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Abstract. We present some asymptotic properties on the average num-
ber of prefixes in trace languages. Such languages are characterized by an
alphabet and a set of commutation rules, also called concurrent alphabet,
which can be encoded by an independency graph or by its complement,
called dependency graph. One key technical result, which has its own
interest, concerns general properties of graphs and states that “if an
undirected graph admits a transitive orientation, then the multiplicity of
the root of minimum modulus of its clique polynomial is smaller or equal
to the number of connected components of its complement graph”. As a
consequence, under the same hypothesis of transitive orientation of the
independency graph, one obtains the relation E[Tn] = O(E[Wn]), where
the random variables Tn and Wn represent the number of prefixes in
traces of length n under two different fundamental probabilistic models:
– the uniform distribution among traces of length n (for Tn),
– the uniform distribution among words of length n (for Wn).
These two quantities are related to the time complexity of algorithms for
solving classical membership problems on trace languages.
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1 Introduction

In computer science, trace monoids have been introduced by Mazurkiewiecz [22]
as a model of concurrent events, describing which action can permute or not
with another action (we give a formal definition of traces and trace monoids in
Section 2, see also [14] for a treatise on the subject). In combinatorics, they are
related to the fundamental studies of the “monöıde partiellement commutatif”
introduced by Cartier and Foata in [10], and to its convenient geometrical view
as heap of pieces proposed by Viennot in [25].
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Several classical problems in language theory (recognition of rational and
context-free trace languages, determination of the number of representative words
of a given trace, computing the finite state automaton recognizing these words)
can be solved by algorithms that work in time and space proportional to (or
strictly depending on) the number of prefixes of the input trace [3, 6–8,15,23].
This is due to the fact that prefixes represent the possible decompositions of a
trace in two parts and hence they are natural indexes for computations on traces.

This motivates the analysis of the number of prefixes of a trace of given
length both in the worst and in the average case. In the average case analysis,
two natural sequences of random variables play a key role:

– {Tn}n∈N, the number of prefixes of traces of length n generated at random
under the equidistribution of traces of given size;

– {Wn}n∈N, the number of prefixes of traces of length n generated at random
under the equidistribution of representative words of given size.

For some families of trace monoids, the asymptotic average, variance, and limit
distributions of {Tn} and {Wn} are known [6,7,19–21]. It is interesting that they
rely on the structural properties of an underlying graph (the independency graph,
defined in Section 2). For example, it is known that, for every trace monoidM, the
maximum number of prefixes of a trace of length n is of the order Θ(nα), where
α is the size of the largest clique in the concurrent alphabet defining M [8]. We
summarize further such results in Section 3. In analytic combinatorics (see [17] for
an introduction to this field), it remains a nice challenge to get a more universal
description of the possible asymptotics of Tn and Wn.

In this work we prove that, if the concurrent alphabet (Σ, C) admits a
transitive orientation, then

E[Tn] = O(E[Wn]).

This is obtained by showing a general property of undirected graphs, which in our
context is applied to the concurrent alphabet (Σ,C) and its complement (Σ,Cc).
Such a property states that, for any undirected graph G admitting a transitive
orientation of its edges, the number of connected components of its complement
is greater or equal to the multiplicity of the root of smallest modulus in the clique
polynomial of G. The interest for the present discussion mainly relies on the
use of finite state automata and on classical tools of formal languages to study
properties of integer random variables in particular the asymptotic behaviour of
their moments.

The paper is organized as follows: in Section 2 we recall the basic definitions
on trace monoids; in Section 3 we summarize some asymptotic results on the
random variables Tn and Wn; in Sections 4 and 5, we present our main results
on cross-sections of trace monoids, clique polynomials, and a new bound relating
the asymptotic behaviour of Tn and Wn; we then conclude with possible future
extensions of our work.



2 Notation and preliminary notions

For the reader not already familiar with the terminology of trace languages, we
present in this section the key notions used in this article (see e.g. [14] for more
details on all these notions).

Given a finite alphabet Σ, as usual Σ∗ denotes the free monoid of all words
over Σ, ε is the empty word and |w| is the length of a word w for every w ∈ Σ∗.
We recall that, for any w ∈ Σ∗, a prefix of w is a word u ∈ Σ∗ such that w = uv,
for some v ∈ Σ∗. Also, for any finite set S, we denote by #S the cardinality of S.

A concurrent alphabet is then a pair (Σ, C), where C ⊆ Σ×Σ is a symmet-
ric and irreflexive relation over Σ. Such a pair can alternatively be defined by an
undirected graph, which we call independency graph, where Σ is the set of
nodes and {{a, b} | (a, b) ∈ C} is the set of edges. Its complement (Σ,Cc) is
called dependency graph. As the notions of concurrent alphabet and indepen-
dency graph are equivalent, in the sequel we indifferently refer to either of them.
Informally, a concurrent alphabet lists the pairs of letters which can commute.

The trace monoid generated by a concurrent alphabet (Σ, C) is defined as
the quotient monoid Σ∗/ ≡C , where ≡C is the smallest congruence extending the
equations {ab = ba : (a, b) ∈ C}, and is denoted by M(Σ, C) or simply by M. Its
elements are called traces and its subsets are named trace languages. In other
words, a trace is an equivalence class of words with respect to the relation ≡C
given by the reflexive and transitive closure of the binary relation ∼C over Σ∗

such that uabv ∼C ubav for every (a, b) ∈ C and every u, v ∈ Σ∗. For any w ∈ Σ∗,
we denote by [w] the trace represented by w; in particular [ε] is the empty trace,
i.e. the unit of M. Note that the product of two traces r, s ∈M, where r = [x]
and s = [y], is the trace t = [xy], which does not depend on the representative
words x, y ∈ Σ∗ and we denote the product by t = s · r. The length of a trace
t ∈M, denoted by |t|, is the length of any representative word. For any n ∈ N,
let Mn := {t ∈M : |t| = n} and mn := #Mn.

Note that if C = ∅ thenM reduces to Σ∗, while if C = {(a, b) ∈ Σ×Σ | a 6= b}
then M is the commutative monoid of all monomials with letters in Σ.

Any trace t ∈ M can be represented by a partial order over the multiset
of letters of t, denoted by PO(t). It works as follows: first, consider a word w
satisfying t = [w]. Then, for any pair of letters (a, b) of w, let ai be the i-th
occurrence of the letter a and bj the j-th occurrence of the letter b. The partial
order is then defined as ai < bj whenever ai precedes bj in all representative
words of [w]. (See Example 1 hereafter.)

A prefix of a trace t ∈ M is a trace p such that t = p · s for some s ∈ M.
Clearly, any prefix of t is a trace p = [u] where u is a prefix of a representative
of t. It is easy to see that if p is a prefix of t then the PO(u) is an order ideal of
PO(t) and can be represented by the corresponding antichain. We recall that an
antichain of a partial order set (S,≤) is a subset A ⊆ S such that a ≤ b does
not hold for any pair of distinct elements a, b ∈ A, while an order ideal in (S,≤)
is a subset {a ∈ S | ∃ b ∈ A such that a ≤ b} for some antichain A of (S,≤). For
every t ∈M, we denote by Pref(t) the set of all prefixes of t.



Example 1 Let M be the trace monoid characterized by the following indepen-
dency graph: ia ib ic id
That is, one has ab = ba, bc = cb, cd = dc. Then, the trace [bacda] (i.e., the equiva-
lence class of the word bacda) is the set of words {bacda, badca, abdca, abcda, acbda}.
The corresponding partially ordered set is given by the following diagram

PO([bacda]) =

b1

a1

-

-

@
@R
d1
��*

c1HHj
a2

where an arrow from xi to yj means that xi always precedes yj and where we
omitted the arrows implied by transitivity. The set of prefixes is given by

Pref([bacda]) = {[ε], [a], [b], [ab], [ac], [abc], [abd], [abcd], [abcda]}.

In this set, we now overline the letters belonging to the antichain of each prefix:
{[ε], [a], [b], [ab], [ac], [abc], [abd], [abcd], [abcda]}. �

Recognizable, rational and context-free trace languages are well defined by
means of linearization and closure operations over traditional string languages;
their properties and in particular the complexity of their membership problems
are widely studied in the literature (see for instance [8, 14,15,23]).

For any alphabet Σ and trace monoid M, we denote by Z〈〈Σ〉〉 the set of
formal series on words (they are thus series in noncommutative variables) and
by Z〈〈M〉〉 the set of formal series on traces (they are thus series in partially
commutative variables), and Z[[z]] stands for ring of classical power series in the
variable z. These three distinct rings (with the operations of sum and Cauchy
product, see [5, 14,24]) will be used in Sections 4 and 5.

3 Asymptotic results for the number of prefixes

Several algorithms are presented in the literature for the recognition of rational
and context-free trace languages, or for other problems like computing the number
of representative words of a trace, that take a trace t as input and then carry
out some operations on all prefixes of t [3,6–9,15,23]. Thus, their time and space
complexity strictly depend on the number of prefixes of t and in many cases they
work just in time Θ(# Pref(t)). Now, it follows from [8] that

max{# Pref(t) : t ∈Mn} = Θ(nα), (1)

where α is the size of the largest clique in the independency graph ofM. It is thus
essential to get a more refined analysis of the asymptotic behaviour of # Pref(t)
under natural distribution models in order to obtain a better understanding of
the average complexity of all these algorithms.

In this section, we recall the main results on the number of prefixes of a
random trace, under two different probabilistic models.



3.1 Probabilistic analysis on equiprobable words

A main goal of the present contribution is to compare the random variables Tn
and Wn, defined by

Tn = # Pref(t) and Wn = # Pref([w]), (2)

where t is uniformly distributed over Mn, while w is uniformly distributed
over Σn. Clearly the properties of Tn and Wn immediately yield results on
time complexity of the algorithms described in [3, 6, 7] assuming, respectively,
equiprobable input traces of length n and equiprobable representative words of
length n. Since every trace of length n has at least n+ 1 prefixes, a first crude
asymptotic bound is

n+ 1 ≤ Tn ≤ dnα, n+ 1 ≤Wn ≤ dnα (∀ n ∈ N),

for a suitable constant d > 0, where α is defined as in (1). More precise results
on the moments of Wn are studied in [6, 7, 20]:

E[W j
n] = Θ(njk) ∀ j ∈ N, (3)

where k is the number of connected components of the dependency graph of M.
This relation is obtained by constructing suitable bijections between each moment
of Wn and the set of words of length n in a regular language [6]. These bijections
also allow proving a first order cancellation of the variance, i.e. var(Wn) =
O(n2k−1) [20]. Further, when the dependency graph is transitive, this leads to
two different limit laws, either chi-squared or Gaussian, according whether all
the connected components of (Σ,Cc) have the same size or not [19].

3.2 Probabilistic analysis on equiprobable traces

Now, in order to analyse Tn (the number of prefixes of a random trace of size n),
it is useful to introduce the generating function of the trace monoid M:

M(z) :=
∑
n∈N

mnz
n, with mn := #Mn = #{t ∈M : |t| = n}.

The Möbius function of M is defined as µM :=
∑
t∈M µM(t) t, where

µM(t) =


1 if t = [ε],
(−1)n if t = [a1a2 · · · an],

where all ai ∈ Σ are distinct and (ai, aj) ∈ C for any i 6= j,
0 otherwise.

It is in fact a polynomial belonging to Z〈〈M〉〉. As established by Cartier and
Foata in [10], an important property of µM is that

ξM · µM = µM · ξM = 1, (4)

where ξM =
∑
t∈M t is the characteristic series of M. Here, ξM can be seen as a

partially commutative analogue of M(z).



Now, let pM ∈ Z[z] be the commutative analogue of µM. It then follows that

pM(z) = 1− c1z + c2z
2 − · · ·+ (−1)αcαz

α, (5)

where ci is the number of cliques of size i in the independency graph of M.
For this reason, we call pM the clique polynomial of the independency graph
(Σ,C). Its properties are studied in several papers (see for instance [18,21]). In
particular, the commutative analogue of Equation (4) is then

M(z) · pM(z) = pM(z) ·M(z) = 1. (6)

This entails that M(z) = (pM(z))
−1

, a fundamental identity which can also be
derived by an inclusion-exclusion principle.

As it is known from [21] that pM has a unique root ρ of smallest modulus
(and clearly ρ > 0 via Pringsheim’s theorem, see [17]), one gets mn = #Mn =
cρ−nn`−1 +O

(
ρ−nn`−2

)
, where c > 0 is a constant and ` is the multiplicity of ρ

in pM(z). We observe that the existence of a unique root of smallest modulus
for pM(z) is not a consequence of the strict monotonicity of the sequence {mn}.
Indeed, if one considers M(z) = 1

(1−z3)(1−z)2 , one has mn+3 = ((n + 5)mn +

2mn+1 +2mn+2)/(n+3) so the sequence {mn} is strictly increasing; however, the
polynomial (1− z3)(1− z)2 has 3 distinct roots of smallest modulus. Therefore,
such a M(z) cannot be the generating function of a trace monoid.

In our context, clique polynomials are particularly relevant as they are related
to the average value of the number of prefixes of traces [7, 21]. In fact, for any
trace monoid M, we have E[Tn] = Pn

mn
, where Pn =

∑
t∈Mn

# Pref(t). Since

ξ2M =
∑
t∈M# Pref(t)t, from (4) and (6) its commutative analogue becomes∑

n Pnz
n = pM(z)−2 and hence Pn = Θ(ρ−nn2`−1), which proves

E[Tn] = Θ(n`), (7)

where ` is the multiplicity of the smallest root of pM(z).

4 Cross-sections of trace monoids

Cross-sections are standard tools to study the properties of trace monoids by
lifting the analysis at the level of free monoids. Intuitively, a cross-section of a
trace monoid M is a language L having exactly one representative string for
each trace in M. Thus, the generating function of L coincides with M(z) and
hence it satisfies equality (6). As a consequence, by choosing an appropriate
regular cross-section L, one can use the property of a finite state automaton
recognizing L to study the singularities of M(z), i.e. the roots of pM(z).

Formally, a cross-section of a trace monoid M over a concurrent alphabet
(Σ,C) is a language L ⊆ Σ∗ such that

– for each trace t ∈M, there exists a word w ∈ L such that t = [w],
– for each pair of words x, y ∈ L, if [x] = [y] then x = y.



Among all cross-sections of M, it is convenient to consider a canonical one. A
natural one is based on a normal form using the lexicographic order [1]. Alterna-
tively, one can see it as based on the orientations of edges in the independency
graph of M, as used in [12,13] to study properties of Möbius functions in trace
monoids. It works as follows. Let ≤ be any total order on the alphabet Σ and let
≤∗ be the lexicographic linear order induced by ≤ over Σ∗. We denote by <C
the binary relation over Σ such that a <C b if (a, b) ∈ C and a ≤ b. Thus, <C is
an orientation of the independency graph of M. We now consider the following
cross-section of M: the language L≤ of all minimal lexicographic representatives
of traces in M, i.e. L≤ = {w ∈ Σ∗ | w ≤∗ y for every y ∈ [w]}. Moreover, L≤ is
regular, as it satisfies the equality

L≤ = Σ∗\
⋃

(a,b)∈C
a<Cb

Σ∗b C∗a aΣ∗, (8)

where Ca := {c ∈ Σ | (a, c) ∈ C} is the set of letters allowed to commute with a.
Thus, L≤ is the set of all words in Σ∗ that do not contain any factor of the form
bva where a <C b and v ∈ C∗a . Then, for any w ∈ Σ∗, in order to verify whether
w ∈ L≤, one can read the letters of w in their order, updating at each step the
family of letters a ∈ Σ forming a “forbidden” factor of the form bva, with a <C b,
v ∈ C∗a . If one of these letters is met then w is rejected, otherwise it is accepted.

To formalize the definition, for each b ∈ Σ, the predecessors of b are Pred(b) =
{a ∈ Σ | a <C b}. Define the finite state automaton A as the 4-tuple (2Σ , ∅, δ, F ),
where the set of states is 2Σ , i.e. the power set of Σ, the initial state is the empty
set ∅, F = {S ∈ 2Σ | S 6= Σ} is the family of final states and the transition
function δ : (2Σ ×Σ)→ 2Σ is given by

δ(S, b) =

{
Σ if b ∈ S
Pred(b) ∪ (S ∩ Cb) otherwise

(∀ S ⊆ Σ, ∀ b ∈ Σ).

Note that, during a computation, the current state S represents the set of
forbidden letters. At the beginning, all input letters are allowed, as ∅ is the initial
state, while Σ is a trap state, where all letters are forbidden. In a general step, if
S ⊆ Σ is the current state and b /∈ S is an input letter, the new set of forbidden
letters must be obtained from S ∪ Pred(b) by removing those elements that do
not commute with b. This justifies the above definition of δ and it is clear that
A recognizes L≤.

Moreover, the state set of the above automaton can be reduced to the states
S ( Σ reachable from ∅. Setting

Q = {S ⊆ Σ | S 6= Σ,∃ w ∈ Σ∗ : δ(∅, w) = S},

the entries of the transition matrix Ã of the automaton A are given by:

ÃS,S′ =
∑

b∈Σ:δ(S,b)=S′

b (∀ S,S ′ ∈ Q).



The commutative analogue in N[[z]] of this transition matrix has therefore all its
entries which are monomials of degree one in z. Factorizing by z, this commutative
analogue can thus be written zA, for a matrix A we call the adjacency matrix
of A. Note that A strictly depends on both the concurrent alphabet (Σ,C) and
the total order ≤ over Σ.

As a consequence, since A recognizes a cross-section of M, denoting by π
and η, respectively, the characteristic (column) vectors of ∅ and Q, the generating
function M(z) is given by

M(z) =

+∞∑
n=0

π′Anηzn = π′(I − zA)−1η, (9)

where I is the identity matrix of size #Q×#Q and π′ is the transposed of π.
This identity, together with relation (6) proves the following proposition.

Proposition 1 (Factorisation property). For any trace monoid M with a
concurrent alphabet (Σ, C), let ≤ be a total order on Σ, let A be the adjacency
matrix of the automaton A recognizing the cross-section L≤ of M, and assume
I, π and η defined as in (9). Then, M(z) and pM(z) satisfy the identities

M(z) = π′(I − zA)−1η =
π′ adj(I − zA)η

det(I − zA)
, pM(z) =

det(I − zA)

π′ adj(I − zA)η
. (10)

Example 2 Consider the concurrent alphabet (Σ, C) defined by the graph

ia
id

ic ��
ib H
H ie

Then, the clique polynomial and the generating function of M are given by

pM(z) = 1− 5z + 6z2 − z3, M(z) =

+∞∑
n=0

mnz
n =

1

1− 5z + 6z2 − z3
.

The standard ordering (a, b, c, d, e) on Σ induces the following (non-transitive)
orientation <C over the independency graph

<C = ia
id
�

-

? ic6
ib ie
�

��

HHY

Thus the predecessors of each letter are given by Pred(a) = Pred(b) = ∅,
Pred(c) = Pred(d) = {a, b}, Pred(e) = {b, c} and the transition matrix of A is
defined by the following table, where rows and columns are labelled by the states
of A:

Ã =

∅ {a, b} {b, c} {c}
∅ a+ b c+ d e 0
{a, b} 0 c+ d e 0
{b, c} 0 d e a
{c} 0 d e a+ b



From that I − zA is easily computed (where A is the adjacency matrix of A):

I − zA =


1− 2z −2z −z 0

0 1− 2z −z 0
0 −z 1− z −z
0 −z −z 1− 2z


and, accordingly, det(I − zA) = 1− 7z+ 16z2− 13z3 + 2z4 = (1− 2z)pM(z). �

Proposition 2. For any trace monoidM over a concurrent alphabet (Σ,C) and
any total order ≤ on Σ, all roots of the clique polynomial pM(z) are reciprocals
of eigenvalues of the corresponding adjacency matrix A. More precisely, the clique
polynomial of any independency graph (Σ, C) is of the form

pM(z) =

α∏
i=1

(1− xiz)

where α is the size of the maximum clique in (Σ, C) and all xi’s are eigenvalues
of a adjacency matrix A.

Proof (sketch). The result follows from Proposition 1 by refining equalities (10)
and recalling that all roots of clique polynomials are different from 0. ut

We observe that the reverse property does not hold in general, i.e. it may
occur that an eigenvalue of A is not the reciprocal of a root of pM(z). However,
as shown in the following section, such a reverse sentence is true whenever the
graph (Σ, C) admits a transitive orientation.

5 Concurrent alphabets with transitive orientation

Now let us consider a trace monoid M such that its independency graph (Σ,C)
admits a transitive orientation. Then, we may fix a total order ≤ on Σ such
that <C is transitive. In this case, the definition of cross-section L≤ and of
the automaton A can be simplified, since the set of “forbidden” factors of the
form bwa, with a <C b and w ∈ C∗a, can be reduced to the simple set of words
S = {τσ ∈ Σ2 | σ <C τ}. To prove this property, consider a forbidden factor of
the above form bwa, with a <C b and w ∈ C∗a ; thus any symbol c occurring in w
must verify (a, c) ∈ C. As a consequence, either a <C c or c <C a: in the first case
ca belongs to S while, in the second case, by transitivity of <C we have c <C b
and hence bc is in S.

Thus, identity (8) can be simplified as L≤ = Σ∗\
⋃
a<Cb

Σ∗baΣ∗. Moreover,
the state set of the automaton A can be reduced to Q = {Pred(a) | a ∈ Σ} and
the transition function now assumes values δ(S, b) = Pred(b), for every S ∈ Q
and every b ∈ Σ\S.



Proposition 3. Let (Σ, C) be a concurrent alphabet with an associated indepen-
dency graph admitting a transitive orientation <C. Let ≤ be a total order on Σ
extending <C. Also assume that the dependency graph (Σ, Cc) is connected. Then
the adjacency matrix A is primitive.

Proof (sketch). Under these hypotheses, by the simplifications above, it turns out
that the state diagram of the automaton A (defined by ≤) is strongly connected
and has at least one loop. ut

The hypothesis of transitivity for <C cannot be avoided to guarantee that A is
primitive. For instance, in Example 2 the dependency graph (Σ, Cc) is connected
but the orientation <C of (Σ, C) is not transitive, and in fact observe that the
corresponding transition matrix is not irreducible and hence A is not primitive.
Nevertheless, the smallest root of pM(z) is simple and then the same concurrent
alphabet satisfies the following theorem.

Theorem 4. Let (Σ, C) be a concurrent alphabet. If its independency graph
admits a transitive orientation <C, then one has ` ≤ k, where ` and k denote,
respectively, the multiplicity of the smallest root of pM(z) and the number of
connected components of the dependency graph (Σ, Cc).
Proof (sketch). First, it is well-known [18,21] that pM(z) is always the product
of the clique polynomials of all independency subalphabets given by the con-
nected components of (Σ,Cc). Then, each of these clique polynomials (using the
additional condition that one has a transitive orientation) has a smallest root of
multiplicity 1: this follows from Proposition 3 and a commutative analogue of
a result in [11] stating that, when (Σ,C) has a transitive orientation, its clique
polynomial equals det(I − zA). ut

Applying the previous theorem to relations (3) and (7), one gets the following.

Theorem 5. Let (Σ, C) be a concurrent alphabet. If its independency graph
admits a transitive orientation <C, then the random variables counting the number
of prefixes in traces (as defined in (2)) satisfy E[Tn] = O(E[Wn]).

Example 3 Consider the concurrent alphabet (Σ, C) and the orientation <C of
Example 2. Note that (Σ, C) is connected but <C is not transitive and in fact A is
not primitive. However, (Σ, C) admits a (different) orientation that is transitive,
given by

ia
id
-

�

6 ic?
ib ie
���

H
Hj

A total order extending the previous orientation is c < d < a < e < b. Computing
matrix A with respect to this total order we obtain

I − zA =


1− 2z −z −z −z

0 1− z −z −z
−z −z 1− z −z
0 −z 0 1− z

 ,
and hence det(I − zA) = 1− 5z + 6z2 − z3 = pM(z). �



The following example considers an independency graph ofM that does not admit
any transitive orientation. In this case pM(z) is a proper factor of det(I − zA),
but its smallest root is again simple and hence ` ≤ k is still true even if the
hypothesis of Theorem 4 is not satisfied.

Example 4 Consider the concurrent alphabet corresponding to the following
independency graph G, associated to the following partial order <C :

G = ia
ic

id ��
ib H
H ie ; <C = ia

ic
�

-

? id
ib ie
���

H
HY

Thus the transition matrix, defined according to Section 4, is given by the
following table:

Ã =

∅ {a, b} {a} {b, d} {d}
∅ a+ b c d e 0
{a, b} 0 c d e 0
{a} b c d e 0
{b, d} 0 c 0 e a
{d} b c 0 e a

Accordingly, one has det(I − zA) = 1− 6z + 10z2 − 5z3 = (1− z)pM(z). �

6 Conclusion

We have investigated the fundamental role played by the clique polynomial
in asymptotic studies of trace monoids. Building on the factorization property
(stated in Proposition 1), we got a link between the multiplicity of its smallest root
and the number of connected components of some associated graph (Theorem 4).
This, in turn, is the key for a new asymptotic relation between the number of
prefixes in traces of length n: E[Tn] = O(E[Wn]) (Theorem 5), where Tn and
Wn correspond to two natural models (uniform distribution over traces and over
words). In the long version of this article, we plan to extend these analyses to more
general cases (including concurrent alphabets without transitive orientation).

Several other problems remain open in our context and could be at the centre
of future investigations. The first one concerns the adjacency matrix A defined in
Section 4, which does not seem to be studied too much in the previous literature;
in particular, in all our examples det(I − zA) is a clique polynomial, even when
the concurrent alphabet (Σ, C) does not admit any transitive orientation. For this
purpose, similarly to the approach used in [11] and in our proof of Theorem 4, it
is possible to adapt a noncommutative approach building on links to words with
forbidden patterns (see [2]). We plan to use these links to tackle the asymptotic
behaviour of the variance and higher moments of {Tn}, and the limit distributions
of both {Tn} and {Wn} for all trace monoids.

In conclusion, all these studies are further illustration of the nice interplay
between complex analysis (analytic combinatorics) and the structural properties
of formal languages, as also illustrated e.g. in [4, 5, 16,17,19,20].
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