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Abstract

In this work we show that the number of horizontal steps in @io word of lengthn, drawn at random
under uniform distribution, has a Gaussian limit distriont We also prove a local limit property for the
same random variable which stresses its periodic behavi&iamilar results are obtained for the number of
peaks in a word of given length drawn at random from the samguiage.

1 Introduction

The major problem in pattern statistics is to estimate teguency of pattern occurrences in a random text.
A formal model to define such a statistics is given by a finifghabte}}, a languager C ¥* of patterns and
stochastic modéP for the generation of a random worde ¥* of lengthn. The associated statistics is defined
as the number of (positions of) occurrences of stringR af =. This problems has a variety of applications
(see for instance [12]) and it has been studied mainly forkgheian modelsP [11], or whenP is a rational
model defined by a weighted finite automaton o¥e2, 3]. Gaussian limit distributions have been obtained
both in the global and in the local sense for pattern stesisti rational models defined by powers of primitive
rational formal series [3]. These results are obtained Iptyapy general criteria for establishing global and
local limit distribution of Gaussian type, based on the grties of moment generating functions [9, 6, 3].

In this work we study the same problem assuming a simple edgeinodel defined by the traditional
language of Motzkin words. We show that the number of hotalosteps in a Motzkin word of length,
drawn at random under uniform distribution, has a Gaussmit tlistribution. We also prove a local limit
property for the same random variable which stresses iiedierbehaviour. Analogously we consider the
statistics representing the number of peaks in a Motzkirdvadrlengthn, drawn at random under uniform
distribution. Also in this case we prove a Gaussian limitrddsition and a corresponding local limit property.

The main goal of this note is to apply the general analytiteda used in [3] for the analysis of pattern
statistics in rational models, to a simple algebraic mo@lké results we obtain are in line with a more general
approach to the symbol frequency problem in context-freguages presented in [4] (see also [6, Sec VII]).



2 Gaussian limit distributions

In this section we recall a simple general criterion to pribvag a sequence of random variables has a Gaussian
limit distribution.

Consider an nonnegative integer random variable (Xv.).e. a random variable taking on valuesNpand
for everyj € N, setp; = Pr{X = j}. The moment generating function &f is defined as

Ux(z) = E(e) = 3 pre,
keEN

wherez is a complex variable. This function is related to the mora@fitX; in particular we havé&(X) =
U’ (0), E(X?) = ¥%(0). Moreover, it can be used to show convergence in distributijiven a sequence of
random variable$ X, },, and a random variabl&, if Uy and¥x are defined all ove€ and¥ x, (z) tends
to Ux (z) for everyz € C, thenX,, converges toX in distribution (see for instance [7] or [6]).

The characteristic function oX is the restriction ofl' x (z) to the immaginary axis, that is the function
U x (i0), wheref) € R. Such a function is well-defined for eveflyc R and, as we deal with integer r.v.s, it is
periodic of periodr.

Moment generating functions can be also used to prove Gaufisiit laws. The following property is
a simplification of the so called “quasi—power” theoremaniiced in [9] and implicitly used in the previous
literature [1] (see also Section IX.5in [6]).

Theorem 1 Let{X,} be a sequence of non-negative integer random variables ssuhae the following con-
ditions hold true:

C1 There exist two functionsz), y(z), both analytic at: = 0 where they take the valué0) = y(0) = 1,
and a positive constant such that for everfz| < ¢

Vx, (2) =7(2) - y(2)" (1+0(n™h); 6y
C2 The constant = 3"(0) — (y/(0))? is strictly positive (variability condition).

Also sefu = /(0). ThenX"f\/:_‘f converges in distribution to a normal random variable of méand variance

1,i.e., foreveryr € R
. X — un 1 T2
1 Pri —— < = — 2 dt .
A pr{Eot el - 2 f

The main advantage of this theorem, with respect to othesidal statements of this kind, is that it does
not require any condition of independence concerning thdaomn variablesX,,. For instance, the standard
central limit theorems assume that ed€h is a partial sum of the fornkX,, = > Uj;, where thelU;’s are
independent random variables [7].

Jj<n

We recall that the convergence in law of a sequence of £X’s} does not yield an approximation of the
probability thatX,, has a specific value. Theorems concerning approximatiansxforessions of the form
Pr{X,, = z} are usually calledbcal limit theorems A typical example is given by the so-called de Moivre—
Laplace Local Limit Theorem [7], which intuitively statdsat, for a sequence of binomial random variables
{X,}, up to a facto®©(1/,/n) the probability thatX,, takes on a value approximates a Gaussian density at
x.

As for convergence in distribution, also for local limit perties general criteria can be established and
several of them appear in the literature. For instance a¢neof this kind is given in [6, Sect. 1X.9] and a
deeper one is presented in [10]. In this work we use the fatigwesult, which yields a natural extention of
Theorem 1 to local limit properties of lattice random valésh

We recall that, giver, p € N such thab < p < d, a lattice random variabl¥ of periodd and initial value
p is an integer r.v. with values in the st € Z | + = p(modi)}. It is well-known that an integer random
variableX is a lattice r.v. of period if and only if ¥ x (i27/d) = 1.



Theorem 2 [3, Th. 13] Given a positive integet, let {X,,} be a sequence of lattice random variables of
period d such that, for every,, X,, takes on values in the intervé), n] and has initial valuep,,, for some
integer0 < p, < d. Let ConditionsC1 and C2 of Theorem 1 hold true and lgt and o be the positive
constants defined therein. Moreover assume the followiopepty:

C3 Forall0 <t < m/d lim {\/ﬁ sup |\IIX“(Z'9)|} =0
norhee |6]€[t,m/d)
Then, as1 grows to+oo the following relation holds uniformly for evegy=0,1,..., n.
de= 30" |
Pr{X, = j} = V== (I+0(1)) ifj=p,(modd) @)
0 otherwise

ConditionC3 states that, for every constahk ¢ < w/d, asn grows to+oo, the value¥ x (i6) is of the
ordero(n~"'/2) uniformly with respect t@ € [~ /d, —t] U [t,7/d]. Note that relation (2) is meaningful fgr
lying in an intervalyn — ay/on < j < pn + a+/on, wherea > 0 is a constant.

Also observe that ifl = 1, i.e. the values of,, have no periodicity, then relation (2) reduces to state that
asn — +oo,

_G—un)?
e 20mn
P{X,=j}=—(0+40(1 3
{Xo = j} = ==+ 0(1)) ®)
holds uniformly for everyj = 0,1, ..., n. Moreover, if theX,’s are independent binomial random variables

of parameter., p, then Theorem 2 coincides with the classical de Moivre-aeplLocal Limit Theorem.

3 Symbol frequency in a Motzkin word
Let us consider the languageC {a, b, b} defined by the grammar
S =e+aS +bSbS (4)

We want to study the frequency of of occurrences @f a word drawn at random under uniform distribution
in the set of all strings of length in L. To this end we first study the asymptotic behaviour of theeiated
single and bivariate sequendes., } and{r,;} defined by

mo = #{w € L | [w| = n} (5)

and
Tk = fH{w € L [ lw| =n,|w|s =k} . (6)

The analysis of these sequences is based on the corresggedierating functions and can be achieved by
applying analytic methods presented in [5, 6]).

The context-free grammar (4) can be trasformed into an &gekquation by the map associating the
terminal symbols:, b, b with the complex variable. This equation is given by

1+ (z—1)S + 2252 =0 (7)

and it implicitely defines an algebraic functigh of the variablez. Such a function has a unique branch
non-singular at = 0 given by
1= z— /(1 +2)(1-32)

S(z) = = , ®)




ang hence, since grammar (4) is unambiguous, its powerssexigansion at the point = 0 is S(z) =
Yo my ™

Trlwen an asymptotic expression for,, } can be obtained by applying a well-known analytic methodghe
calledtransfer methoplbased on the behaviour of generating functions near tlgaikirities of smallest mod-
ulus [5] (see also [6, Ch. VI]). This method relies on claakiCauchy’s formula for Taylor coefficients of
an analytic function and on the choice of a particular contifthe corresponding integral. It allows us to
translate the expansion of a function around a dominantganity into an asymptotic expression for its Taylor
coefficients. If the function we consider is a branch of arehtgic curve the asymptotic expansion around a
singular point is calledPuiseux expansioand a general procedure is known to derive its main terms tham
polynomial equation defining the function [6, Sec. VII.4].

In our case, the branchi(z) has a unique singularity of smallest modulug at 1/3. At that pointS(z)
admits the Puiseux expansion

S(z)=3-3V3/1—-3z40 ((1 - 32)3/2) .

This allows us to transfer the well-known series expansion

(1—U)1/2:1—Z (Zn _12>L=1—Z 1+O(1/n)un (lu| < 1) 9)

AN n2%n-t n>1 2vmn?
and get
=3 i . 3 14+ 0(1 (10)

Now, let us use the same method to study the generating &metithe bivariate squenc{enk}. To this
end, let us consider the map associating the symoth the monomialz and bothb andb with z. This map
transforms grammar (4) into the algebraic equation

228% 4 (22 —-1)S+1=0 (11)

which implicitely defines an algebraic functishof the complex variables, z. It is easy to see that, for every
x, the only branch of that is non-singular at = 0 is

l—2z—/1+2-2)2)(1-(2+z)2)
222

S(xz,2) = (12)

Again, since grammar (4) is unambiguous, for eveng(x, z) admits at the point = 0 the series expansion
S(x,z) = >4 roxz¥z™. Observe that, for every # 2, -2, S(z, z) is singular only at the points =
(r—2)~tandz = (24 z)~L. In particular, forz nearl, the singularity of smallest modulusis= (2 + z)~!,
whereS(z, z) admits the Puiseux expansion

S(x,z)=2+2—(2+2)32/1— (2+2)z+0 ((1 — 2+ x)z)3/2)

Then, applying the transfer method we get the power serjgaresion

2+ x)"

2v/mn3

S(a:,z):ZSn(a:)z"=2+x—(2+x)3/2 1—2

n>0 n>1

(14+0(1/n))z"

This proves the following



Proposition 3 For every constant: near 1, function S(z,z2) admits atz = 0 an expansionS(z,z) =
Ym0 Sn(x)z™ such that
S ( _ 3/2 (2 + x)n
w(r) =24 2)*"—— (1+0(1/n)) .
2v/mn3

Now, let us study the limit distribution of the sequence afdam variableqY,,}, where eacly,, is the
number of occurrences afin a word drawn at random in the st {a, b, b}™ under uniform distribution.
This means that such a word is generated in the probabitigtidel defined by the characteristic serigs €
R (a,b,b). Then, for everyr € N and eactk = 0, 1,...,n, we have

PHY, = k} = x—k

n

The moment generating function Bj, is

k=0

As a consequence, by Proposition 3 end Equation {9) ) admits at the point = 0 the expansion

2—|—e“)3/2 (2—!—6“

\Ilyn(u):< 3 3 ) (14+0(1/n)) , (13)

which allows us to apply Theorem 1 where

y(u) = (2*;)6“) and r(u) = (22‘3”)3/2

Clearly, herer(u) is the “positive” branch of the corresponding algebraicction and hence(0) = 1. Also
note that the main part ofy, (u), i.e. y(u)", is the moment generating function of the sunnahdependent,
identically distributed Bernoullian random variablesying success probability/3: an evocative interpreta-
tion of this property is that in a long Motzkin word the ocamce of an horizontal step in a given position can
be simulated by a simple (biased) coin tossing. Then, apglyheorem 1 we get the following

Theorem 4 Asn tends to+oo the random variable

Yn—%n

@%‘
3

has a Gaussian limit distribution of mean value 0 and var&hc

3.1 Local limit property

To determine a local limit property first observe thatis a lattice random variable of peri@dand initial value
[n]2 (and hencely,, (iw) = 1). Our aim is to apply Theorem 2. Note that Equation (13) is allpcoperty of
Uy, (u) for u near0 and hence it cannot be used to prove Condifi©8] of Theorem 2, which concernes the
values of¥y, (i0) for 0 < 6 < 2.

Proposition 5 For every0 < t < 7/2 there exist$) < ¢ < 1 such that asi — +o0,

sup [Py, (i0)] = O(e")
t<|0]<n—t



Proof. We study the singular points of the brangtw, z) defined by (12) for: = ¢, 0 < 0 < 27. For every
suché, the singularities of (e?, 2) are atz = (e — 2)~! andz = (e + 2)~!. We distinguish three cases:

1. 60€0,7/2) U (37/2,27],
2.0 € (n/2,37/2),
3.0 {n/2,3m/2}.

In the first intervale?® + 2)~! is the singularity of smallest modulus and we can can reasemthe proof of
equation (13), getting the relation

2—}—@739)3/2 (2+€¢0

Uy, (i0) = ( - - ) (1+0(1/n)) .

Now, given0 < t < 7/2,inthe set{# € R | t < |#| < =/2} function|e? + 2| attains the maximum value at
pointsd = ¢t andd = —t¢. This implies

it 2 n
sp [y (i0)] = 0 (1521) — o (14)
t<|f|<m/2

for somel < ¢ < 1.
Inthe second interval € (7/2,37/2), S(e, z) has the smallest singularity in modulusat (e —2)~1,
where it admits a Puiseux expansion

S(e,2) = 2= e — (e =292\ /1 - (e = 2)2 40 (1 = (¢ — 2)2)*/2)

Applying the transfer method from the previous equation e g

i0 0 3/2 (e —2)"
Sn(e”) = (e" = 2) BNl (1+0(1/n))
and hence 5/
et eif _ 2 eif _ o\ "
Uy, (i6) = S"ben ) :( - 2) ( - 2) (1+0(1/n)) .

Observe that, inthe s¢t € R | /2 < |0] < 7 — t}, |e? — 2| takes on the maximum value @t= 7 — ¢ and
0 = —7 + t. As a consequence, for sorle< ¢ < 1, we have
. e =2\ .
sup [Ty, (10)] = O — ) = O(e™) (15)

w/2<|0|<m—t

Finally, for@ € {r/2,37/2}, S(¢*, 2) has two singularities of moduluds /2, which impliesS,, (¢*?)

ol

O(v/5)™ and hencéWy, (i0)| = O(v/5/3)" = O(e™).
From Theorem 2 and Proposition 5 we get
Theorem 6 As n grows to+oo the following relation holds uniformly for evefy= 0,1, ..., n:
3 o9 .
Pr{Y, = i} = — (140(1)) if j =n (mod2) (16)

0 otherwise



4 Frequency of peaksin Motzkin words

In this section we determine the limit distribution of thenmber of peaks in a Motzkin word of lengthdrawn
at random under uniform distribution. Representing th&kpé&g a terminal symbdl, we consider the language
L C {a,b,b,t}* of all wordsw obtained from a Motzkin word € L by replacing every factdib by btb. The
languagecl is generated by the context-free grammar

S =1+aS+bTbS (17)

T =t+aS + bTbS (18)
We now consider the morphism from the free monfidb, b, ¢}* into the commutative monoiftr, 2} asso-
ciatingt with 2 and the symbols, b, b with z. This transforms the previous grammar into the followingteyn
of algebraic equations

S =1+2S+2°TS (29)

T=ux+25+2°TS (20)
Note that (a branch of) the solutich= S(z, z) is the generating function of the bivariate sequefpcg } such
thatr,, = t{w € L | |w| = n, |w|,; = k}. Hence we study such a solution to get an asymptotic evahuafi

the corresponding sequence.
EliminatingT" from the previous system we get the algebraic equation

L4+ (2 —1—22 +22%)S + 2252 =0

yielding the following non-singular (at = 0) branch

l—z+(1—-2)22—/Q+2z+ 1 —2)22)(1 -3z + (1 —2)22)
222

S(xz,2) =

Forz = 1 such a function reduces ¥ (z) studied in the previous section. So we assumé 1. In this case
S(z, z) is singular at points, 3, v andé given by

_3—+5+4dx _3+Vi+4dx _ —1—v4zr-3 6_—1+\/4x—3 21
= Sa-a 0 PTeams 0 7T a0 °T 20— (21)

For z nearl (andx # 1), both modulus of3 and~ grow to +oo, while « andé approachl/3 and —1,
respectively. Hence, far nearl, S(z, z) has a unique singularity of smallest modulus:at «, where it
admits a Puiseux expansion of the form

l—«
_l’_

S(xz,2) = 507 5

el b

202 o

This leads to the following expression

l-a 11—z 3+ vh+4x 1/2
— 1—fz F(x)

2\ 3/2
i 1__)
202 + 2 +O( o

where

1/4 3+\/5+4$

F(z) = (5+4x) (22)

Therefore, by the transfer method we obtain the following



Proposition 7 For every constant near1, z # 1, functionS(z, z) admits atz = 0 an expansiorf(z, z) =
> ns0 Sn(x)2" such that

Sla) = (“ V”‘“’) S0 (1 o/m))

)
2 V3
whereF'(z) is defined in (22).
Now, let us study the limit distribution of the sequence ofdam variablegV,,}, where eaclV,, is the

number of occurrences of the factdrin a wordw drawn at random in the sétn {a, b, b}" under uniform
distribution. Then, for everyy € Nand eaclk =0,1,...,n, we have

As a consequence, by Proposition 7 end Equation {@0){«) admits at the point = 0 the expansion

(345t den\" Fle®)
v () = (RS D o @3)
Such an expansion allows us to apply Theorem 1 with
_ 3+ Vb +4e® _ F(e")
y(u) = : and r(u) = 373

Therefore we get the following
Theorem 8 Asn tends to+oo the random variable

Vn—%n

2
271

has a Gaussian limit distribution of mean value 0 and var&hc

4.1 Local limit property

To apply Theorem 2 we compare the modulus of singularitie$(af ~) given in equations (21), for complex
values ofz such thafz| = 1.

As a, 3, v andé have the same denominator, we consider the correspondingrators, say, 3, 4, 9,
respectively. It is easy to see that, fof = 1 andz # 1, we haved < |a| < 2,4 < |8]| < 6,0 < |5| < 2v2,
0 < |6] < 2v/2, where the values of andé interchange while: moves over the circle of radius Hence
|a| < |B] for every|z| = 1. Moreover, a direct inspection shows that < || for every|z| = 1, the equality
being true only forr = 1. Since the comparison withis similar, we can state thatis the unique singularity
of smallest modulus of (x, z) for = varying the required domain.

As a consequence Proposition 7 holds for every complsuch thatz| = 1 andz # 1, and we get

o0\ F(ei?
\va7k(i9):<3+\/z+4 ) i(ﬁ)

(14 0(1/n))



This proves that, for evely < ¢ < ,

sup Wy, (i0) =
t<O0<2m—t

<3+7 ¢56+4> o) = O™

for some0 < ¢ < 1. Therefore, ConditiofiC3] of Theorem 2 holds true in our case with= 1 and we can
state the following

Theorem 9 As n grows to+oo the following relation holds uniformly for evefy= 0,1, ..., n:

(G=n/9)?
3\/§ 6727 ’ in

Pr{Vn:]}: 2\/ﬁ

(14 0(1))
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