0,
Aeiθ +B 6= M and hence |λ(θ)| < 1 by Proposition 1. Therefore, we can state
the following

Proposition 4 There exists θ0 > 0 such that, for every |θ| < θ0, Aeiθ+B has
a unique eigenvalue of maximum modulus λ(θ); further, in that neighbourhood,
λ(θ) is an analytic function and |λ(θ)| < 1 for every 0 < |θ| < θ0.
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In the next statement the constant θ0 is the same as in the previous Proposi-
tion.

Proposition 5 The function |λ(θ)| is even while arg λ(θ) is odd, i.e. |λ(θ)| =
|λ(−θ)| and arg λ(−θ) = −arg λ(θ). Moreover, for every |θ| < θ0,

|λ(θ)| = 1− α

2
θ2 + O (θ4) and arg λ(θ) = βθ + O (θ3), (35)

where α and β are defined in (25).

Proof. Observe that the polynomial D(x, y) = Det(yI − (Ax + B)) has real
coefficients; then, denoting by z the conjugate of z, we have that D(x, y) = 0
implies D(x, y) = 0. Therefore, by (27), λ(θ) = u(−iθ) = λ(−θ) and hence

Re λ(−θ) =
1

2
(λ(−θ) + λ(θ)) = Re λ(θ);

Im λ(−θ) =
1

2i
(λ(−θ)− λ(θ)) = −Im λ(θ).

As a consequence we obtain

arg λ(−θ) = arctg
Im λ(−θ)
Re λ(−θ)

= −arg λ(θ);

|λ(−θ)|2 = (Re λ(−θ))2 + (Im λ(−θ))2 = |λ(θ)|2.

Hence, there exist two constants a, b ∈ R such that

|λ(θ)| = 1− a

2
θ2 + O (θ4) and arg λ(θ) = bθ + O (θ3). (36)

However, by the definition of λ(θ) and by (32) we have λ′(0) = iu′(0) = iβ,
while by (36)

λ′(0) =

[
∂

∂θ

(
|λ(θ)|eiarg λ(θ)

)]
θ=0

= ib

and hence b = β. Analogously, by (32) we have λ′′(0) = −u′′(0) = −α − β2

while, computing λ′′(0) from (36), we get λ′′(0) = −a− b2 yielding a = α. 2

Proposition 6 For any 1
3
< ε < 1

2
we have

λn(θ)− e−
α
2
θ2n+iβθn = O

(
1√
n

)
for every |θ| ≤ 2π

(n+ 1)ε
.

Proof. The previous proposition implies λ(θ) ∼ e−
α
2
θ2+iβθ+icθ3

as θ → 0, for
some constant c. Then, for any ε > 1

3
and for all |θ| ≤ 2π

(n+1)ε
,

λn(θ) ∼ e−
α
2
θ2n+iβθn(1 + icθ3n).
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Hence

|λn(θ)− e−
α
2
θ2n+iβθn| = O

(
n|θ|3e−

α
2
θ2n
)

= O

(
1√
n

)
,

where the last inequality is obtained by deriving the middle term with respect
to θ. 2

5.2 Approximating the Fourier transform

In this section we study the characteristic function of Yn and in particular the
term

hn(iθ) = ξ′(Aeiθ +B)nη.

Proposition 7 For every 0 < θ0 < π there exists 0 < τ < 1 such that

hn(iθ) = O (τn) n→ +∞

for all θ0 ≤ |θ| ≤ π.

Proof. As shown in Section 4, the generating function of {hn(iθ)} is given by

G(eiθ, y) =
∞∑
n=0

hn(iθ)yn =
Q(eiθ, y)

P (eiθ, y)
.

Observe that the singularities of G(eiθ, y) are the roots of P (eiθ, y), i.e. the
values µ−1, for each eigenvalue µ of Aeiθ + B. Now, consider an arbitrary
0 < θ0 < π. From (34) we know that there exists 0 < τ < 1 such that
|µ| < τ < 1 for every |θ| ∈ [θ0, π]. Hence, in this interval all singularities of
G(eiθ, y) are in modulus greater than τ−1. Thus, reasoning as in the proof
of Proposition 3, the result follows applying Cauchy’s integral formula to the
function G(eiθ, y) with integral contour given by |y| = τ−1. 2

The previous proposition, together with Proposition 3 and the analysis of func-
tion λ(θ) given in the previous subsection, allows us to establish the following
theorem, which though technical, is of significant importance for further re-
sults.

Theorem 5 Let θ0 be the constant defined in Proposition 4. Then, for every
θ ∈ [−π, π],

Fn(θ)− e−
α
2
θ2n+iβnθ = ∆n(θ)
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where

∆n(θ) =


O
(

1
nε

)
if |θ| ≤ 2π

(n+1)ε

O
(
e−απ

2n1−2ε
)

if 2π
(n+1)ε

≤ |θ| ≤ θ0

O (τn) if θ0 ≤ |θ| ≤ π

for some 0 < τ < 1 and for every 1
3
< ε < 1

2
.

This theorem suggests to approximate Fn(θ) by the function F̂n(θ) defined by:

i) F̂n(θ) is periodic on R with period 2π;

ii) F̂n(θ) = e−
α
2
θ2n+iβnθ for |θ| ≤ π.

Proof. We study separately the three cases

|θ| ≤ 2π

(n+ 1)ε
,

2π

(n+ 1)ε
≤ |θ| ≤ θ0 and θ0 ≤ |θ| ≤ π.

Since Fn(θ) = hn(iθ)
hn(0)

, in the first interval by Proposition 3 we have

Fn(θ) =
R(iθ)λn(θ) + O(ρn)

R(0) + O(ρn)
.

Also observe that R(iθ) = R(0) + O(n−ε) and, by Proposition 6, λn(θ) =
e−

α
2
θ2n+iβθn+O(n−1/2). Thus, replacing these values in the previous numerator,

we get

Fn(θ) = e−
α
2
nθ2+iβnθ + O

(
1

nε

)
.

Now consider the second interval 2π
(n+1)ε

≤ |θ| ≤ θ0. By Proposition 3, we have

|hn(iθ)−R(0) e−
α
2
nθ2+iβnθ| ≤

≤ |hn(iθ)−R(iθ) λ(θ)n|+ |R(iθ)λ(θ)n −R(0) e−
α
2
nθ2+iβnθ|

≤ O(ρn) + |R(iθ) λ(θ)n|+R(0) e−
α
2
nθ2

.

From equation (35) we know that, for some real constant c and for every
|θ| ≤ θ0,

|λ(θ)| ≤ 1− α

2
θ2 + cθ4

and this implies |λ(θ)|n ≤
(
1− αθ2

4

)n
≤ e−n

αθ2

4 for every |θ| ≤
√

α
4c

. Since we

may assume that θ0 ≤
√

α
4c

, the inequality above yields

|hn(iθ)−R(0) e−
α
2
nθ2+iβnθ| ≤ O

(
ρn + e−n

αθ2

4

)
≤ O

(
e−π

2αn1−2ε
)
.
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Finally, assume θ0 ≤ |θ| ≤ π. In this case, by Proposition 7 , we obtain

|hn(iθ)−R(0) e−
α
2
nθ2+iβnθ| ≤ |hn(iθ)|+ |R(0)| e−

α
2
nθ2

= O
(
τn + e−

α
2
θ2
0n
)

which proves the result. 2

Now, equations (17) and (31) imply

n∑
k=0

φ
(n)
k ∼ R(0) (37)

as n tends to +∞. Hence, applying the previous result to equation (15), we
get

Corollary 2 For every integer s, 0 ≤ s ≤ n, we have

f (n)
s −R(0)F̂n

(
2πs

n+ 1

)
=

∆n

(
2πs
n+1

)
if 0 ≤ s ≤ n+1

2

∆n

(
2πs
n+1
− 2π

)
if n+1

2
< s ≤ n

where ∆n is defined as in Theorem 5.

5.3 Anti-transform

In this section we estimate the coefficients φ
(n)
k by using equation (14) and

applying the results of the previous subsection. In particular, we use Corollary
2 to approximate the coefficients f (n)

s .

First, let us define the array (φ̂
(n)
0 , . . . , φ̂(n)

n ) as the inverse discrete Fourier
transform of the vector of components

R(0)F̂n

(
2πs

n+ 1

)
for s = 0, · · · , n.

Then, by classical tools of analysis, we get for every k = 0, . . . , n
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φ̂
(n)
k =

R(0)

n+ 1

n∑
s=0

F̂n

(
2πs

n+ 1

)
· ω−ksn+1

≈R(0)
∫ 1

0
F̂n(2πu)e−i2πku du

=R(0)
∫ 1

2

− 1
2

F̂n(2πu)e−i2πku du

=R(0)
∫ 1

2

− 1
2

e−2απ2nu2

e−i2π(k−βn)u du

≈R(0)
∫ +∞

−∞
e−2απ2nu2

e−i2π(k−βn)u du.

Recalling that ∫ +∞

−∞
e−δu

2 · e−i2πmu du =

√
π

δ
e−

π2

δ
m2

,

the last expression can be reduced to

φ̂
(n)
k =

R(0)√
2αnπ

e−
(k−βn)2

2αn + o

(
1√
n

)
. (38)

This gives an approximation of our coefficients φ
(n)
k and the following propo-

sition shows the associated error bound, which does not depend on k.

Proposition 8 There exists a positive constant c such that, for every n large
enough, the following relation holds uniformly for every k = 0, 1, . . . , n and
for any 1

3
< ε < 1

2
:

φ
(n)
k − φ̂

(n)
k ≤ c

n2ε
.

Proof. By the definition of anti-transform and by Corollary 2 we have

φ
(n)
k − φ̂ (n)

k ≤ 1

n+ 1

n∑
s=0

f (n)
s −R(0)F̂n

(
2πs

n+ 1

)
≤ 2

n+ 1

∑
0≤s≤n+1

2

∆n

(
2πs

n+ 1

)
+ O(ρn)

for some 0 < ρ < 1. The last sum can be computed by splitting the range of s
in three parts, corresponding to the three intervals studied in Theorem 5. We
obtain

φ
(n)
k − φ̂ (n)

k =
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= O

(
1

n

[
n1−εn−ε +

(
θ0

2π
− n−ε

)
ne−απ

2n1−2ε

+

(
1

2
− θ0

2π

)
nτn

])

= O
(
n−2ε + e−απ

2n1−2ε

+ τn
)

= O
(

1

n2ε
.
)

2

To conclude, we can summarize our main result in the following theorem.

Theorem 6 Assume that the matrix M is primitive, the matrices A and B
are different from 0 and |ν| < λ for every eigenvalue ν of Aeiθ + B and every
0 < θ < 2π. Then, there exist two positive constants α and β such that, as n
tends to +∞, the equation

Pr {Yn = k} =
e−

(k−βn)2

2αn

√
2παn

+ o

(
1√
n

)
, (39)

holds uniformly for every k = 0, 1, . . . , n.

Proof. By Theorem 3, the constants α and β are strictly positive. Then, equal-
ity (39) follows from (11) and (37) by applying Proposition 8 and relation (38).
2

Finally, from the previous theorem one can easily deduce the following

Corollary 3 Let r ∈ R+〈〈a, b〉〉 be a rational formal series that satisfies
the hypothesis of Theorem 6. Then, as n tends to +∞, the largest value∑
|w|=n,|w|a=k(r, w) for 0 ≤ k ≤ n is of the order of growth Θ

(
λn√
n

)
, for some

λ > 1.

6 Conclusions

In this work we have studied the rational symbol frequency problem for formal
series defined via a primitive matrix. In particular, we have proved a local limit
theorem for the associated r.v. Yn stating that, if condition (2) is satisfied, then
the probability function of Yn approximates a normal density function. Intu-
itively this result means that, in our hypotheses, the occurrence of the letter
a in a given position of a “random” word of length n is rather independent of
the other occurrences and of the position itself. Thus, Yn is similar to the sum
of n independent Bernoulli random variables of equal parameter.

We observe that the primitivity hypothesis cannot be omitted to obtain a
Gaussian limit distribution. To see this fact it is sufficient to consider the

26



language a∗b∗.

Also condition (2) is necessary to obtain the local limit result in the sense that
if it does not hold equation (39) may not be true. As an example, consider the
r.f.s.p. defined by the weighted automaton of Example 2. As show there, this
is equivalent to a Markovian pattern frequency problem where the pattern is
R = {ba, baa, bab} and the stochastic model is given by a Bernoulli process of
parameter 1/2. In this case the characteristic polynomial of the matrix A+B
is y2(y − 1) and hence its Perron–Frobenius eigenvalue is 1 (implying A = A
and B = B). Moreover, the characteristic polynomial of Aeiθ + B is

Det
(
Iy −Aeiθ − B

)
= y

(
y2 − y +

1− e2iθ

4

)

the roots of which are 0, 1+eiθ

2
and 1−eiθ

2
. Thus 1 is eigenvalue of the matrix

also for θ = π showing that condition (2) is not true in this case.

On the other hand, the probability function of the associated r.v. Yn does not
satisfy relation (39). Indeed, in this case the bivariate generating function of

{φ(n)
k } is given by

G(x, y) = ξ′ (I − y(Ax+ B))−1 η =
xy2 − x2y2 + 4

y2 − x2y2 − 4y + 4
.

Hence, we can directly compute its coefficients obtaining (for 2 ≤ k < n)

Pr{Yn = k} =
1

2n
·



(
n

k

)
+

(
n

k + 1

)
−
(
n− 2

k − 2

)
−
(
n− 2

k − 1

)
if k is even

(
n− 2

k − 1

)
+

(
n− 2

k

)
if k is odd and k < n− 1

which clearly cannot approximate a Gaussian density (even if, the automaton
being primitive, a central limit theorem holds for Yn).

The local limit distribution of Yn depends on structure properties of the au-
tomaton described in Example 2 we investigate in a forthcoming paper [4].
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