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Abstract

In this paper, we determine some limit distributions of pattern statistics in ratio-
nal stochastic models. We present a general approach to analyze these statistics in
rational models having an arbitrary number of strongly connected components. We
explicitly establish the limit distributions in most significant cases; they are char-
acterized by a family of unimodal density functions defined by means of confluent
Vandermonde matrices.
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1 Introduction

This work presents some results on the limit distribution of pattern statistics.
The major problem in this context is to estimate the frequency of pattern
occurrences in a random text. This is a classical problem that has applica-
tions in several research areas of computer science and biology: for instance,
it is considered in connection with the search of motifs in DNA sequences [17]
while the earlier motivations are related to code synchronization [10,11] and
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approximated pattern-matching [13,22]. In a general probabilistic framework
[18,16,3], given one or more patterns, defined as strings over a finite alpha-
bet Σ, and a probabilistic source P generating words at random over Σ, one
considers the number Xn of occurrences of patterns in a word of length n
generated by P ( 1 ). Typical goals are the asymptotic evaluation of the mo-
ments of Xn, in particular its mean value and variance, its limit distribution,
the local limit properties and the corresponding large deviations. The results
depend in particular on the stochastic model P , which is usually assumed to
be a Bernoulli model [11] or a Markovian model [18,16]. For instance, in [16]
Gaussian limit distributions are obtained, for any regular set of patterns and
any Markovian source P , under a primitivity hypothesis on the associated
stochastic matrix.

In our paper, we assume the so-called rational stochastic model, introduced
in [2], which includes the traditional Markovian model as a particular case. In
our framework, the pattern is reduced to the single symbol a while the text
is a word of length n over the alphabet {a, b} generated at random according
to a probability distribution defined by means of a rational formal series with
nonnegative real coefficients and noncommutative variables a, b. Such a setting
can simulate any Markovian source over an arbitrary finite alphabet Σ for any
regular set of patterns in Σ∗ [2].

Also in the rational stochastic models, Gaussian limit distributions are ob-
tained under a primitive hypothesis, i.e. when the matrix associated with the
rational formal series (counting the transitions between states) is primitive [2].
A complete study of the limit distributions is given in [5] in the bicomponent
rational models, that is when the graph corresponding to the previous matrix
consists of two strongly connected components.

Here, we present a general approach to the analysis of rational stochastic
models with an arbitrary number of strongly connected components (called
multicomponent models), explicitly establishing the limit distribution of the
corresponding pattern statistics in most significant cases. The main result
shows that such a limit distribution is related to the confluent Vandermonde
matrices, a generalization of the classical Vandermonde matrices used in sev-
eral research areas and in particular in Automatic Control Theory [4,15].

The material we present is organized as follows. In Section 3 we recall the no-
tion of confluent Vandermonde matrix and some of its properties; in particular,
we show how this is related to the convolution of a finite set of sequences. In
Section 4 we introduce a family of probability distributions defined by means
of confluent Vandermonde matrices and establish their main properties. We
call them Vandermonde distributions. In particular, we prove that their den-

1 Here, an occurrence is a position where a pattern ends in the text.
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sity functions are unimodal and we compute their characteristic functions. In
Section 5 we start our analysis of pattern statistics and present the rational
stochastic models, discussing the natural decomposition in strongly connected
components; in particular, we introduce the notions of dominant component
and main chain and show their role in the analysis of multicomponent mod-
els. In Section 6 we present our main result, which concerns the simple models
(those with just one main chain which in addition only has primitive dominant
components); in this case, assuming a mild variability condition on the domi-
nant components, we determine the limit distribution of our pattern statistics
showing that it is a Vandermonde distribution. Finally, in Section 7, we char-
acterize the limit distributions for all simple models and provide a natural
method to determine the limit distribution in the general case.

2 Preliminary notions

Generating functions represent the main tool we use in this study (see for
instance [6] or [20, Chapter 3]). We recall that the (ordinary) generating func-
tion of a sequence {gn} ⊆ C is the analytic function g(w) that admits the
Taylor expansion g(w) =

∑+∞
0 gnw

n for every w in an open neighbourhood
of 0. In our analysis we often have to evaluate the asymptotic growth of se-
quences having a rational generating function. To this end we make use of
the following well-known properties that allow to extract informations on the
growth of a sequence from the singularities of its generating function.

Let g(w) be the generating function of a sequence {gn} ⊆ C; consider the
radius of convergence R of the power series

∑+∞
0 gnw

n and assume R is finite.
We first observe that gn = O(r−n) for every real r such that 0 < r < R.
Moreover, let α1, α2 . . . , αj be the singularities of g(w) of modulus smaller than
T , for some T > R. If all αi’s are simple poles then gn =

∑j
i=1 ciα

−n
i + O(ρn)

for some 0 < ρ < R−1 and some nonnull values ci ∈ C, i = 1, . . . , j. On the
contrary, if each αi is a pole of degree ki, then gn =

∑j
i=1 ciα

−n
i nki−1 (1 +

O(1/n)) where ci ∈ C is nonnull for every i = 1, . . . , j.

We finally recall that the product of two generating functions is the generating
function of the convolution of the associated sequences. More generally, if
g(i)(w) is the generating function of the sequence {g(i)

n } for each i = 1, 2, . . . , k,
then f(w) =

∏k
i=1 g

(i)(w) is the generating function of the sequence {fn} such
that, for every n ∈ N,

fn =
∑

n1+···+nk=n

g(1)
n1
g(2)
n2
· · · g(k)

nk
.
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3 Confluent Vandermonde matrices

Vandermonde matrices are defined by linear systems of equations whose so-
lution yields the coefficients of polynomials of smallest degree with a given
set of distinct roots [14]. When roots are associated with a given multiplicity
an analogous system of equations can be defined that leads to a generalized
version of Vandermonde matrix, called confluent Vandermonde matrix. That
one plays a remarkable role in Automatic Control Theory [4]; in particular,
its inverse is useful to compute the solutions of linear systems of differential
equations [15]. In this section we recall the main properties of such matrices;
our main goal is to present Proposition 3, which shows how the inverse of
a confluent Vandermonde matrix can be used to compute the terms of the
convolution of a family of sequences.

Given two integers k, r such that 2 ≤ r ≤ k, let (v1, v2, . . . , vr) be a tuple
of distinct complex numbers and let (m1,m2, . . . ,mr) ∈ Nr be an associated
tuple of multiplicities, such that m1 +m2 + · · ·+mr = k and mi ≥ 1 for each
i = 1, 2, . . . , r. Consider the monic polynomial

D(x) =
r∏
`=1

(x− v`)m` = xk + ak−1x
k−1 + · · ·+ a1x+ a0 . (1)

The confluent Vandermonde matrix associated with D(x) is defined by V =
[V1|V2| · · · |Vr] where, for each ` = 1, 2, . . . , r, V` is the matrix of size (k ×m`)
such that

(V`)hj =


(
h−1
j−1

)
vh−j` if j ≤ h

0 otherwise.

for every h = 1, 2, . . . , k and j = 1, 2, . . . ,m`.

For instance if r = 2, m1 = 3 and m2 = 4, then V is given by

V =



1 0 0 1 0 0 0

v1 1 0 v2 1 0 0

v2
1 2v1 1 v2

2 2v2 1 0

v3
1 3v2

1 3v1 v3
2 3v2

2 3v2 1

v4
1 4v3

1 6v2
1 v4

2 4v3
2 6v2

2 4v2

v5
1 5v4

1 10v3
1 v

5
2 5v4

2 10v3
2 10v2

2

v6
1 6v5

1 15v4
1 v

6
2 6v5

2 15v4
2 20v3
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.

In the special case when m` = 1 for every ` = 1, 2, . . . r, V reduces to the
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standard Vandermonde matrix

V =



1 1 . . . 1

v1 v2 . . . vk

v2
1 v2

2 . . . v2
k

. . . . . . . . . . . .

vk−1
1 vk−1

2 . . . vk−1
k


. (2)

It is well-known that V always is nonsingular and that its determinant is∏
1≤i<j≤r(vi − vj)mimj .

3.1 Inverse of a confluent Vandermonde matrix

Some identities we use in subsequent sections concern the inverse of V and
especially the entries of its last column. An explicit expression for all entries
of V −1 is presented in [4, Eq. (9)]. Here, we recall that the last column of V −1

is given by the vector

w = (w11, w12, . . . w1m1 |w21, w22, . . . w2m2 | . . . |wr1, wr2, . . . wrmr)T (3)

where for every ` = 1, 2, . . . r and j = 1, . . . ,m`, we have

1

D(x)
=

r∑
`=1

m∑̀
j=1

w`j
(x− v`)j

(4)

and the following differential formula holds

w`j =
1

(m` − j)!
· d

m`−j

dxm`−j

[
1∏

i 6=`(x− vi)mi

]
|x=v`

. (5)

Notice that for x 6= v we have

dn

dxn
(x− v)−m = (−1)n n!

(
m+ n− 1

m− 1

)
(x− v)−m−n .

hence, by applying Leibniz differentiation rule

dn

dxn
(f1(x) · f2(x) · · · fr(x)) = n!

∑
n1+n2+···+nr=n

(∏
i

1

ni!
· d

ni

dxni
fi(x) ,

)

we get the following expression for every w`j

w`j = (−1)m`−j
∑∑

i6=` ni=m`−j

∏
i 6=`

(
ni +mi − 1

mi − 1

)
(v` − vi)−mi−ni . (6)
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Proposition 1 Let D(x) be the polynomial defined by Equation (1) (with dis-
tinct v`’s). Consider the confluent Vandermonde matrix associated with D(x)
and let w be the vector defined in (3). Then, for every s = 1, 2, . . . k − 1 the
following polynomial is identically null

Ps(x) =

r∑
`=1

min(s,m`)∑
j=1

(
s− 1

j − 1

)
w`j(v` − x)s−j .

Moreover, Pk(0) = 1.

Proof. First notice that Pk(0) = 1 and Ps(0) = 0 for every s = 1, 2, . . . , k − 1.
Indeed, such equalities can be written in matrix form as V ·w = (0, . . . , 0, 1)

T
,

which holds true by definition of V and w. Now, fix an integer 1 ≤ s ≤ k− 1.

Replacing (v` − x)s−j =
∑s
h=j

(
s−j
h−j

)
vh−j` (−x)s−h in Ps(x) we get

Ps(x) =
r∑
`=1

min(s,m`)∑
j=1

s∑
h=j

(
s− 1

h− 1

)(
h− 1

j − 1

)
w`j v

h−j
` (−x)s−h .

Since the set {(h, j) ∈ N2 | 1 ≤ j ≤ min(s,m`), j ≤ h ≤ s} equals the set
{(h, j) ∈ N2 | 1 ≤ h ≤ s, 1 ≤ j ≤ min(h,m`)}, the previous expression can
be written as

Ps(x) =

s∑
h=1

(s− 1

h− 1

)
(−x)s−h

r∑
`=1

min(h,m`)∑
j=1

(h− 1

j − 1

)
w`j v

h−j
`

=

s∑
h=1

(s− 1

h− 1

)
(−x)s−hPh(0)

which is identically null by the previous reasoning. 2

Corollary 2 Let V be the Vandermonde matrix defined in (2), where the
v`’s are all distinct. Then, the entries of the last column of V −1 are given
by c` =

∏
i 6=`(v` − vi)

−1 for ` = 1, 2, . . . k and satisfy
∑
` c` v`

k−1 = 1 ,∑
` c` (v` − x)s−1 = 0 for every s = 1, 2, . . . k − 1.

3.2 Multiple convolutions

Confluent Vandermonde matrices are related to the properties of convolutions
of families of sequences. More precisely, consider the rational function

D(0)

D(x)
=

r∏
`=1

(
−v`
x− v`

)m`
=

r∏
`=1

(
1− x

v`

)−m`
and observe that each (1−x/v`)−m` is the generating function of {

(
n+m`−1
m`−1

)
v−n` }n.

Therefore D(0)/D(x) is the generating function of the sequence {g
D

(n)}n de-
fined by their convolution, i.e.,

gD(n) =
∑∑
`
n`=n

r∏
`=1

(
n` +m` − 1

m` − 1

)
v−n`` (7)
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A key remark for the subsequent discussion is to notice that

gD(n) =
∑

(v−n11
1 · · · v−n1m1

1 ) · (v−n21
2 · · · v−n2m2

2 ) · · · (v−nr1r · · · v−nrmrr ) ,

where the sum is extended over all the k-tuples of nonnegative exponents
(n11, n12, . . . , nrmr) whose sum equals n. In other words, {g

D
(n)}n is the con-

volution of the sequences {v−n` }n, each of them taken with multiplicity m`.

Proposition 3 Let V be the confluent Vandermonde matrix associated with
the polynomial D(x) defined by Equation (1) and assume that all roots v`’s are
non-null. Also, let g

D
(n) be defined by Equation (7) for every n ∈ N. Then,

gD(n) = D(0) ·
r∑
`=1

m∑̀
j=1

(
n+ j − 1

j − 1

)
w`j

(−v`)j
(v`)

−n ,

where the w`j’s are the entries of the last column of V −1.

Proof. The generating function of the sequence {g
D

(n)}n is given byD(0)/D(x).
Then, by equation (4) we have

∞∑
n=0

gD(n)xn =
D(0)

D(x)
= D(0)

r∑
`=1

m∑̀
j=1

w`j
(x− v`)j

and the result follows by applying

1

(x− v`)j
=

1

(−v`)j
· 1

(1− x/v`)j
=

1

(−v`)j
∞∑
n=0

(
n+ j − 1

j − 1

)
(v`)

−nxn .

2

4 Vandermonde distributions

In this section we study the properties of a family of density functions naturally
associated with confluent Vandermonde matrices. Let r, k, v`,m` and D(x)
be defined as in Section 3. Consider the confluent Vandermonde matrix V
associated with D(x) and the entries w`j’s of the last column of V −1, for
` = 1, 2, . . . , r and j = 1, 2, . . .m`. Now, assume that all v`’s are real and
satisfy the relation 0 ≤ v1 < v2 < . . . < vr. Then, we define the real function

fD(x) =



0 if x < v1

(k − 1)

r∑
`=h

m∑̀
j=1

(
k − 2

j − 1

)
w`j(v` − x)k−j−1

if vh−1 ≤ x < vh

for some 1 < h ≤ r

0 if x ≥ vr
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Its features mainly depend on the properties presented in Proposition 1. In
particular notice that, for any h ∈ {2, 3, . . . r}, if vh−1 ≤ x < vh, then we
obtain

fD(x) = −(k − 1)
h−1∑
`=1

m∑̀
j=1

(
k − 2

j − 1

)
w`j(v` − x)k−j−1 . (8)

Clearly, f
D

is continuously differentiable till the order k− 2 in R\{v1, . . . , vr}
and its (k−2)-th derivative is constant in each interval (v`, v`+1), ` = 1, · · · , k−
1. Moreover, using Proposition 1, one can verify that, for any ` = 1, · · · , k−1,
the function f

D
is continuous at v` if and only if m` ≤ k − 2 (note that this

condition is true whenever r ≥ 3). In general, f
D

is continuously differentiable
at v` till the order k −m` − 2.

4.1 Unimodal property

Here, we prove that the function f
D

(x) defined above is nonnegative all over R
and that, if k ≥ 3, then f

D
is unimodal in (v1, vr), that is there exists t ∈ [v1, vr]

such that f
D

(x) is strictly increasing in [v1, t] and strictly decreasing in [t, vr].
Note that, if f

D
(x) is continuous (all over R) then its unimodality in (v1, vr)

implies the existence of a unique (local) maximum in (v1, vr).

To prove these properties, we consider two different cases: k = r or k > r. If
k = r, that is m` = 1 for every ` = 1, 2, . . . , r, then f

D
reduces to

fD(x) =


0 if x < v1

(k − 1)
∑k

j=` cj(vj − x)k−2 if v`−1 ≤ x < v` for some 1 < ` ≤ k

0 if x ≥ vk

where c` =
∏
i 6=`(v`−vi)−1 for any ` = 1, 2, . . . , r. Note that, if k = 2, then f

D
is

the uniform density function over the interval (v1, v2), while for k = 3 we have
the triangular distribution. The next proposition shows that, if k = r ≥ 3,
then f

D
is a unimodal function. The proof is based on Corollary 2 and makes

use of the following lemma.

Lemma 4 Let f : R → R be a function admitting j-th derivative all over R
for some j ≥ 1. Also assume that, for some real values a < b, f has m zeros
in the interval (a, b) while f(x) = 0 for each x ≤ a and each x ≥ b. Then, for
every i = 1, . . . , j, the i-th derivative of f admits at least m+ i zeros in (a, b).

Proof. We reason by induction on i = 1, . . . , j. If i = 1, then consider the
m + 1 intervals determined by the zeros of f in [a, b]. For each of them, say
(x1, x2), Rolle’s Theorem guarantees that f ′(x) = 0 for some x ∈ (x1, x2).
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Now, assume 1 < i < j and consider the i-th derivative of f , i.e. the function
g = f (i). By the properties of f , we have g(a) = g(b) = 0 and by the inductive
hypotheses g admits m+ i zeros in (a, b). Therefore, by applying the previous
argument to g, one proves that g′ = f (i+1) admits m+ i+ 1 zeros in (a, b). 2

Proposition 5 If k = r ≥ 3, then f
D

is unimodal in (v1, vk) and is nonnega-
tive all over R.

Proof. Using Corollary 2, one can prove that f
D

is strictly increasing in (v1, v2)
and strictly decreasing in (vk−1, vk). In particular, this implies the property
for k = 3.

Now, let k ≥ 4. Then, f
D

is continuously differentiable till the order k − 3.
Assume by contradiction that f

D
is not unimodal. Since the derivative f ′

D
is

positive in (v1, v2) and negative in (vk, vk−1), this implies that f ′
D

necessarily
vanishes in at least 3 points in the interval [v2, vk−1]. For k = 4 this leads
to a contradiction because f ′

D
is linear in [v2, v3]. For k > 4, the function f ′

D

satisfies the hypotheses of Lemma 4 with j = k − 4, m = 3, a = v1, b = vr.
As a consequence, the (k− 3)-th derivative f

D

(k−3) of f
D

admits at least k− 1
zeros in (v1, vk), and this again leads to a contradiction. Indeed, f

D

(k−3)(x) is
continuous all over R, it is nonnull for x ∈ (v1, v2)∪ (vk−1, vk), it is linear with
respect to x in each of the k− 3 intervals (v`, v`+1), ` = 2, . . . k− 2, and hence
it has at most k − 3 many zeros in (v1, vk).

Finally, since f
D

is positive in (v1, v2) ∪ (vk−1, vk) and admits a unique local
maximum in (v1, vk), then we can conclude that f

D
(x) ≥ 0 for every real x.

2

To prove that f
D

is unimodal also when k > r, we use the following lemma,
which can be easily proved reasoning by contradiction [12].

Lemma 6 For every n ∈ N, let fn : R → R be a continuous function that
admits a unique local maximum. If {fn} pointwise converges to a continuous
function f : R→ R, then f admits a unique local maximum, too.

We are now able to prove the complete property.

Proposition 7 If k ≥ 3, then f
D

is nonnegative all over R and unimodal in
(v1, vr).

Proof. If r = 2 < k then, by definition of f
D

and Eq. (6), one can show that

fD(x) =
(k − 1)!

(m1 − 1)!(m2 − 1)!

(v2 − x)m1−1(x− v1)m2−1

(v2 − v1)k−1

for every v1 < x < v2. It is easy to verify that f
D

is nonnegative and unimodal

9



in (v1, v2). Also note that f
D

is continuous unless m1 = 1 or m2 = 1 (and in
these cases the only discontinuity point is x = v2 or x = v1, respectively).

If r ≥ 3, then f
D

is continuous and we reason by induction on the integer
k− r. If k− r = 0, then the property is true by Proposition 5. Thus, consider
the case k − r > 0. Then, there exists ` ∈ {1, 2, . . . , r} such that m` > 1.
Recalling equation (8), we may assume ` = 1 without loss of generality. Given
0 < ε < v1, set v0 = v1 − ε and m0 = 1 (if v1 = 0, a similar discussion holds
by setting v0 = ε for any 0 < ε < v2). Now, consider the polynomial

Dε(x) =
1

x− v1

r∏
`=0

(x− v`)m`

and note that Dε has r+1 distinct roots v0 < v1 < . . . < vr with multiplicities
such that 1+m1−1+m2 + . . .+mr = k. Thus, also fDε is continuous and, by
the inductive hypothesis, we know that fDε is nonnegative in R and unimodal
in (v1, vr).

Let us study the pointwise convergence of fDε(x) as ε goes to zero. If x ≥ vr,
then f

D
(x) = fDε(x) = 0. If x < v1 then, for ε small enough, x < v0 and hence

fDε(x) = 0 = f
D

(x). Finally, for any h ≥ 2 and vh−1 ≤ x ≤ vh we have

fDε(x) =
r∑
`=h

m∑̀
j=1

(
k − 2

j − 1

)
(v` − x)k−j−1 w`j(ε)

where we use w`,j(ε) to denote the entries of the last column of V −1
ε , Vε being

the confluent Vandermonde matrix associated with Dε(x). Using equation (5),
one can easily verify that limε→0w`j(ε) = w`j for every ` ≥ 2. Thus, fDε
pointwise converges to f

D
all over R, and the result follows by applying Lemma

6. 2

In Fig. 1 we show the plots of functions f
D

’s for three polynomials D, which
present a rather regular behaviour. In these examples the number of distinct
roots of D (i.e. the value of r) is 2, 3 and 5, respectively, and for each of them
f
D

(x) is differentiable all over R.

5 6 7 8 9 10 11

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50 60

0.01

0.02

0.03

0.04

0.05

0.06

20 40 60

0.01

0.02

0.03

0.04

Fig. 1. Plots of function fD for v = (5, 10) and m = (5, 3), v = (5, 15, 55) and
m = (3, 3, 2), v = (5, 8, 15, 59, 62) and m = (1, 1, 1, 2, 3), respectively. The vertical
bars indicate the values of vj ’s.

In Fig. 2 four special examples are illustrated which present irregular be-
haviours. In the first case there are two distinct roots of D with multiplicity 4
and 1, respectively, and the corresponding function f

D
is not continuous at the
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first root. In the other three examples D has three distinct roots with differ-
ent sets of multiplicities: in the case of simple roots f

D
is a triangular density

function (see the second picture); if the array of multiplicities is m = (1, 4, 1),
then f

D
is continuous but not differentiable at the second root, while the same

behaviour occurs at the first root if m = (4, 1, 1).

5 6 7 8 9 10 11

0.2

0.4

0.6

0.8

10 20 30 40 50 60

0.01

0.02

0.03

0.04

10 20 30 40 50 60

0.02

0.04

0.06

0.08

0.1

10 20 30 40 50 60

0.02

0.04

0.06

0.08

Fig. 2. Plots of function fD for v = (5, 10) and m = (4, 1), v = (5, 15, 55) and
m = (1, 1, 1), v = (5, 15, 55) and m = (1, 4, 1), v = (5, 15, 55) and m = (4, 1, 1),
respectively. The vertical bars indicate the values of vj ’s.

4.2 Characteristic function

Here, we prove that fD is a density function. Since it is nonnegative all over
R, it is sufficient to prove that

∫+∞
−∞ f

D
(x)dx = 1. Further, we show that the

characteristic function of f
D

is given by

ΦD(t) =
(k − 1)!

(it)k−1

r∑
`=1

eitv`
m∑̀
j=1

w`j
(j − 1)!

(it)j−1 . (9)

We will say that a random variable of density function f
D

(x) is a Vandermonde
random variable of parameter D(x).

Proposition 8 Let D be a monic polynomial with at least 2 distinct roots
and assume that all roots are nonnegative real. Then, the map f

D
is a density

function having characteristic function Φ
D

(t).

Proof. We first show that Φ
D

(t) =
∫+∞
−∞ f

D
(x)eitxdx. Set I(t) =

∫∞
−∞ fD(x)eitxdx

and observe that

I(t) = (k − 1)
r∑

h=2

r∑
`=h

m∑̀
j=1

(
k − 2

j − 1

)
w`j

∫ v`

v`−1

(v` − x)k−j−1eitxdx .

Integrating by parts one can verify that for t 6= 0 the function eitx(c − x)p

admits the antiderivative

eitx

it

p∑
s=0

p! (c− x)p−s

(p− s)! (it)s

Hence we can write I(t) =
∑r
h=2

∑r
`=h(A`,h − A`,h−1) where

A`,h = eitvh
m∑̀
j=1

(k − 1)!

(j − 1)!
w`j

k−j−1∑
s=0

(v` − vh)k−j−1−s

(k − j − 1− s)! (it)s+1

11



and in particular

A`,` = eitv`
m∑̀
j=1

(k − 1)!

(j − 1)!
·

w`j
(it)k−j

.

Now, set Bh =
∑r
`=hA`,h and Ch =

∑r
`=hA`,h−1. For each 2 ≤ h ≤ r − 1

we have Bh − Ch+1 = Ah,h and moreover Br = Ar,r. Finally, reasoning as
in Proposition 1 one can prove that C2 =

∑r
`=1 A`,1 − A1,1 = −A1,1. As a

consequence, the integral can be computed as follows∫ ∞
−∞

fD(x)eitxdx =

r∑
h=2

(Bh−Ch) =

r∑
`=1

A`,` =

r∑
`=1

eitv`
m∑̀
j=1

(k − 1)!

(j − 1)!
·
w`j

(it)k−j
= ΦD(t) .

The proposition is then proved if we show that limt→0 Φ
D

(t) = 1. By expanding
eitv` , we get

ΦD(t) =
(k − 1)!

(it)k−1

r∑
`=1

 ∞∑
j=0

vj`
j!

(it)j

 ·
 m∑̀
j=1

w`j
(j − 1)!

(it)j−1


= (k − 1)!

∞∑
s=1

 r∑
`=1

min(s,m`)∑
j=1

vs−j`

(s− j)!
·

w`j
(j − 1)!

 (it)s−k .

By Proposition 1, the first non-null coefficient in the previous sum is obtained
for s = k and equals 1/(k − 1)!. This concludes the proof. 2

5 Rational models for pattern statistics

We now turn our attention to pattern statistics. Here, we recall the definition
and the main properties of the rational stochastic models introduced in [2],
based on the classical notion of rational formal series [19,1].

Let R+ be the semiring of nonnegative real numbers and consider the finite
alphabet Σ. A formal series over Σ with coefficients in R+ is a function r :
Σ∗ −→ R+, usually represented in the form r =

∑
ω∈Σ∗(r, ω) · ω, where (r, ω)

denotes the value of r at ω ∈ Σ∗. Moreover, r is called rational if it admits a
linear representation, that is a triple (ξ, µ, η) where, for some integer m > 0, ξ
and η are (column) vectors in Rm

+ and µ : Σ∗ −→ Rm×m
+ is a monoid morphism,

such that (r, ω) = ξTµ(ω) η holds for each ω ∈ Σ∗. Observe that considering
such a triple (ξ, µ, η) is equivalent to defining a (weighted) nondeterministic
automaton, where the set of states is given by {1, 2, . . . ,m} and the transitions,
the initial and the final states are assigned weights in R+ by µ, ξ and η,
respectively. To avoid redundancy it is convenient to assume that (ξ, µ, η) is

12



trim (meaning that all indices are used to define the series), i.e. for every index
i there are two indices p, q and two words x, y ∈ Σ∗ such that ξpµ(x)pi 6= 0 and
µ(y)iqηq 6= 0. We say that (ξ, µ, η) is primitive ifM =

∑
σ∈Σ µ(σ) is a primitive

matrix, that is for some n ∈ N all entries ofMn are strictly positive. We also
recall that a matrixM∈ Rm×m

+ is called irreducible if for every pair of indices
p, q there exists n ∈ N such that Mn

pq > 0.

Any formal series can define a stochastic model for studying the frequency of
occurrences of a letter in a word of given length. Consider the binary alphabet
{a, b} and, for any n ∈ N, let {a, b}n denote the set of all words of length n
in {a, b}∗. Consider a formal series r : {a, b}∗ −→ R+ and let n be a positive
integer such that (r, x) 6= 0 for some x ∈ {a, b}n. A probability measure over
{a, b}n can be defined by setting

Pr{ω} =
(r, ω)∑

x∈{a,b}n(r, x)
(ω ∈ {a, b}n). (10)

In particular, if r is the characteristic series χL of a language L ⊆ {a, b}∗, then
Pr is just the uniform probability function over L ∩ {a, b}n. Then, we define
the random variable (r.v. for short) Yn : {a, b}n → {0, 1, . . . , n} such that
Yn(ω) = |ω|a for every ω ∈ {a, b}n. For every j = 0, 1, . . . , n, we have

Pr{Yn = j} =

∑
|ω|=n,|ω|a=j(r, ω)∑
x∈{a,b}n(r, x)

. (11)

If r = χL for some L ⊆ {a, b}∗, then Yn represents the number of occurrences
of a in a word chosen at random in L∩{a, b}n under uniform distribution. We
observe that, in this case, our results concerning Yn are related to the analysis
of additive functions over strings [9].

When r is rational, the r.v. Yn defines a model for the study of pattern statis-
tics we call rational stochastic model. This is extention of the traditional
Markovian models in the following sense. Given a regular set of patterns on
an arbitrary finite alphabet Σ consider a Markovian source P generating words
at random over Σ and let Xn be the r.v. representing the number of occur-
rences of patterns in a word of length n generated by P ; then there exists
a rational formal series r : {a, b}∗ −→ R+ such that for every n ≥ 1 the
corresponding r.v. Yn has the same distribution as Xn [2, Section 2.1].

Let (ξ, µ, η) be a linear representation for the rational series r and set A =
µ(a), B = µ(b),M = A+B. To study the behaviour of the random variables Yn
and in particular their limit distribution, it is useful to introduce the sequence
of functions {rn(z)}n in the complex variable z defined by

rn(z) =
∑

x∈{a,b}n
(r, x) · ez|x|a = ξT (Aez + B)nη (12)

Indeed, it is immediate to see that the characteristic function of Yn satisfies
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the relation

ΨYn(t) = E(eitYn) =
rn(it)

rn(0)
(13)

for t ∈ R. We recall that a sequence of random variables Xn converges in
distribution to a random variable X if and only if the sequence of characteristic
functions ΨXn(t) pointwise converges to ΨX(t) [7].

Now, consider the generating function of {rn(z)}n and observe that

∞∑
n=0

rn(z)wn = ξTH(z, w)η

where H(z, w) is the matrix defined by

H(z, w) =

∞∑
n=0

(Aez + B)nwn = (I − w(Aez + B))−1 (14)

If M is irreducible, by Perron–Frobenius Theorem (see [21, Theorem 1.5]) it
has a nonnegative real eigenvalue λ of maximum modulus. Moreover, we know
that the equation Det(yI−Aez−B) = 0 defines an implicit function y = y(z)
which is analytic in a neighbourhood of z = 0 and such that y(0) = λ.

If further M is primitive and A 6= 0 6= B, then there are two constants
β ∈ (0, 1), γ > 0, both depending on the matrix M and its eigenvectors (see
[2] for details), such that, as n tends to infinity, the following relations hold:

E(Yn) = βn+ O(1) , Var(Yn) = γn+ O(1) . (15)

Finally, under the same hypothesis, one can prove that the distribution of
Yn−βn√

γn
converges to the normal distribution of mean value 0 and variance 1 [2].

In our investigation we often deal with matrices of functions. We will say that
a matrix A(w) is a matrix function if all its entries are functions of the variable
w. We will also say that A(w) is analytic at a point w = a if all its entries are
analytic at the same point; moreover, its radius of convergence at that point
is the smallest radius of convergence of the power series development of its
entries (with center in a).

5.1 Decomposition of a rational model

Up to now, the properties of Yn have been studied only in the primitive models
[2] and in the case of two primitive components [5]. Here, we present a general
approach to deal with an arbitrary rational model. To this aim, we describe
the construction of the reduced graph of the strongly connected components
of the corresponding linear representation. This is a usual approach in the
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analysis of counting problems on regular languages (see for instance [8] for an
application concerning trace languages).

Let (ξ, µ, η) be a linear representation over the alphabet {a, b} with coefficients
in R+. As in the previous section, set A = µ(a), B = µ(b), M = A + B
and consider the directed graph defined by M, where the set of nodes is
{1, 2, . . . ,m} and (p, q) is an (oriented) edge if and only if Mpq 6= 0. Then,
let C1, C2, . . . , Cs be the strongly connected components of the graph and
define Ci initial (resp. final) if ξp 6= 0 (resp. ηp 6= 0) for some p ∈ Ci. The
reduced graph of (ξ, µ, η) is then defined as the directed acyclic graph G where
C1, C2, . . . , Cs are the vertices and any pair (Ci, Cj) is an edge if and only if
i 6= j and Mpq 6= 0 for some p ∈ Ci and some q ∈ Cj.

Up to a permutation of indices, the matrix M can be represented as a trian-
gular block matrix of the form

M =


M1 M12 M13 · · · M1s

0 M2 M23 · · · M2s

· · ·

0 0 0 · · · Ms

 (16)

where each Mi corresponds to the strongly connected component Ci and every
Mij corresponds to the transitions from vertices of Ci to vertices of Cj in the
original graph of M. Also A, B, ξ and η admit similar decompositions: we
define the matrices Ai, Aij, Bi, Bij and the vectors ξi, ηi in the corresponding
way and we say that the component Ci is degenerate if Ai = 0 or Bi = 0. Since
each matrix Mi is either null or irreducible, by Perron–Frobenius Theorem it
has a nonnegative real eigenvalue λi of maximum modulus. We call main
eigenvalue ofM the value λ = max{λi | i = 1, 2, . . . , s} and we say that Ci is
a dominant component if λi = λ. Observe that λi = 0 only if Ci reduces to a
loopless single node and hence from now on we assume λ > 0.

Further, if a matrix Mi is primitive, we say that Ci is a primitive component.
In this case, when Ci is not degenerate (i.e. Ai 6= 0 6= Bi), we may consider the
constants βi and γi associated with Mi defined as in (15); we have 0 < βi < 1
and γi > 0. On the contrary, if Ci is degenerate, it is natural to set γi = 0 and
define βi = 0 or βi = 1 according whether Ai = 0 or Bi = 0 (so that (15) still
holds true for a degenerate r.v.). Thus the constants βi and γi are well-defined
for every primitive component Ci: we say they are the mean constant and the
variance constant of Ci, respectively.

The block decomposition of M also induces a decomposition of the matrix
H(z, w) defined in (14). More precisely, the blocks under the diagonal are all
null, while the upper triangular part is composed by a family of matrices,
say Hij(z, w), 1 ≤ i ≤ j ≤ s. Note that the bivariate generating function
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ξTH(z, w)η, which is the main tool of our investigation, is now given by

ξTH(z, w)η =
∞∑
n=0

ξT (Aez + B)nη · wn =
∑

1≤i≤j≤s
ξTi Hij(z, w)ηj . (17)

Setting Mij(z) = Aije
z + Bij and reasoning by induction on j − i, one can

prove that, for each 1 ≤ i ≤ j ≤ s,

Hij(z, w) =

{
(I − w(Aie

z +Bi))
−1 if j = i∑

∗Hi1i1 (z, w)Mi1i2 (z)Hi2i2 (z, w) · · ·Mi`−1i` (z)Hi`i` (z, w) · w`−1 if j 6= i
(18)

where the sum (∗) is extended over all sequences of integers (i1, i2, . . . , i`),
` ≥ 2 such that i1 = i, it < it+1 for each t = 1, . . . , `− 1 and i` = j.

Equation (18) suggests us to introduce the notion of chain of the reduced graph
G associated with (ξ, µ, η). A chain is a simple path in G, i.e. a sequence of
distinct components κ = (Ci1 , Ci2 , . . . , Ci`) where ` ≥ 1, such that Mijij+1

6= 0
for every j = 1, 2, . . . , ` − 1. We say that ` is the length of κ while the order
of κ is the number of its dominant components. We also denote by Γ the
family of all chains in G starting with an initial component and ending with a
final component. Note that, the linear representation (ξ, µ, η) being trim, each
component lies over at least one chain in Γ. We say that a chain κ is a main
chain if κ ∈ Γ and its order is maximal in Γ. We denote by Γm the set of all
main chains in G.

Example 1 Here, we present a parametric example depending on two con-
stants α ∈ R and ρ ∈ [0, 1]. For such parameters let us consider the formal
series sα, ρ having linear representation (π, ν, τ) such that

π′ = (1, 0) , να, ρ(a) = α ·

 0 1

ρ 0

 , να, ρ(b) = α ·

 1 0

1− ρ 0

 , τ =

 1

0

 .

We note that the Perron–Frobenius eigenvalue associated with this linear rep-
resentation is α(1 +

√
5)/2.

Given two families of parameters {αi}i=1,m and {ρi}i=1,m, let us define the
formal series r given by the Cauchy product r =

∏m
i=1 sαi, ρi . Its linear rep-

resentation of size 2m is given by (ξ, µ, η) where ξ1 = 1 and ξi = 0 for every
i 6= 1, η2i = 0 and η2i+1 = 1 for every i, while for x ∈ {a, b} µ is defined by

µ(x) =


να1, ρ1(x) M12(x) M13(x) · · · M1m(x)

0 να2, ρ2(x) M23(x) · · · M2m(x)

· · ·

0 0 0 · · · ναm, ρm(x)

 (19)
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with

Mij(a) =

αj 0

0 0

 and Mij(b) =

 0 αj

0 0


Here, the entries 1, 2, · · · , 2m can be gathered in strongly connected compo-
nents, defined by the sets Ci = {2i − 1, 2i} for i = 1, 2, · · · ,m. Thus, the
reduced graph of (ξ, µ, η) consists of nodes Ci’s and edges (Ci, Cj) with i < j.
The component C1 is initial while all Cj’s are final. The orders of the chains
depend on the values αi’s. In particular, when all αi’s are equal, we have only
one main chain of order m. If the αi’s are different, there may be several main
chains. For instance, if m = 4, α2 = α3 and α1 = α4 = 2α2, only C1 and
C4 are dominant; therefore we have four main chains, namely (C1, C2, C3, C4),
(C1, C2, C4), (C1, C3, C4) and (C1, C4). 2

5.2 The role of main chains

In this section we study the properties of main chains and in particular we
show that they determine the limit distribution of the sequence {Yn} associ-
ated with the linear representation (ξ, µ, η). Intuitively, this is a consequence
of two facts. First, the characteristic function of (a normalization of) Yn de-
pends on the sequences {rn(z)} for z near 0, and hence on the generating
function ξTH(z, w)η. Second, by (17), this function is a sum of products of
the form given in (18), each of which is identified by a chain: the products
corresponding to the main chains have singularities of smallest modulus with
the largest degree, and hence they yield the main asymptotic contribution to
the associated sequence {rn(z)}.

So, let us take in exam the terms of the sum in the right hand side of (17).
First we consider the case i = j and, for every j = 1, 2, . . . , s, we denote
{r(j)

n (z)} the sequence given by

ξTj Hjj(z, w)ηj =
∞∑
n=0

r(j)
n (z)wn

By relation (18), we have

Hjj(z, w) = (I − w(Aje
z +Bj))

−1 =
Adj(I − w(Aje

z +Bj))

det(I − w(Ajez +Bj))

and hence, as z tends to 0, the singularities of each entry approach the inverses
of eigenvalues of Mj. We can distinguish three cases according to the properties
of Mj:

i) Mj is primitive and dominant. Then, λ is its (sole) eigenvalue of largest
modulus. The equation det(yI − (Aje

z +Bj)) = 0 implicitly defines a func-
tion y = yj(z) in a neighbourhood of z = 0 such that yj(0) = λ. Such a
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function is analytic at the point z = 0 and admits an expansion of the form

yj(z) = λ

(
1 + βjz +

γj + β2
j

2
z2 + O(z3)

)
(20)

where βj and γj are the mean and variance constants of Cj. Note that this
equation is well-defined also when Ci is degenerate (in particular, if Ai = 0
then yi(z) = λ for all z).

Then, there exists a matrix function Rj(z) analytic and nonnull at z = 0
such that, for every z near 0,

Hjj(z, w)− Rj(z)

1− yj(z)w

has a radius of convergence strictly greater than λ−1. As a consequence we
have

r(j)
n (z) = ξTj Rj(z)ηj (yj(z))n + O(ρn)

for some 0 < ρ < λ and every z near 0.
ii) Mj is dominant (but not necessarily primitive). Then, we can consider

the family Ej of the eigenvalues of Mj of largest modulus. By Perron–
Frobenius Theorem, we know λ ∈ Ej and for every α ∈ Ej the equation
det(yI − (Aje

z + Bj)) = 0 implicitly defines a function y = yα(z) in a
neighbourhood of z = 0 such that yα(0) = α. Also yα(z) is analytic at
z = 0, where it admits an expansion of the form

yα(z) = α
(
1 +mαz + sαz

2 + O(z3)
)

(21)

withmα ∈ R+ and <(sα) ≥ 2m2
α (consequence of point (e) in [21, Theo.1.5]).

Reasoning as above this implies, for z near 0 and some 0 < ρ < λ,

r(j)
n (z) =

∑
α∈Ej

ξTj Rα(z)ηj (yα(z))n + O(ρn)

where Rα(z) is a matrix function analytic and nonnull at z = 0, for each
α ∈ Ej.

iii) Mj is not dominant. Then, all its eigenvalues are in modulus smaller than
λ and hence, as z is near to 0 the radius of convergence of Hjj(z, w) is
greater than λ−1. This implies r(j)

n (z) = O(ρn) for some 0 < ρ < λ and all
z near 0.

Now, let us study the behaviour of Hij(z, w) for i 6= j. Recalling (18), we
consider an arbitrary chain κ = (Ci1 , Ci2 , . . . , Ci`) with ` ≥ 2 and we denote
by Hκ(z, w) the corresponding matrix given by

Hκ(z, w) = Hi1i1(z, w)Mi1i2(z)Hi2i2(z, w) · · ·Mi`−1i`(z)Hi`i`(z, w) · w`−1 (22)

We also define the sequence {r(κ)
n (z)} by

ξTi1Hκ(z, w)ηi` =

∞∑
n=0

r(κ)
n (z)wn . (23)
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Then, the next proposition can be proved by applying the previous properties
to (22).

Proposition 9 Let κ be a chain in Γ of order k ≥ 0. Then, as n tends to
+∞, the following statements hold for every c ∈ C and every t ∈ R:

(1) If k = 0 then rn
(κ)(c/n) = O(ρn) for some 0 < ρ < λ;

(2) If k ≥ 1 then rn
(κ)(c/n) = O(λn nk−1);

(3) If k ≥ 1 and the dominant components of κ are primitive, then rn
(κ)(c/n) =

Θ(λn nk−1) ( 2 ) ;
(4) If k ≥ 1 then rn

(κ)(it/
√
n) = O(λn nk−1).

Proof. Without loss of generality, we may assume κ = (C1, C2, . . . , C`). Then,
we have

Hκ(z, w) = H11(z, w)M12(z)H22(z, w) · · ·M`−1`(z)H``(z, w) · w`−1 (24)

and it is clear that, for any fixed z, the singularities of ξT1 Hκ(z, w)η` are those
of the matrices Hjj(z, w) for j = 1, 2, . . . , `. If k = 0 and z near 0, the radius of
convergence of each Hjj(z, w) is greater than λ−1 and hence rn

(κ)(z) = O(ρn)
for some 0 < ρ < λ, which proves point 1.

Now, set I = {j : Cj is dominant } and assume k = ]I ≥ 1 . Let j ∈ I and
let z be a complex value near 0. By property ii), the dominant singularities of
Hjj(z, w) are the simple poles yα(z)−1, where α ∈ Ej. Thus, the same values
are poles for ξT1 Hκ(z, w)η` of degree k at most. Hence, rn

(κ)(z) is bounded by
a linear combinations of terms of the form O(yα(z)nnk−1), where α ∈ ⋃j∈I Ej;
setting z = c/n, by (21), each of them is of the order O(λnnk−1), which proves
point 2.

Analogously, setting z = itn−1/2, again by (21) for every α we have

|yα(itn−1/2)n| =
∣∣∣∣αn(1 +mα

it√
n

+ O(1/n)

)∣∣∣∣n ;

since mα ∈ R this implies

|yα(itn−1/2)n| = λn
(

1 +
m2
αt

2

n

)n/2
O(1 + 1/n) = O(λn)

and hence rn
(κ)(it/

√
n) = O

(∑
α yα(itn−1/2)nnk−1

)
= O(λn nk−1), which

proves point 4.

Finally, assume Cj primitive for every j ∈ I and let z be a complex value near
0. Then, the main singularities of ξT1 Hκ(z, w)η` are the values yj(z)−1 defined

2 In this work, for any pair of sequences {fn}, {gn} ⊆ C, the expression fn = Θ(gn)
means that for two positive constants a, b the relation a|gn| ≤ |fn| ≤ b|gn| holds for
every n large enough.
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in i). By (24) this implies

ξT1 Hκ(z, w)η` =
R(z, w)

Πj∈I(1− yj(z)w)
(25)

where R(z, w) is a function analytic in a disk {w ∈ C | |w| ≤ λ−1+d}, for some
d > 0. Thus, the leading term of rn

(κ)(z) is determined by the convolution of
the sequences {yj(z)n}n, for j ∈ I; hence, setting z = c/n and using (20) we
get rn

(κ)(c/n) = Θ(λn nk−1) proving point 3. 2

Since by Eq. (17), we have rn(z) =
∑
κ∈Γ r

(κ)
n (z), we obtain the following result,

which shows the key role of the main chains. Also note that the property does
not hold if the main chains admit non-primitive dominant components.

Theorem 10 If all dominant components of the main chains are primitive
then, for every constant c ∈ C, we have

rn(c/n) =
∑
κ∈Γm

r(κ)
n (c/n) (1 + O(1/n)) = Θ(λnnk−1)

where k is the order of the main chains.

6 Limit distributions in multicomponent models

Theorem 10 shows that in a multicomponent model the asymptotic behaviour
of our statistics mainly depends on the main chains. This fact leads to study
the relevant case when the model has just one main chain. In this case, as-
suming further mild conditions on the dominant components, it turns out that
the limit distribution of Yn/n coincides with a Vandermonde distribution. For
this reason we introduce the notion of simple model.

Let (ξ, µ, η) be a linear representation over the alphabet {a, b} with coefficients
in R+. We say that (ξ, µ, η) is a simple linear representation, or just a simple
model, if Γm contains only one chain κ and every dominant component in κ is
primitive.

In simple models the limit distribution of Yn first depends on the order k of κ,
i.e. the number of its dominant components. If k ≤ 2 the limit distribution is
known and derives from the analysis of the bicomponent models given in [5];
in particular (if the dominant components are not degenerate) we have the
following results:

• If κ has only one dominant component Ci then the limit distribution of
Yn−βin√

γin
is a Gaussian distribution of mean value 0 and variance 1;
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• If κ has two dominant components Ci, Cj then we have the following three
subcases:

(1) If βi 6= βj then Yn/n converges in law to a random variable uniformly dis-
tributed in the interval [b1, b2], where b1 = min{βi, βj} and b2 = max{βi, βj};

(2) If βi = βj = β but γi 6= γj then the limit distribution of Yn−βn√
n

is a mixture

of normal distributions of mean value 0 and variance uniformly distributed
in the interval [c1, c2], where c1 = min{γi, γj} and c2 = max{γi, γj}. In

other words, Yn−βn√
n

converges in law to a random variable with density

function

f(x) =
1

c2 − c1

∫ c2

c1

e−x
2/(2v)

√
2πv

dv ,

which has characteristic function

F (t) = 2
e−

c1t
2

2 − e−
c2t

2

2

(c2 − c1)t2
.

Notice that F (t) = Φ
P

(it2/2) where P (x) = (x− c1)(x− c2);
(3) If βi = βj = β and γi = γj = γ then the distribution of Yn−βn√

γn
again

converges to a Gaussian distribution of mean value 0 and variance 1.

Here, we determine the limit distribution of Yn/n for simple models having
main chain κ of order k ≥ 2. We only assume that κ has at least two dominant
components with different mean constants. In Section 7 we extend this result
to the case when all dominant components of κ have the same mean constant.

Theorem 11 Let Yn be defined in a simple model with main chain κ of order
k ≥ 2. Let β1, . . . , βr denote the mean constants of the dominant components in
κ in increasing order and assume r ≥ 2. Also, for each ` = 1, 2, . . . , r, let m` be
the multiplicity of β`, that is the number of dominant components in κ whose
mean constant equals β`. Then, Yn/n converges in law to a Vandermonde
random variable associated with the polynomial P (x) =

∏r
`=1(x− β`)m`.

Observe that in the case k = 2 we obtain the result stated in point (1) above.
The proof of the theorem is based on the analysis of the characteristic function
of Yn/n, which by equation (13) is given by

ΨYn/n(t) =
rn(it/n)

rn(0)
. (26)

Thus, we first present the following lemma, which provides a useful expression
for rn(it/n). To this aim, as in Eq. (7), let {g

Q
(n)}n be the sequence having

generating function Q(0)/Q(x), where

Q(x) =
r∏
`=1

(x− 1

1 + β`it/n
)m` .
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Lemma 12 Assume the hypotheses of Theorem 11. Then, for every t ∈ R, as
n grows to +∞ we have

rn

(
it

n

)
=

k−1∑
s=0

λn−sas

(
it

n

)
· gQ(n− s) · (1 + O(1/n)) (27)

and in particular

rn(0) =
nk−1

(k − 1)!

(
k−1∑
s=0

λn−sas(0)

)
· (1 + O(1/n)) (28)

where, for each s, as(z) is an analytic function at z = 0.

Proof. By Theorem 10, we get rn(it/n) = r(κ)
n (it/n)(1 + O(1/n)) and hence

we have to show that r(κ)
n (it/n) equals the right hand side of (27). We can

evaluate r(κ)
n (it/n) by refining the proof of point 3 in Proposition 9. Indeed,

since Hκ(z, w) satisfies equation (25), we have

ξT1 Hκ(z, w)η` =

k−1∑
s=0

as(z)w
s ·

r∏
`=1

(1− f`(z)w)−m` + G(z, w) (29)

where each as(z) is a polynomial in ez, f`(z) = λ(1 + β`z + O(z)) for every
` = 1, 2, . . . , r and, for all z near 0, the function G(z, w) is analytic in a disk
{w ∈ C | |w| ≤ λ−1 + d}, for some d > 0.

Clearly
∏r
`=1(1− f`(z)w)−m` is the generating function of the sequence whose

n-th term is ∑∑
`
n`=n

r∏
`=1

(
n` +m` − 1

m` − 1

)
f`(z)

n` .

Setting z = it/n and recalling equation (7), the previous expression can be
re-written as λng

Q
(n) · (1 + O(1/n)). Thus, since (29) is the generating func-

tion of {r(κ)
n (z)}n, the main term of r(κ)

n (it/n) is given by the convolution of
{an(it/n)}n and {λng

Q
(n)}n, which leads to equation (27). Equation (28) fol-

lows by noting that if t = 0, then Q(x) = (x − 1)k and g
Q

(n) =
(
n+k−1
k−1

)
.

2

Proof of Theorem 11. As n grows to infinity, the behaviour of g
Q

(n− s) does
not depend on s. To prove this fact we need the following equalities, that can
be proved from the definitions given in Section 3. Set v` = (1− β`it/n)−1, for
every `, j = 1, 2, . . . r we have

(v`)
−n = e−itβ` · (1 + O(1/n))

(v` − vj)−1 =
(
−n
it

)
(β` − βj)−1 · (1 + O(1/n)).
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Moreover, if w`j and c`j are the entries of the last column of the Vandermonde
matrices associated with the polynomial Q(x) and P (x) =

∏r
`=1(x − β`)

m` ,
respectively, then using Eq (6) one can obtain

w`j =
(
−n
it

)
c`j · (1 + O(1/n)).

As a consequence, applying Proposition 3 and using the previous equalities,
one proves that

gQ(n− s) =
(n
it

)k−1

 r∑
`=1

eitβ`
m∑̀
j=1

c`j
(it)j−1

(j − 1)!

 · (1 + O(1/n)).

Replacing the previous expression into (27) we get

rn

(
it

n

)
=
(n
it

)k−1

 r∑
`=1

eitβ`
m∑̀
j=1

c`j
(it)j−1

(j − 1)!

(k−1∑
s=0

λn−sas

(
it

n

))
· (1 + O(1/n)).

Hence, applying equation (26) and recalling equation (28), one can see that
the characteristic function ΨYn/n(t) converges to Φ

P
(t) for every t ∈ R. This

proves the result. 2

7 Further results

The analysis presented in the previous section can be extended to all simple
models, also when the mean constants βj’s (associated with the dominant
components of the main chain) are totally coincident. In this case, clearly
Y (κ)
n /n converges in ditribution to such a constant, and it is natural to consider

a finer normalization. With respect to this point, the following theorem holds,
which can be proved as Theorem 11.

Theorem 13 Let Yn be defined in a simple model having main chain κ of or-
der k ≥ 2 and assume that all dominant components in κ have the same mean
constant β. Let γ1, . . . , γs be the distinct variance constants (in increasing or-
der) of the dominant components in κ and let m1,m2, . . . ,ms denote their
multiciplities. If s = 1 and γ1 6= 0, then (Yn − βn)/

√
γ1n converges in distri-

bution to a normal random variable of mean 0 and variance 1. Otherwise, if
s > 1, then (Yn−βn)/

√
n converges in distribution to a random variable having

characteristic function Φ
P

(it2/2), where Φ
P

(t) is the characteristic function
of a Vandermonde random variable of parameter P (x) =

∏s
`=1(x− γ`)m` .

Notice that, for k = 2, the previous theorem reduces to points (2) and (3) at
page 21.
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The results of Theorem 11, concerning the limit distribution of Y (κ)
n /n, can be

further extended by a standard conditioning argument (already used in [5])
to all rational models (ξ, µ, η) whose main chains are “simple”, i.e. for every
κ ∈ Γm all dominant components in κ are primitive. In this case, by Eqs. (22)
and (23), for every κ ∈ Γm one can easily see that

r(κ)
n (z) = sκ(z)λnnk−1 + O(λnnk−2)

where k is the degree of κ and sκ(z) is a non-null analytic function at z = 0.
Then, by Theorem 10, we have

rn(0) = Rλnnk−1 + O(λnnk−2)

where R =
∑
κ∈Γm sκ(0). We can also associate each κ ∈ Γm with the proba-

bility value pκ, given by pκ = sκ(0)/R. Note that the values {pκ}κ∈Γm define
a discrete probability measure and they can be explicitly computed from the
triple (ξ, µ, η).

Moreover, each κ ∈ Γm defines a simple rational model in its own right, with an
associate sequence of random variables {Y (κ)

n }. The limit distribution of Y (κ)
n /n

can be studied by applying Theorem 11. In particular, Y (κ)
n /n always converges

in distribution to a random variable of distribution function Fκ(x) defined
according to the previous results. Note that, if all constants βj’s are here equal,
then Fκ(x) reduces to the degenerate distribution of mass point β1. Now, it is
not difficult to see that the overall statistics Yn/n converges in distribution to
a r.v. of distribution function F (x) defined by F (x) =

∑
κ∈Γm Fκ(x)pκ. This

completes our analysis of the limit distribution of Y (κ)
n /n. The only family

of rational stochastic models not coverered by our results consists of those
models having a main chain with some non-primitive dominant component;
in those cases, periodicity phenomena occur.
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