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Abstract

In this work we show that the number of horizontal steps in a Motzkin word of lengthn, drawn at random
under uniform distribution, has a Gaussian limit distribution. We also prove a local limit property for the
same random variable which stresses its periodic behaviour. Similar results are obtained for the number of
peaks in a word of given length drawn at random from the same language.

1 Introduction

The major problem in pattern statistics is to estimate the frequency of pattern occurrences in a random text.
A formal model to define such a statistics is given by a finite alphabteΣ, a languageR ⊆ Σ∗ of patterns and
stochastic modelP for the generation of a random wordx ∈ Σ∗ of lengthn. The associated statistics is defined
as the number of (positions of) occurrences of strings ofR in x. This problems has a variety of applications
(see for instance [12]) and it has been studied mainly for Markovian modelsP [11], or whenP is a rational
model defined by a weighted finite automaton overΣ [2, 3]. Gaussian limit distributions have been obtained
both in the global and in the local sense for pattern statistics in rational models defined by powers of primitive
rational formal series [3]. These results are obtained by applying general criteria for establishing global and
local limit distribution of Gaussian type, based on the properties of moment generating functions [9, 6, 3].

In this work we study the same problem assuming a simple algebraic model defined by the traditional
language of Motzkin words. We show that the number of horizontal steps in a Motzkin word of lengthn,
drawn at random under uniform distribution, has a Gaussian limit distribution. We also prove a local limit
property for the same random variable which stresses its periodic behaviour. Analogously we consider the
statistics representing the number of peaks in a Motzkin word of lengthn, drawn at random under uniform
distribution. Also in this case we prove a Gaussian limit distribution and a corresponding local limit property.

The main goal of this note is to apply the general analytic criteria used in [3] for the analysis of pattern
statistics in rational models, to a simple algebraic model.The results we obtain are in line with a more general
approach to the symbol frequency problem in context-free languages presented in [4] (see also [6, Sec VII]).
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2 Gaussian limit distributions

In this section we recall a simple general criterion to provethat a sequence of random variables has a Gaussian
limit distribution.

Consider an nonnegative integer random variable (r.v.)X , i.e. a random variable taking on values inN, and
for everyj ∈ N, setpj = Pr{X = j}. The moment generating function ofX is defined as

ΨX(z) = E(ezX) =
∑

k∈N

pke
zxk ,

wherez is a complex variable. This function is related to the moments ofX ; in particular we haveE(X) =
Ψ′

X(0), E(X2) = Ψ′′
X(0). Moreover, it can be used to show convergence in distribution: given a sequence of

random variables{Xn}n and a random variableX , if ΨXn andΨX are defined all overC andΨXn(z) tends
toΨX(z) for everyz ∈ C, thenXn converges toX in distribution (see for instance [7] or [6]).

The characteristic function ofX is the restriction ofΨX(z) to the immaginary axis, that is the function
ΨX(iθ), whereθ ∈ R. Such a function is well-defined for everyθ ∈ R and, as we deal with integer r.v.’s, it is
periodic of period2π.

Moment generating functions can be also used to prove Gaussian limit laws. The following property is
a simplification of the so called “quasi–power” theorem introduced in [9] and implicitly used in the previous
literature [1] (see also Section IX.5 in [6]).

Theorem 1 Let{Xn} be a sequence of non-negative integer random variables and assume the following con-
ditions hold true:

C1 There exist two functionsr(z), y(z), both analytic atz = 0 where they take the valuer(0) = y(0) = 1,
and a positive constantc, such that for every|z| < c

ΨXn(z) = r(z) · y(z)n
(

1 + O(n−1)
)

; (1)

C2 The constantσ = y′′(0)− (y′(0))2 is strictly positive (variability condition).

Also setµ = y′(0). ThenXn−µn√
σn

converges in distribution to a normal random variable of mean0 and variance
1, i.e., for everyx ∈ R

lim
n−→+∞

Pr

{

Xn − µn√
σn

≤ x

}

=
1√
2π

∫

x

−∞

e
−

t2

2 dt .

The main advantage of this theorem, with respect to other classical statements of this kind, is that it does
not require any condition of independence concerning the random variablesXn. For instance, the standard
central limit theorems assume that eachXn is a partial sum of the formXn =

∑

j≤n Uj, where theUj ’s are
independent random variables [7].

We recall that the convergence in law of a sequence of r.v.’s{Xn} does not yield an approximation of the
probability thatXn has a specific value. Theorems concerning approximations for expressions of the form
Pr{Xn = x} are usually calledlocal limit theorems. A typical example is given by the so-called de Moivre–
Laplace Local Limit Theorem [7], which intuitively states that, for a sequence of binomial random variables
{Xn}, up to a factorΘ(1/

√
n) the probability thatXn takes on a valuex approximates a Gaussian density at

x.
As for convergence in distribution, also for local limit properties general criteria can be established and

several of them appear in the literature. For instance a theorem of this kind is given in [6, Sect. IX.9] and a
deeper one is presented in [10]. In this work we use the following result, which yields a natural extention of
Theorem 1 to local limit properties of lattice random variables.

We recall that, givend, ρ ∈ N such that0 ≤ ρ < d, a lattice random variableX of periodd and initial value
ρ is an integer r.v. with values in the set{x ∈ Z | x ≡ ρ(modd)}. It is well-known that an integer random
variableX is a lattice r.v. of periodd if and only if ΨX(i2π/d) = 1.
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Theorem 2 [3, Th. 13] Given a positive integerd, let {Xn} be a sequence of lattice random variables of
periodd such that, for everyn, Xn takes on values in the interval[0, n] and has initial valueρn, for some
integer0 ≤ ρn < d. Let ConditionsC1 and C2 of Theorem 1 hold true and letµ and σ be the positive
constants defined therein. Moreover assume the following property:

C3 For all 0 < t < π/d lim
n→+∞

{

√
n sup

|θ|∈[t,π/d]

|ΨXn(iθ)|
}

= 0

Then, asn grows to+∞ the following relation holds uniformly for everyj = 0, 1, . . . , n.

Pr{Xn = j} =















de−
(j−µn)2

2σn

√
2πσn

· (1 + o(1)) if j ≡ ρn (modd)

0 otherwise

(2)

ConditionC3 states that, for every constant0 < t < π/d, asn grows to+∞, the valueΨXn(iθ) is of the
ordero(n−1/2) uniformly with respect toθ ∈ [−π/d,−t] ∪ [t, π/d]. Note that relation (2) is meaningful forj
lying in an intervalµn− a

√
σn ≤ j ≤ µn+ a

√
σn, wherea > 0 is a constant.

Also observe that ifd = 1, i.e. the values ofXn have no periodicity, then relation (2) reduces to state that,
asn → +∞,

Pr{Xn = j} =
e−

(j−µn)2

2σn

√
2πσn

(1 + o(1)) (3)

holds uniformly for everyj = 0, 1, . . . , n. Moreover, if theXn’s are independent binomial random variables
of parametern, p, then Theorem 2 coincides with the classical de Moivre-Laplace Local Limit Theorem.

3 Symbol frequency in a Motzkin word

Let us consider the languageL ⊆ {a, b, b̄} defined by the grammar

S = ε+ aS + bSb̄S (4)

We want to study the frequency of of occurrences ofa in a word drawn at random under uniform distribution
in the set of all strings of lengthn in L. To this end we first study the asymptotic behaviour of the associated
single and bivariate sequences{mn} and{rnk} defined by

mn = ]{ω ∈ L | |ω| = n} (5)

and
rnk = ]{ω ∈ L | |ω| = n, |ω|a = k} . (6)

The analysis of these sequences is based on the corresponding generating functions and can be achieved by
applying analytic methods presented in [5, 6]).

The context-free grammar (4) can be trasformed into an algebraic equation by the mapφ associating the
terminal symbolsa, b, b̄ with the complex variablez. This equation is given by

1 + (z − 1)S + z2S2 = 0 (7)

and it implicitely defines an algebraic functionS of the variablez. Such a function has a unique branch
non-singular atz = 0 given by

S(z) =
1− z −

√

(1 + z)(1− 3z)

2z2
, (8)
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and hence, since grammar (4) is unambiguous, its power series expansion at the pointz = 0 is S(z) =
∑+∞

n=1 mnz
n.

Then an asymptotic expression for{mn} can be obtained by applying a well-known analytic method (here
calledtransfer method) based on the behaviour of generating functions near the singularities of smallest mod-
ulus [5] (see also [6, Ch. VI]). This method relies on classical Cauchy’s formula for Taylor coefficients of
an analytic function and on the choice of a particular contour of the corresponding integral. It allows us to
translate the expansion of a function around a dominant singularity into an asymptotic expression for its Taylor
coefficients. If the function we consider is a branch of an algebraic curve the asymptotic expansion around a
singular point is calledPuiseux expansionand a general procedure is known to derive its main terms fromthe
polynomial equation defining the function [6, Sec. VII.4].

In our case, the branchS(z) has a unique singularity of smallest modulus atz = 1/3. At that pointS(z)
admits the Puiseux expansion

S(z) = 3− 3
√
3
√
1− 3z + O

(

(1− 3z)3/2
)

.

This allows us to transfer the well-known series expansion

(1 − u)1/2 = 1−
∑

n≥1

(

2n− 2

n− 1

)

un

n22n−1
= 1−

∑

n≥1

1 + O(1/n)

2
√
πn3

un (|u| < 1) (9)

and get

mn = 3

√

3

4π
· 3n

n3/2
(1 + O(1/n)) . (10)

Now, let us use the same method to study the generating function of the bivariate sequence{rnk}. To this
end, let us consider the map associating the symbola with the monomialxz and bothb andb̄ with z. This map
transforms grammar (4) into the algebraic equation

z2S2 + (xz − 1)S + 1 = 0 (11)

which implicitely defines an algebraic functionS of the complex variablesx, z. It is easy to see that, for every
x, the only branch ofS that is non-singular atz = 0 is

S(x, z) =
1− xz −

√

(1 + (2− x)z)(1− (2 + x)z)

2z2
(12)

Again, since grammar (4) is unambiguous, for everyx, S(x, z) admits at the pointz = 0 the series expansion
S(x, z) =

∑

n,k rnkx
kzn. Observe that, for everyx 6= 2,−2, S(x, z) is singular only at the pointsz =

(x− 2)−1 andz = (2+ x)−1. In particular, forx near1, the singularity of smallest modulus isz = (2+ x)−1,
whereS(x, z) admits the Puiseux expansion

S(x, z) = 2 + x− (2 + x)3/2
√

1− (2 + x)z + O
(

(1− (2 + x)z)3/2
)

Then, applying the transfer method we get the power series expansion

S(x, z) =
∑

n≥0

Sn(x)z
n = 2 + x− (2 + x)3/2



1−
∑

n≥1

(2 + x)n

2
√
πn3

(1 + O(1/n)) zn



 .

This proves the following
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Proposition 3 For every constantx near 1, functionS(x, z) admits atz = 0 an expansionS(x, z) =
∑

n≥0 Sn(x)z
n such that

Sn(x) = (2 + x)3/2
(2 + x)n

2
√
πn3

(1 + O(1/n)) .

Now, let us study the limit distribution of the sequence of random variables{Yn}, where eachYn is the
number of occurrences ofa in a word drawn at random in the setL ∩ {a, b, b̄}n under uniform distribution.
This means that such a word is generated in the probabilisticmodel defined by the characteristic seriesχL ∈
R+〈〈a, b, b̄〉〉. Then, for everyn ∈ N and eachk = 0, 1, . . . , n, we have

Pr{Yn = k} =
rnk
mn

The moment generating function ofYn is

ΨYn(u) =

n
∑

k=0

rnke
ku

mn
=

Sn(e
u)

mn

As a consequence, by Proposition 3 end Equation (10),ΨYn(u) admits at the pointu = 0 the expansion

ΨYn(u) =

(

2 + eu

3

)3/2 (
2 + eu

3

)n

(1 + O(1/n)) , (13)

which allows us to apply Theorem 1 where

y(u) =

(

2 + eu

3

)

and r(u) =

(

2 + eu

3

)3/2

Clearly, herer(u) is the “positive” branch of the corresponding algebraic function and hencer(0) = 1. Also
note that the main part ofΨYn(u), i.e. y(u)n, is the moment generating function of the sum ofn independent,
identically distributed Bernoullian random variables, having success probability1/3: an evocative interpreta-
tion of this property is that in a long Motzkin word the occurrence of an horizontal step in a given position can
be simulated by a simple (biased) coin tossing. Then, applying Theorem 1 we get the following

Theorem 4 Asn tends to+∞ the random variable

Yn − 1
3n

√

2
9n

has a Gaussian limit distribution of mean value 0 and variance1.

3.1 Local limit property

To determine a local limit property first observe thatYn is a lattice random variable of period2 and initial value
[n]2 (and henceΨYn(iπ) = 1). Our aim is to apply Theorem 2. Note that Equation (13) is a local property of
ΨYn(u) for u near0 and hence it cannot be used to prove Condition[C3] of Theorem 2, which concernes the
values ofΨYn(iθ) for 0 ≤ θ ≤ 2π.

Proposition 5 For every0 < t < π/2 there exists0 < ε < 1 such that asn → +∞,

sup
t≤|θ|≤π−t

|ΨYn(iθ)| = O(εn)
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Proof. We study the singular points of the branchS(x, z) defined by (12) forx = eiθ, 0 ≤ θ ≤ 2π. For every
suchθ, the singularities ofS(eiθ, z) are atz = (eiθ − 2)−1 andz = (eiθ + 2)−1. We distinguish three cases:

1. θ ∈ [0, π/2) ∪ (3π/2, 2π],

2. θ ∈ (π/2, 3π/2),

3. θ ∈ {π/2, 3π/2}.

In the first interval(eiθ + 2)−1 is the singularity of smallest modulus and we can can reason as in the proof of
equation (13), getting the relation

ΨYn(iθ) =

(

2 + eiθ

3

)3/2 (
2 + eiθ

3

)n

(1 + O(1/n)) .

Now, given0 < t < π/2, in the set{θ ∈ R | t ≤ |θ| < π/2} function|eiθ + 2| attains the maximum value at
pointsθ = t andθ = −t. This implies

sup
t≤|θ|<π/2

|ΨYn(iθ)| = O

( |eit + 2|
3

)n

= O(εn) (14)

for some0 < ε < 1.
In the second intervalθ ∈ (π/2, 3π/2),S(eiθ, z) has the smallest singularity in modulus atz = (eiθ−2)−1,

where it admits a Puiseux expansion

S(eiθ, z) = 2− eiθ − (eiθ − 2)3/2
√

1− (eiθ − 2)z + O
(

(1 − (eiθ − 2)z)3/2
)

Applying the transfer method from the previous equation we get

Sn(e
iθ) = (eiθ − 2)3/2

(eiθ − 2)n

2
√
πn3

(1 + O(1/n))

and hence

ΨYn(iθ) =
Sn(e

iθ)

mn
=

(

eiθ − 2

3

)3/2 (
eiθ − 2

3

)n

(1 + O(1/n)) .

Observe that, in the set{θ ∈ R | π/2 < |θ| ≤ π − t}, |eiθ − 2| takes on the maximum value atθ = π − t and
θ = −π + t. As a consequence, for some0 < ε < 1, we have

sup
π/2<|θ|≤π−t

|ΨYn(iθ)| = O

( |ei(π−t) − 2|
3

)n

= O(εn) (15)

Finally, for θ ∈ {π/2, 3π/2}, S(eiθ, z) has two singularities of modulus5−1/2, which impliesSn(e
iθ) =

O(
√
5)n and hence|ΨYn(iθ)| = O(

√
5/3)n = O(εn). 2

From Theorem 2 and Proposition 5 we get

Theorem 6 As n grows to+∞ the following relation holds uniformly for everyj = 0, 1, . . . , n:

Pr{Yn = j} =















3 e−9 (j−n/3)2

4n

√
πn

· (1 + o(1)) if j ≡ n (mod2)

0 otherwise

(16)
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4 Frequency of peaks in Motzkin words

In this section we determine the limit distribution of the number of peaks in a Motzkin word of lengthn drawn
at random under uniform distribution. Representing the peaks by a terminal symbolt, we consider the language
L ⊆ {a, b, b̄, t}∗ of all wordsω obtained from a Motzkin wordx ∈ L by replacing every factorbb̄ by btb̄. The
languageL is generated by the context-free grammar

S = 1 + aS + bT b̄S (17)

T = t+ aS + bT b̄S (18)

We now consider the morphism from the free monoid{a, b, b̄, t}∗ into the commutative monoid{x, z}⊕ asso-
ciatingt with x and the symbolsa, b, b̄ with z. This transforms the previous grammar into the following system
of algebraic equations

S = 1 + zS + z2TS (19)

T = x+ zS + z2TS (20)

Note that (a branch of) the solutionS = S(x, z) is the generating function of the bivariate sequence{rnk} such
thatrnk = ]{ω ∈ L | |ω| = n, |ω|bb̄ = k}. Hence we study such a solution to get an asymptotic evaluation of
the corresponding sequence.

EliminatingT from the previous system we get the algebraic equation

1 + (z − 1− z2 + xz2)S + z2S2 = 0

yielding the following non-singular (atz = 0) branch

S(x, z) =
1− z + (1− x)z2 −

√

(1 + z + (1− x)z2)(1 − 3z + (1− x)z2)

2z2

Forx = 1 such a function reduces toN(z) studied in the previous section. So we assumex 6= 1. In this case
S(x, z) is singular at pointsα, β, γ andδ given by

α =
3−

√
5 + 4x

2(1− x)
, β =

3 +
√
5 + 4x

2(1− x)
, γ =

−1−
√
4x− 3

2(1− x)
, δ =

−1 +
√
4x− 3

2(1− x)
(21)

For x near1 (andx 6= 1), both modulus ofβ andγ grow to +∞, while α and δ approach1/3 and−1,
respectively. Hence, forx near1, S(x, z) has a unique singularity of smallest modulus atz = α, where it
admits a Puiseux expansion of the form

S(x, z) =
1− α

2α2
+

1− x

2
−
√

1− z

α

√

(1 + α+ (1− x)α2)
(

1− 2(1−x)

3+
√
5+4x

α
)

2α2
+ O

(

1− z

α

)3/2

This leads to the following expression

S(x, z) =
1− α

2α2
+

1− x

2
−
(

1− 3 +
√
5 + 4x

2
z

)1/2

F (x) + O
(

1− z

α

)3/2

where

F (x) = (5 + 4x)
1/4 3 +

√
5 + 4x

2
. (22)

Therefore, by the transfer method we obtain the following
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Proposition 7 For every constantx near1, x 6= 1, functionS(x, z) admits atz = 0 an expansionS(x, z) =
∑

n≥0 Sn(x)z
n such that

Sn(x) =

(

3 +
√
5 + 4x

2

)n
F (x)

2
√
πn3

(1 + O(1/n)) ,

whereF (x) is defined in (22).

Now, let us study the limit distribution of the sequence of random variables{Vn}, where eachVn is the
number of occurrences of the factorbb̄ in a wordω drawn at random in the setL ∩ {a, b, b̄}n under uniform
distribution. Then, for everyn ∈ N and eachk = 0, 1, . . . , n, we have

Pr{Vn = k} =
rnk
mn

The moment generating function ofVn is

ΨVn(u) =

n
∑

k=0

rnke
ku

mn
=

Sn(e
u)

mn

As a consequence, by Proposition 7 end Equation (10),ΨVn(u) admits at the pointu = 0 the expansion

ΨVn(u) =

(

3 +
√
5 + 4eu

6

)n
F (eu)

3
√
3

(1 + O(1/n)) . (23)

Such an expansion allows us to apply Theorem 1 with

y(u) =
3 +

√
5 + 4eu

6
and r(u) =

F (eu)

3
√
3

Therefore we get the following

Theorem 8 Asn tends to+∞ the random variable

Vn − 1
9n

√

2
27n

has a Gaussian limit distribution of mean value 0 and variance1.

4.1 Local limit property

To apply Theorem 2 we compare the modulus of singularities ofS(x, z) given in equations (21), for complex
values ofx such that|x| = 1.

As α, β, γ andδ have the same denominator, we consider the corresponding numerators, saŷα, β̂, γ̂, δ̂,
respectively. It is easy to see that, for|x| = 1 andx 6= 1, we have0 < |α̂| ≤ 2, 4 ≤ |β̂| < 6, 0 < |γ̂| ≤ 2

√
2,

0 < |δ̂| ≤ 2
√
2, where the values of̂γ and δ̂ interchange whilex moves over the circle of radius1. Hence

|α̂| < |β̂| for every|x| = 1. Moreover, a direct inspection shows that|α̂| ≤ |δ̂| for every|x| = 1, the equality
being true only forx = 1. Since the comparison witĥγ is similar, we can state thatα is the unique singularity
of smallest modulus ofS(x, z) for x varying the required domain.

As a consequence Proposition 7 holds for every complexx such that|x| = 1 andx 6= 1, and we get

ΨVn(iθ) =

(

3 +
√
5 + 4eiθ

6

)n
F (eiθ)

3
√
3

(1 + O(1/n))
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This proves that, for every0 < t < π,

sup
t≤θ≤2π−t

ΨVn(iθ) =

(

3 +
√
5 + 4eit

6

)n

O(1) = O(εn)

for some0 < ε < 1. Therefore, Condition[C3] of Theorem 2 holds true in our case withd = 1 and we can
state the following

Theorem 9 As n grows to+∞ the following relation holds uniformly for everyj = 0, 1, . . . , n:

Pr{Vn = j} =
3
√
3 e−27 (j−n/9)2

4n

2
√
πn

· (1 + o(1))
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