On the Complexity of Clustering with Relaxed Size
Constraints in Fixed Dimension!

Massimiliano Goldwurm), Jianyi Lin®), Francesco Sacca(®)

(1) Dipartimento di Matematica, (3) Dipartimento di Informatica
Universita degli Studi di Milano, 20100 Milano — Italy
(2) Department of Applied Mathematics and Sciences
Khalifa University, Abu Dhabi - United Arab Emirates

Abstract

We study the computational complexity of the problem of computing an optimal
clustering { A1, Ag, ..., A} of a set of points assuming that every cluster size |A;|
belongs to a given set M of positive integers. We present a polynomial time
algorithm for solving the problem in dimension 1, i.e. when the points are simply
rational values, for an arbitrary set M of size constraints, which extends to the
{1-norm an analogous procedure known for the Euclidean norm. Moreover, we
prove that in dimension 2, assuming Euclidean norm, the problem is (strongly)
NP-hard with size constraints M = {2,4}. This result is extended also to the
size constraints M = {2, 3} both in the case of Euclidean and ¢;-norm.

Keywords: geometric clustering problems; cluster size constraints; computa-
tional complexity; constrained k-Means

1. Introduction

In the area of unsupervised machine learning and statistical data analy-
sis the clustering methods play an important role with applications in pattern
recognition, bioinformatics, signal and image processing, medical diagnostics.
Clustering consists in grouping a set of objects into subsets, called clusters,
that are maximally homogeneous with respect to a suitable criterion for evalu-
ating the similarity of objects [5, [§]. Partitional or hard clustering requires the
subsets to be disjoint and non-empty, and in the usual geometric setting the
similarity between objects is measured by distance between points representing
the objects |17].

A classical clustering problem is the so-called Euclidean Minimum-Sum-of-
Squares [1], Variance-based |11] or k-Means clustering problem: given a finite
point set X C RY, find a k-partition {A1,..., Ax} of X minimizing the sum of

1 Appeared in revised form in Theoretical Computer Science, vol. 717, pp. 37-46, 2018.
A preliminary version of this work was presented at the 11th AAIM Conference |10].

Preprint submitted to Elsevier November 20, 2018

weights W (A1, ..., Ax) = >, W(Ai) = 32, > e, |z — u(Ag)|? of all clusters,
where p(A;) is the sample mean of A; and || - || is the Euclidean norm (also
called fo-norm). In most cases such a partitional clustering problem is difficult:
when d is part of the instance the problem is NP-hard even if the number of
clusters is fixed to k = 2 [1, [7]; the same occurs for arbitrary k with fixed
dimension d = 2 [18]. Nonetheless, a well-known heuristic for this problem is
Lloyd’s algorithm [15], also named k-Means Algorithm, which is not guaranteed
to converge to the global optimum. This algorithm is usually very fast, but may
require exponential time in the worst case |25].

Often one has some a-priori information on the clusters, that can be incor-
porated into traditional clustering techniques to increase the clustering perfor-
mance [2]. Problems that include background information are so-called con-
strained clustering and can be divided into two classes based on the constraints:
instance-level constraints typically define pairs of elements that must be (must-
link) or cannot be (cannot-link) in the same cluster [28], and cluster-level con-
straints prescribe characteristics of each cluster, such as cluster diameter or
cluster size |6, 24]. In [29] cluster size constraints are used for improving clus-
tering accuracy, for instance allowing one to avoid extremely small or large
clusters in standard cluster analysis. In the size constrained clustering (SCC)
problem, assuming an £,-norm with integer p > 1, typically one is given a finite
set X C R? of n points and k positive integers my, ..., my such that > mi=n,
and searches for a partition {4y, ..., Ax} of X, with |A;| = mq, ..., |Ak| = my,
that minimizes the objective function W (A4, ..., Ax) = Zle D ven, lz—cillh
where each ¢; = argmin.cpa), 4, [— cl|b is the £,-centroid of A;.

For arbitrary k € N, the SCC problem is NP-hard also in dimension d = 1,
for any (fixed) ¢,-norm, p > 1 |3]. The same negative result holds for arbitrary
d € N when the number of clusters is fixed to k& = 2, for every {,-norm with
p > 1[3]. On the contrary, in the case d = 2 = k the SCC problem is solvable
in O(n?logn) time assuming Manhattan norm (¢1) and in O(n/mlog®n) time
with Euclidean norm (¢3) [14], where m is the size of one of the two clusters.

In this work we study a relaxed version of the SCC problem, where the size
of each cluster belongs to a given set M of integers, rather than being fixed
by the instance of the problem. We show that in dimension d = 1, assuming
the ¢1-norm, for an arbitrary (finite) M C N the solution can be obtained in
O(n(ks 4+ n)) time, where n is the number of input points, s = |M| and k is
the number of clusters. This extends an analogous algorithm proposed for the
problem assuming the Euclidean norm [4]. Tt further emphasizes the difference
w.r.t. SCC problem, which is NP-hard in dimension 1 for every ¢,-norm, show-
ing that relaxing the size constraints is a key condition to guarantee a solution
computable in polynomial time. We recall that clustering problems in dimen-
sion 1 have already been studied in the literature, especially in connections with
problems of computational biology [4, 122]. In particular in |4] an algorithm for
solving clustering problem in dimension 1 (with size constraints) is applied for
determining promoter regions in genomic sequences, which can be defined intu-
itively as positions in DNA molecules where the occurrence of certain patterns

of nucleotides allows the cell to active or silence the genes (and hence regulating
gene expression).

Other results of the present contribution concern the relaxed size constrained
clustering problem in dimension d = 2. In this case, assuming fo-norm and fixing
M = {2,4}, we prove the problem is strongly NP-hard and it is also easy to see
that it does not admit FPTAS unless P = N P. Moreover, we prove the same
results for the case M = {2, 3} both with ¢3 and ¢; norm. This implies that also
the general relaxed size constrained problem, where M is part of the instance,
is strongly NP-hard on the plane both assuming ¢5 and ¢;-norm.

The introduction of relaxed size constraints is motivated by all applications
where one wants to bound the cluster size to certain values, possibly avoiding
too large or too small clusters, up to the balanced case where all clusters have
almost the same size. Situations of this type are rather common in several
contexts [2, 16, 29].

2. Problem definition

In this section we define the problem and fix our notation. Given two positive
integers d and p, for every point a = (ay, ..., aq) € R%, we denote by |||, the £,-
norm of a, i.e. |lall, = (Zf la;|P)}/P. Clearly, ||a|l2 and ||a||; are the Euclidean
and the Manhattan (or Taxicab) norm of a, respectively.

Given a finite set X C R?, a cluster of X is a non-empty subset A C X, while
a clustering is a partition {A1, ..., Ax} of X in k clusters for some k. Assuming
the ¢, norm, the centroid and the weight of a cluster A are the values C4 € R?
and W, (A) € Ry defined, respectively, by

Ca =argminy_fa—c|h, Wy(A) = lla—Cal

ceR? A a€A

The weight of a clustering {A4,..., Ax} is W,(A1, ..., Ax) = Z’f W,(A;). We
recall that, in case of f3-norm, the weight of a cluster A can be computed by
relation

Wa(A) = |—jl|(2)j la — |2 (1)

where the sum is extended to all unordered pairs {a, b} of distinct elements in A.
Moreover, given a set M C N, any clustering {4, ..., A} such that |4;| € M
for every i = 1,...,k, is called M-clustering.

RSC-d Problem (with £,-norm): Relaxed Size Constrained Clustering in R?
Given a set X C Q¢ of n points, an integer k such that 1 < k < n and a
finite set M of positive integers, find an M-clustering {A1, ..., Ax} of X that
minimizes Wp(A1, ..., Ax).

2If X does not admit a M-clustering then symbol L is returned.

When M is not included in the instance, but fixed in advance, we call the
problem M-RSC-d (with ¢y,-norm). In this work we study these problems in
dimension d = 1,2 assuming ¢; and {2-norm.

3. Dynamic programming for RSC on the line

In this section we describe a polynomial-time algorithm for RSC-1 assuming
f1-norm. This procedure is based on a dynamic programming technique, in the
style of [21], and on the so-called String Property [27, 13] (whose definition is
recalled below in the proof of Proposition[I]). In the case of £3-norm an analogous
algorithm is presented in [4] and applied to problems of computational biology.

Consider an instance (X, k, M) of RSC-1, where X = (x1,22...,2,) is a
sorted sequence of rational numbers, &k € {1,...,n — 1} and |[M| = s < n.
For any 1 < i < j < n, let X[i, j] be the subsequence (z;, Zi+1,...,2;). We
define the n x n matrix U = [U (4,)}, j=1,....n by setting U (4, j) = W1 (X[, j]) =

i lee—Cxpglif j—i+1 € Mand U(i, j) = oo otherwise, that is the weight
of cluster X[i, j] when it has admissible size.

Lemma 1. For every instance (X, k, M) of RSC-1 with | X| = n, matriz U can
be computed in O(n?) time.

PROOF. For any 1 < ¢ < j < n the weight W1(X[i,j]) is the sum of the
distances between elements and median of X[¢, j]. Denote m := (i 4+ j)/2 and
set the left and right sums L(i, j) 1= >, _,, zn and R(i,5) == 3 < on. It
can be shown that W1(X|i, j]) = R(i,75) — L(4,J) |3, Prop. 10]. Since X[i, j] is
sorted, it can be seen that, for i < 7,

L(i,j) = L(i,j —1)ifmeN, L(i,j) = L(,j — 1) + &, otherwise, (2)
R(i,j)=R(i,j — 1) —xm+z; if meN, R(i,j) = R(4,j — 1) + z; otherwise

(3)
and L(i,7) = R(i,i) = 0. By means of these recursive formulae the quantities

L(i,), R(i,7), W1(X[i, §]), for all i < j, can be computed in O(n?) time, and
hence the same holds for determining matrix U. O

Now, for every h € {1,...,k} and every j € {1,...,n}, let Z(h,j) be the
weight of a solution of RSC-1 for the instance (X[1,j],h, M) in case h < j,
while Z(h,j) = oo if h > j. These values can be derived from U.

Proposition 1. The following properties hold:

i) Z(1,7)=U(1,j) forall j =h,...,n;

ii) Z(h,j) = mijr\l/l(Z(h—l,j—m)—l—U(j—m—l—l,j)) forallh=2,.,k;j=h,..n.
me

PROOF. Case i) is obvious. For h > 1 the optimal solution {4, ..., A} for
(X[1,4], h, M), satisfies the String Property, i.e. each cluster A; consists of

consecutive points of X [217,13]. Then, its right-most cluster A, has size |A,| =
m € M and weight W1 (A4,) =W (X[j—m+1,5]) =U(G —m+1,5).
The other clusters Ay, ..., Ap_1 form a feasible clustering of RSC-1 for the
instance (X[1, j —m], h—1, M), which has minimum weight W3 (A1, ..., Ap—1) =
}f_l Wi(4;) = Z(h—1,j—m), otherwise it is easy to check that also { Ay, ..., Ap}
would not be an optimal solution for (X[1, j], h, M).
As a consequence, Z(h,j) = Z(h—1,j—m)+U(j—m+1, j) for some m € M,
and since Z(h, j) has to take the minimum value, property) is proved. O

Relying on the previous proposition we can design an algorithm for RSC-1.

Theorem 1. RSC-1 with £1-norm can be solved in O(n(ks+n)) time and O(n?)
space.

PROOF. By Lemma [l we first compute matrix U in O(n?) time. Then, by
means of Proposition [l matrix Z = [Z(h, j)|n=1,... k;j=1,...,n can be computed
row by row. Each entry requires at most s = | M| sums and comparisons. The
computation is described by the following scheme, where we store in £} ; the
size of the last cluster of the optimal solution for (X|1,], h, M), for each pair
of indices h, j.

begin
7 = {oo}kxn

for j=1,..,ndo {

for h=2,...,k do
for j=h,...,n do
M = argmin,,c ({Z(h—1,j —m)+U(j —m+1,j)}
if m is well-defined then
Z(h,j):=Zh—-1,j—m)+U(j —m+1,5)

Ly =m

Z(1,7):=U(1,5)
if U(1,7) # oo then 41 :=j

end

Clearly, if ¢, 5, is not defined then the symbol L is returned since no admissible
clustering for (X, k, M) exists. Otherwise, the solution of the problem can be
obtained by considering backward the table of values ¢, ;’s for h € {2,...,k},

jed{h,...,n}.
The overall time required to compute matrices U and Z is O(n(ks + n)).
The space necessary to maintain all tables is O(n?) since k < n. O

Note that the case s = n corresponds to an unconstrained version of our
problem. Thus the previous algorithm solves the traditional clustering problem
in dimension 1 assuming ¢;-norm in time O(n?k). The same bound holds for
£y-norm [21]. Hence, admitting a small number of possible cardinalities for the
clusters reduces the time complexity of the algorithm. However, these polyno-
mial time results only hold for the RSC-1 problem. Indeed, the SCC problem,

where the size of each cluster is fixed by the instance, is NP-hard even in di-
mension d = 1 for every ¢,-norm |3]. This shows that the form of the size
constraints for clustering problems is relevant for the existence of polynomial
time algorithms.

4. NP-hardness of RSC in the Euclidean Plane

In this section we show that, assuming ¢2-norm, the {2,4}-RSC-2 problem
is NP-hard, and therefore RSC-2 also is NP-hard. To this end we introduce a
decision version of the problem and describe a polynomial-time reduction from
Planar 3-SAT.

Decision {2,4}-RSC-2 Problem

Given a point set X = {p1,...,pn} C Q?, where n is even, an integer k,
n/4 < k < n/2, and a rational value X > 0 (threshold), decide whether there
exists a {2,4}-clustering {A1, ..., Ax} of X, consisting of k clusters, such that
Wo(Aq, ..., Ag) < A.

Recall that a 3-CNF formula ® is a boolean formula given by the conjunction
of clauses each of which has 3 literals. If V and C are, respectively, the set of
variables and the set of clauses of ®, the graph of ® is defined as the undirected
bipartite graph G¢ such that V' UC' is the family of nodes and F = {{v,c}: v €
V,c € C, and either v or ¥ appears in ¢} is the set of edges. A formula ® is said
to be planar if Gg is planar. The Planar 3-SAT problem consists in deciding
whether a planar 3-CNF formula ® is satisfiable.

It is known that Planar 3-SAT is strongly NP-complete [13]. Tt is also proved
that it suffices to consider formulae whose associated graph can be embedded in
R2, with variables arranged on a straight line, and with clauses arranged above
and below the straight line [12]. Moreover, the edges between variables and
clauses can be drawn in a rectilinear fashion |19].

We also recall that a boz-orthogonal drawing of a graph G is a planar em-
bedding of G on an integer grid where each vertex is mapped into a (possibly
degenerate) rectangle and each edge becomes a path of horizontal or vertical
segments of the grid. Rectangles are disjoint and paths do not intersect. Any
planar graph of n nodes admits a box-orthogonal drawing computable in O(n)
time that uses a a x b grid, where a + b < 2n [9, Th. 3].

Our goal is to show that Planar 3-SAT is reducible in polynomial time to De-
cision {2,4}-RSC-2. A similar reduction from Planar 3-SAT to an unconstrained
version of the k-means problem in the plane is presented in [18], where however
clusters include triples rather than quadruples. Notice that our reduction does
not yield multiple copies of the same point in the plane. Another difference is
that in our construction we determine directly the rational coordinates of the
points given by the reduction, avoiding the approximation of irrational values.

To describe the reduction we show how an arbitrary planar 3-CNF formula
®, can be associated with an instance (X, k,\) of the Decision {2,4}-RSC-2,
computable in polynomial time w.r.t. |®|, such that ® is satisfiable if and only
if X admits a partition into k clusters of cardinality 2 or 4, having a total weight

at most A\. The definition of such a reduction is split in several phases: the first
one computes an embedding of graph G4 into a planar integer grid; the others
determine the rational coordinates of points in X, and the values k and .

The general idea of the embedding of Gg (described in details below) is
to represent each clause by a square of the grid and associate each variable
with a cycle of segments lying on the grid. The cycle of each variable v will
enter or go close to every square representing a clause containing v. Since the
graph is planar, these cycles can be drawn without crossing; moreover, exactly
3 cycles will enter or go near to each clause-square. The set X includes a
pair of points in each clause-square and, for each variable, a family of an even
number of points placed along the corresponding cycles. Their position entails
the existence of only 2 optimal {2}-clusterings for the points on each cycle, which
may be associated to the possible values {0,1} of the corresponding variable.
Thus, it turns out that any clause is satisfiable by an assignment to a variable
v if and only if the clause-pair of v can be clustered together with the nearest
pair in the optimal {2}-clusterings associated with the assignment.

1) Embedding of Go into a planar grid

The first phase is described by the following steps, illustrated in Figure [1l
Step 0. Compute the box-orthogonal drawing D of G4 as stated above. We can
map any variable into a (non-empty) rectangle and any clause into a vertex of
the grid. Moreover, the base of all rectangles can be put on the same horizontal
straight line, and the vertices representing clauses above or below such a line.
Step 1. Expand the previous drawing by a factor of 2 and call D; the new
drawing. This doubles all distances between vertices in D.

Step 2. Shift Dy half unit upward and rightward and let Dy be the new drawing.
Now, each clause corresponds to a point in the centre of a unit square of the
grid, and each path from a rectangle (variable) to a point (clause) crosses just
in the middle some unit sides of the grid.

Step 3. Expand all rectangles by half grid unit in all four vertical and horizontal
directions, and replace any point (clause) of D2 by a unit square centred at the
same location, erasing the overlapping portion (half unit long) of paths. We call
D3 the new drawing. Now, all rectangles have sides of odd length and no path
in Ds starts from a vertex of a rectangle.

Step 4. Replace every path from a rectangle (variable) to a unit square (clause)
by a strip of unit width on the grid that cover the same path, erasing the
boundary portion of rectangle overlapping the strip. The resulting drawing is
called D4y. Now every variable v corresponds to a (sort of) cycle on the grid
that includes both the residual rectangle representing v and all strips towards
the unit squares (clauses) where v occurs, together with one side for each of
these squares.

Step 5. Expand the previous drawing by a factor of 15. We call Ds the
new drawing. Thus, each clause is now associated with a square on the grid
having side of length 15, while the strips described in Step 4 are formed by
parallel segments at distance 15 to each other. Moreover, in the following we
call borders the straight-line segments forming the cycles associated with the

Do

Expand drawing
D, by a factor of
15

Ds Dy Ds

Figure 1: Main steps of the graph transformations used in the reduction.

variables.

2) Definition of point set X

Let V. = {v1,...,v,} and C = {e1,...,cm} be, respectively, the set of
variables and the set of clauses of ®.

First, for every variable v; € V., X contains a circuit I'; of 2L; consecutive
points {1, T2, ..., Ti2L,) }, for a suitable integer L;. With few exceptions, we
explain later, all z;¢’s lie inside the cycle of drawing D5 associated with v;, set
at distance 2 from the border, so that each consecutive pair (s, 7;41)) forms
a segment of length 5.

The precise position of points x;’s is illustrated in Figs. @l and [B] where the
cycles are represented by dashed lines and the circuits by continuous lines. It
depends on the angles formed between two incident borders. Note that, inside
the cycle, every angle has measure either 7/2 (as angle 8 in Fig.) or 37/2 (as
angle « in the same figure); between every pair of angles of measure 7/2 (resp.,
3m/2) the position of three consecutive points of the circuit forms two segments
of length 5.5 (resp. 4.5). This condition allows to keep the points of the circuits
at distance 2 from the border. See for instance, in Fig. [2 points between angles
6 and &, or between angles ¢+ and 6.

Moreover, for every ¢; € C', X contains a pair of points u;, z; € Q?, with
the same ordinates, at distance 1 from each other, located near the centre of the
square associated with ¢;. The exact position of each u; and z; is defined by
Fig. Blin the case when two circuits approach the square from right and from
left (T'; and Ty, respectively), while the third one (T';) does the same from
above (the other cases are symmetric). In this case u; and z; are at distance 7
respectively from the left and the right side of the square and both at distance
5+ ¢ from the upper side, where é > 0 is a rational value to be fixed later.

In the same picture one can see the position of the points of the circuits
near the clause-squares. If I'; and [';; are the circuits approaching the square
from right and left, respectively, then they include a vertical segment of length
5 inside the clause-square, at distance 1 from the side of the square; here they

Figure 2: Points of a circuit I'; inside the corresponding rectangle. Segments with length dif-
ferent from 5 are indicated. Note that the measure of angles «, v, 0, ¢ is 37/2, while 8, 4,¢,(,n
are of measure 7/2.

Figure 3: Points of 3 circuits in the neighbourhood of a clause-pair (uj,z;). Only length of
segments different from 5 are indicated.

are represented by the pairs {a, b} and {c, d}, respectively. One the contrary, on
the upper circuit I';», the segment nearest to the pair u;, 25, here represented by
{e, f}, is horizontal and is located outside the clause-square, again at distance 1
from the border. Note that here, all pairs of consecutive points are at distance
5 from each other except before angles of size 37/2, where triple of points are
set to form two consecutive segments of length 4.5 in the circuits I'; and T';/,
and of length 6 in the upper circuit I';, respectively.
Thus, we can define the set X by

X =Auj,zj |j=12,....m}U{xy|i=1,2,....n, £=1,2,...,2L;} (4)

Now, let us consider the weight of pairs and quadruples in X. First we note
that the position of points in any clause-square allows us to evaluate the weight
of quadruples @1, @2, Q3 defined by

Ql = {ujazjuaab}u Q2 = {ujazjacud}u Q?) = {ujuzjueuf}

Actually the value of & can be fixed so that all these clusters have the same
weight. In fact, for symmetric reason it is clear that Wa(Q1) = Wa(Q2) and,
from Equation [one can easily verify Wa(Q1) = 61.5 — 56 + §2. Analogously,
we have Wa(Q3) = 49 + 126 + 62 and hence Wa(Q1) = Wa(Q3) for § = 25/34.
In the sequel we assume § = 25/34 and we call clusters @1, Q2 and Q3 the
main quadruples of clause ¢;. Moreover, clusters {a,b}, {c,d}, and {e, f}, are
called segments touched by pair {u;, z;} in circuits I';, I';; and Ty, respectively.

Lemma 2. Under the previous assumptions, the main quadruples of all clauses
have the same weight, which is a rational value w such that

58.36 < w < 58.37
Moreover, any other cluster of 4 points in X has weight strictly greater than w.

PROOF. By the previous discussion it is clear that, assuming § = 25/34, all
the main quadruples of clauses have the same weight w. This value is easily
computed from the evaluation of W5(Q1) given above, getting w = 61714% =
58.36....

It is also simple to show that the main quadruples of clauses are the unique
clusters of 4 elements in X having minimum weight. First note that inside
any circuit I';, the quadruple of minimum weight consists of three consecutive
segments, one of length 4.5 and two of length 5.5 perpendicular to each other
(see Figure [3). Its weight is 81.43.. . Furthermore, another possible quadruple
in X can be formed by using the pair u;, z; of any clause c¢; together with
two points belonging to distinct main quadruples at minimal distance from
each other. For instance, a cluster of this type is Q4 = {uj, z;, f,a} (see again
FigureB)). However, also in this case a direct computation shows that Wa(Q4) =
(223+246+242) /4, which yields W2(Q4)—w > 1/4. Clearly the other quadruples
have larger weight, and hence the main quadruples are those of minimum weight
in X. O

10

N . N

Figure 4: (Left) 30 x 15 horizontal strip preserving parity. (Right) 30 x 15 horizontal strip for
changing parity. The vertical case is analogous.

Now, let us consider the weight of the pairs of points in X. Note that all
pairs of consecutive points in any I'; form a segment of possible lengths: 4.5, 5,
5.5, 6, yielding a weight 10.125, 12.5, 15.125, 18, respectively.

Moreover, every set I'; admits only two {2}-clusterings of minimum weight,
consisting of pairs of consecutive points, given by

7Tl(i) = {{xiuazi(uﬁ-l)} | U= 153755 .- 52L’L - 1} and (5)
7T2(i) = {{in7xi(u+1)} | u=2,4,6,...,2L; — 2} @] {{xi(gLi),xil}} (6)

3) Parity condition

By a suitable choice of the first point x;1, and possibly by adding new points
to I'; (as explained below), we can assume that the following parity condition
holds: in any I';, for every clause ¢; including v;, the segment touched by (u;, z;)
belongs to either m(#) or m2(i) according to whether v; or T; appears in ¢;,
respectively. In order to guarantee this property, slight changes to points of T';
near the clause-square of ¢; may be necessary, which are illustrated in Figure [
This change adds two new points (one before and one after the touched segment),
and determines 4 more segments of length 4.5, two of which are to be included
into 71 (¢), the others into m2(¢). In order to apply this transformation the
circuit must contain a rectilinear portion of length at least 30, either horizontal
or vertical, as shown in Fig. [(left). We may always assume this is satisfied by
requiring one more expansion of the initial drawing by a factor of 2 (executing
Step 1 twice in the embedding phase).

In passing, we observe that a similar transformation can be used to guarantee
that each circuit I'; has an even number of points (2L;).

4) Definition of k and A
They are given by equalities k = Y| L; and
2 2 2 2
Azwm—!—%(k—h)—k% %'84_54—%'85_54—%'56
where w is defined as in Lemmal[2 s, is the total number of segments of length
win all Ty’s for u € {4.5,5.5,6}, and h = m + & (s4.5 + 5.5 + s6).

One can show that every {2, 4}-clustering 7 of X into k clusters must contain
exactly m quadruples. Indeed, if ng and ng denote, respectively, the number of
quadruples and the number of pairs of 7, then | X | = 2ng+4ng and k = ng+ng,
which yields ng = m and ng = k —m. By Lemma[2in 7 all m quadruples have
weight at least w. Moreover, by construction of circuits I';’s, 7 may include

11

at most s,/2 many segments of length u for each v € {4.5,5.5,6} and the
remaining k — h cannot have length smaller than 5. This implies Wa(7) > A.

Now, to complete the reduction we verify that ® is satisfiable if and only
if there exists a {2,4}-clustering of X of weight at most A, consisting of &
clusters. Suppose @ is satisfiable and consider a satisfying assignment. For each
variable v;, choose clustering 7o (i) or 1 (¢) according whether its value is 0 or 1,
respectively. Since the assignment makes all clauses true, each pair {u;, z;} can
be clustered together with the touched segment in I';, for a variable v; whose
assignment satisfies ¢;. By the parity condition, such a touched segment belongs
to the chosen clustering (either w2 () or m1(7)). Thus, we obtain m quadruples
of weight w. The other points in each T'; can be clustered as in w2 (%) or m (i)
according to the previous choice. This yields a {2, 4}-clustering of X of weight
A having k clusters.

Vice-versa, if there exists a {2,4}-clustering m of X with & clusters and
weight A, then such a clustering must contain m quadruples of weight w. The
only way to obtain these quadruples is to cluster each pair {u;,z;} with a
touched segment of a circuit I'; approaching the clause-square of c¢;. By the
parity condition this defines an assignment of values to all variables that makes
true each clause of ®.

Theorem 2. Assuming {2-norm, the {2,4}-RSC-2 problem is strongly NP-hard
and it does not admit an FPTAS unless P = NP. This implies the same result
for the general RSC-2 problem.

PRrROOF. The NP-hardness follows from the discussion above. The problem is
also strongly NP-hard since the value of all integers in instances (X, k, A) ob-
tained by the reduction is polynomially bounded w.r.t. n = |X|. Moreover,
the objective function to minimize is polynomially bounded with respect to the
unary size of the instance, and hence, by a classical result [26, Sec. 8.3], the
same problem does not admit an FPTAS unless P = NP. O

5. NP-hardness of {2,3}-RSC-2 with £; norm

In this section we prove another NP-hardness result concerning the {2,3}-
RSC in the Euclidean plane. The decision problem can be stated as follows:
Given a point set X = {p1,...,pn} C Q2 an integer k, n/3 < k < n/2, and a
rational value A > 0, decide whether there exists a {2, 3}-clustering { A, ..., Ay}
of X, such that Wa(Aq, ..., Ax) < A. Similarly to the previous case all solutions,
for a given instance, have the same number pairs and the same number of
triples (rather than quadruples), which now are ngy = 3k —n and n; = n — 2k,
respectively.

Again the reduction is obtained from Planar 3-SAT and is based on the
construction described in Section [with some changes. Now, all quadruples are
replaced by triples and the main difference is that each clause is represented by
a single point in the corresponding square, rather than a pair of points.

12

More precisely, given a planar 3-CNF formula ® of m clauses and n variables,
the graph Gg is embedded into a planar grid as in Section Ml (Steps 0, 1,...,5).
Again, the point set X includes, for each variable v; of @, a circuit T'; of 2L;
points for some integer L;. Moreover, for every clause c; of ®, X includes a
point z; placed near the centre of the corresponding 15 x 15 clause-square, at
distance 7.5 from the left and right side of the square and at distance 5+ 23/30
from its upper side (see Fig. B]). Thus, we have

X={zlj=12,.... myU{xi |i=1,2,...,n, £=1,2,...,2L;} (7)

The points of the circuits I';’s are placed as in the previous section except near
the clause-square, where they are set as shown in Fig. This picture shows
three circuits I';, Iy and I';» approaching point z;, respectively from right, left
and from above. Note that the location of points of I';» is now symmetric and
no segment of length 6 appears in the circuits. Moreover, the segment of T';
nearest to point z; is inside the clause-square, at distance 2 from the border
(rather than 1); the same occurs for T';/, while the nearest segment of T';» is just
on the side of the square. As in the previous section we say that these segments
are touched by point z;. If {a,b} is a segment touched by z; then the cluster
{z;,a,b, } is called a main triple of z;.

Thus, a natural {2, 3}-clustering of X into k sets can be built by taking a
main triple for each clause c¢; and the other £ — m pairs by choosing, for each
set I';, the {2}-clustering 7 (i) or m2(¢) defined as in (@) and (@).

By direct computation one can prove, assuming ¢s norm, that all main triples

have the same weight, given by the value w’ = 224712)2, which satisfies

34.66 < w' < 34.67

The only triples that have a weight smaller than w’ are the sets of three
consecutive points, in any circuit I';, that form a right triangle, i.e. three points
{%i(r=1), Tir,Tir41)} such that the segments (2;—1),Tir) and (T, Tirq1))
are of length 5 and are perpendicular. In this case the weight of the cluster
{Zi(r—1), Tir, Ti(r41) } is 100/3, which is smaller than w’. However, replacing a
main triple of a point z; with such a right triangle forces to replace a segment
of length 5 with a pair of points of weight [5.5% + (23/30)%]/2 = 15.41... (that
one formed by z; with a nearest point of some circuit). Thus, the overall weight
of the clustering increases since 12.5 + w’ < 15.4 4+ 100/3.

The parity condition is here defined as in the previous section, as well as the
value of k, again set to k =Y | L;, while X is given by

2 2 2
)\:%(k—h)—i—w'm—i-% 4%'84.54-%'85.5
where w’ is defined as above and s, is the total number of segments of length
win all T';’s for u € {4.5,5.5}, and h = m + %(84,5 + 55.5).

The remaining part of the discussion of the previous section holds almost
unchanged. Thus, it turns out that ® is satisfiable if and only if there exists a
{2, 3}-clustering of X consisting of k sets of total weight A.

13

Figure 5: Points of 3 circuits in the neighbourhood of a clause-point z;. Only length of
segments different from 5 are indicated.

Theorem 3. Assuming {2-norm, the {2,3}-RSC-2 problem is strongly NP-hard
and it does not admit an FPTAS unless P = NP.

6. NP-hardness of RSC-2 with £;-norm

The same result for {2, 3}-RSC-2 can be obtained assuming ¢;-norm. In this
case the reduction from Planar 3-SAT can be simplified. The differences w.r.t.
the construction presented in Sections [and [l are the following;:

1. In the definition of the planar grid, at step 5, the drawing is expanded by
a factor of 6 rather than 15.

2. Every clause-point z; is now located in the centre of the (6 x 6) square
associated with clause c;.

3. For every variable v; the corresponding circuit I'; consists of points placed
inside the cycle of v; at distance 1 from the border, while every two consec-
utive points are at distance 2 from each other (in ¢; norm); their position,
in particular near the angles of the cycle, is described in Figure 6

4. X=6m+2(k—m).

5. The parity condition can be guaranteed by simple modifications to any
circuit I';, if necessary, similar to the transformation described in Figure
@ The resulting circuit may have two more points, one before and one
after any touched segment, so that the ¢;-distance between consecutive
points remains 2.

Note that now every triple formed by a clause-point z; and a touched segment
has weight 6, while every triple of consecutive points in each circuit has weight
4. However, replacing a triple of the first type with one of the second, in a given
{2, 3}-clustering, forces to add a new segment of weight 5 (joining z; with an
endpoint of the touched segment) reducing by 1 the number of pairs of weight
2. Thus, such a replacement increases the overall weight of the clustering. This

14

Figure 6: Points of 3 circuits in the neighbourhood of a clause-point. All segments formed by
consecutive points have ¢1-length 2.

shows that a solution including m triples of weight 6, each consisting of a clause-
point with one of its touched segments, and & — m pairs of consecutive points
of circuits T';’s, yields a {2, 3}-clustering of minimum weight.

The other details and reasoning of Section Ml remains unchanged and this
proves the following

Theorem 4. Assuming ¢1-norm, the {2,3}-RSC-2 problem is strongly NP-hard
and it does not admit an FPTAS unless P = NP. As a consequence, the same
holds in general for RSC-2 problem.

7. Conclusions

In this work, we have studied the clustering problem with relaxed size con-
straints in dimension 1 and 2 (RSC-1 and RSC-2). First, we have shown a
polynomial-time algorithm for RSC-1 in the case of £1-norm. As a similar pro-
cedure solves the problem assuming f;-norm, a natural question is whether
an analogous polynomial time algorithm exists for every £,-norm with integer
p > 2. We recall that the clustering in dimension 1 is motivated by bioinfor-
matics applications as illustrated in M,]

We observe that there exist polynomial time algorithms for M-RSC-d prob-
lems even in a dimension d > 1. For instance, the {2}-RSC-d problem reduces
to finding a perfect matching of minimum cost in a weighted complete graph,
and hence it is solvable in O(n?) time assuming any ¢,-norm, by using classical
algorithms @] The same occurs fixing M = {1, 2} since this is reducible to
finding the minimum cost matching of given cardinality in a weighted graph,
which is known to be solvable in polynomial time (see for instance , sec.
3.1.1]). Another problem solvable in polynomial time, both with ¢; and ¢,
norm, is to find the best bipartition of n points in the plane into two clusters
of size m and n — m respectively, where m is part of the instance ﬂﬂ] This
includes both the balanced 2-clustering problem in the plane E] and our RSC-2

15

problem restricted to the case k = 2. More generally, we conjecture that RSC-2
problem restricted to fixed k > 2 is also solvable in polynomial time. For these
reasons, while the unconstrained clustering problem in dimension 2 is NP-hard
[18], the relaxed constrained versions are not always difficult.

On the other hand, as shown in our work, such a difficulty occurs in some
situations where the number of clusters remains unbounded. We have proved
that, assuming ¢3-norm, {2, 4}-RSC-2 problem is strongly NP-hard and the same
occurs for {2,3}-RSC-2 both with ¢; and f3-norm. These negative results lead
to conjecture that, in dimension 2, the problem remains NP-hard whenever the
set M of size constraints includes a fixed value greater than 2. Thus, even if the
situation is not uniform, we believe that in most cases our relaxed constrained
clustering problem remains difficult in dimension 2.

References

[1] D. Aloise, A. Deshpande, P. Hansen, and P. Popat. NP-hardness of Eu-
clidean sum-of-squares clustering. Machine Learning, 75:245-249, 2009.

[2] S. Basu, I. Davidson, and K. Wagstaff. Constrained Clustering: Advances
in Algorithms, Theory, and Applications. Chapman and Hall/CRC, 2008.

[3] A. Bertoni, M. Goldwurm, J. Lin, and F. Sacca. Size Constrained Distance
Clustering: Separation Properties and Some Complexity Results. Funda-
menta Informaticae, 115(1):125-139, 2012.

[4] A. Bertoni, M. Re, F. Sacca, and G. Valentini. Identification of promoter
regions in genomic sequences by 1-dimensional constraint clustering. In
Neural Nets WIRN11, pages 162-169, 2011.

<t

C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

P. S. Bradley, K. P. Bennett, and A. Demiriz. Constrained K-Means Clus-
tering. Technical Report MSR-TR-2000-65, Miscrosoft Research Publica-
tion, May 2000.

=

[7] S. Dasgupta. The hardness of k-means clustering. Technical Report
(CS2007-0890, Dept. of Computer Science and Engineering, Univ. of Cali-
fornia, San Diego, 2007.

[8] W. D. Fisher. On grouping for maximum homogeneity. Journal of the
American Statistical Association, 53(284):789-798, 1958.

9] U. FoBmeier, G. Kant, and M. Kaufmann. 2-Visibility drawings of planar
y g
graphs. In Graph Drawing (Proc. GD ’96), volume 1190 of LNCS, pages
155-168, 1997.

[10] M. Goldwurm, J. Lin, and F. Sacca. On the complexity of clustering with
relaxed size constraints. In Algorithmic Aspects of Information and Man-
agement (Proc. 11th AAIM), volume 9778 of LNCS, pages 26—38. Springer,
2016.

16

[11] S. Hasegawa, H. Imai, M. Inaba, and N. Katoh. Efficient algorithms for
variance-based k-clustering. In Proceedings of Pacific Graphics '93, pages
75-89, 1993.

[12] D. E. Knuth and A. Raghunathan. The problem of compatible representa-
tives. STAM J. Discrete Math., 5(3):422-427, 1992.

[13] D. Lichtenstein. Planar formulae and their uses. SIAM J. Comput.,
11(2):329-343, 1982.

[14] J. Lin, A. Bertoni, and M. Goldwurm. Exact algorithms for size constrained
2-clustering in the plane. Theoretical Computer Science, 629:80-95, 2016.

[15] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on
Information Theory, 28(2):129-137, 1982.

[16] G. Ma, J. Peng, and Y. Wei. On approximate balanced bi-clustering. In
Proc. International Computing and Combinatorics Conference (COCOON
2005), volume 3595 of LNCS, pages 661-670. Springer, 2005.

[17] J. B. MacQueen. Some method for the classification and analysis of mul-
tivariate observations. In Proc. 5th Berkeley Symp. on Math. Struct., vol-
ume 1, pages 281-297, 1967.

[18] M. Mahajan, P. Nimbhorkar, and K. Varadarajan. The planar k-means
problem is NP-hard. Theoretical Computer Science, 442:13-21, 2012.

[19] W. Mulzer and G. Rote. Minimum-weight triangulation is NP-hard. J.
ACM, 55(2), 2008.

[20] C. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algo-
rithms and Complexity. Dover, 1998.

[21] M. R. Rao. Cluster Analysis and Mathematical Programming. Journal of
the American Statistical Association, 66(335):622-626, 1971.

[22] C. Schmid, T. Sengstag, P. Bucher, and M. Delorenzi. Madap, a flexible
clustering tool for the interpretation of one-dimensional genome annotation
data. Nucleic Acids Research, 35:-W201-W205, 2007.

[23] R. Stephan. Cardinality constrained combinatorial optimization: Complex-
ity and polyhedra. Discrete Optimization, 7(3):99-113, 2010.

[24] A. Tung, J. Han, L. Lakshmanan, and R. Ng. Constraint-based clustering
in large databases. In Database Theory ICDT 2001, volume 1973 of LNCS,
pages 405—419.

[25] A. Vattani. k-means Requires Exponentially Many Iterations Even in the
Plane. Discrete & Computational Geometry, 45(4):596-616, 2011.

[26] V. Vazirani. Approxzimation Algorithms. Springer, 2001.

17

[27] H. Vinod. Integer programming and the theory of grouping. Journal of the
American Statistical Association, 64(326):506-519, 1969.

[28] K. Wagstaff and C. Cardie. Clustering with instance-level constraints. In
Proc. 17th Intl. Conf. on Machine Learning, pages 1103-1110, 2000.

[29] S. Zhu, D. Wang, and T. Li. Data clustering with size constraints.
Knowledge-Based Systems, 23(8):883-889, 2010.

18

	Introduction
	Problem definition
	Dynamic programming for RSC on the line
	NP-hardness of RSC in the Euclidean Plane
	NP-hardness of {2,3}-RSC-2 with 2 norm
	 NP-hardness of RSC-2 with 1-norm
	Conclusions

