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‘T'he Sommenso = Van de Ven theorem on the ndjunction mapping

ANTONIO LANTERI

Avstiaor, A proof of the theorem In the title based on Reider's theorem s given
with soma variations with respect Lo the original one,

Let L be a very ample line bundle on a smooth complex projective surface
S., Assume that the adjoint bundle Kg + L is spanncd and that the adjunction
mapping ¢ has a 2-dimensional image. Let ¢ = s or be the Stein fuctorization and
let (S',L') be the reduction of (5,L). Then the reduction morphism r : § — 5’
contracts all the (—1)-lines By, ... ,Ej of (S, L) to distinct points z1, ... ,z € S'.
We say that (S’,L') is the simple reduction of (S, L) to mean that r contracts a
single (—1)-line, The theorem of Sommese and Van de Ven [SV] says the following.

Theorem. Let things be as above; then Kg: + L' is very ample unless (S,L) is one
of the following pairs:

o) S is a Del Pezzo surface with K3 = 2 and L = —2Ks; L% §
b) (S, L) has the pair in a) as a simple reduction; =3
c) S is a Del Pezzo surface with K} =1 and L = —-3Kg; Lz-9
d) S is the P!-bundle of invariant —1 over an elliptic curve and L = 3Cy (Cy
being a section of minimal self-intersection). 523

The adjunction mapping of (5, L) is a double cover ¢ : S — P? branched along
a smooth plane quartic in case a), a double cover of the quadric cone ¢ : § — Qq,
branched at the vertex and along the transverse intersection with a cubic surface

in case c), and a triple cover ¢ : § = P? in case d).
Proof. The proof consists of two parts according to whether L'? > 9 or L'? < 8.

A) If L'? > 9 then (S, L) is as in c) or d). We prove this in two steps.

1) Since L' is ample, Reider’s theorem [R] shows that if K5 + L' is not very
ample, then there exists' an effective divisor D' on S’ such that one of the following
cases occurs:

(i) L'D' =1 and D' =0 or —1,

(ii) L'D' =2 and D'? =0, or

(iii) L' =3D' and D" = 1.
Cases (i) and (ii) will be'ruled out by looking at the proper transform D = r‘1(1'): )
to get information on D' which contrast the ampleness of Kg + L. Case (iii)
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will lead to pairs in c), d). We have »*D' = D 4+ % 5 wh = i
mult,,(D') 2 0. So L=t y Where vy B =

k h k
(£) 1SID=("L'=) B)r*D' ~ Y uE) < I'D' - Y u<L'p,

In case (i), from (%) we get 1 < LD < L'
and D' is a smooth P! not containing nny;‘. Fro
D’Ksn = =2 - D'l S -1 Nld then (st + L')D'
of Ks + L'.

In case (i), if D' is irreducible, (+) shows that D is & line or a conic of (5, L)
and D' 2 D = P So, as before we get D'Kst = —2—D'3 = _9 and tixen
(Ks+L")D' = 0, contradiction. If D' is reducible, then due to the ampleness of L'
it can onl?r be D' = D} +Dj, with Dj irreducible and L'D} =1. Set D; =r~}(D}).
By applying (*) to D} we get 1 < LD; < L'D} = 1, hence D; is a line of (S,’L)
and D} is a smooth P! not containing any z;. So either D} = D} in which case

D_’v..2 = 0, or D{Dj = D1 D3 = 0 or 1, because two lines cannot have more than one
point in common. Then

= 1, hence D is a line of (5, L)
m the genus formula we thus get
< 0, contradicting the ampleness

0=D" = (D] +D})* < D{* +2+ D2

But then we get

2
"

(Ks'+L')D' = Ks: D1+ K Dy +L'D' = —2—-D}?—2-D!?42 = —(D}?+2+41,2),
which, in view of the above inequality, gives again (Ks +L')D' < 0, contradiction.

In case (iii) D' is an ample divisor and then it is an irreducible reduced curve,
since D'2 =1, Assume that D' 3 z,. Then from (*) we get

k h
1SLD=L'D'-) y=3-) u,

i=1 =1

hence, as to the positive multiplicities, it can only be

V1=1,
vy=wry=1,or
v =2,

and accordingly we get LD = 2, 1, or 1. In all cases D is a smooth P!, being a
conic or a line of (S, L), and in the first two cases D' & D. So in the first two cases
we get, by genus formula, (Kg + L')D' = =2— D'? 4+ L'D' = 0, contradicting again
the ampleness of Ksr + L'. In the third case, D would be a line of (S, L). But also
E, is a line and DE; = v; = 2, which is clearly absurd. Therefore D' does not
contain any of the points z;. Thus LD = L'D' = 3 by (%), hence D' is isomorphic
cither to a space or to a plane cubic curve, so its arithmetic genus is < 1. But if
D' were rational, as before we would get D'Ks = —2 — D'? = —3, giving again
(Ks + L')D' = 0, a contradiction. Then the arithmetic genus of D' is 1 and by

2
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applying [LP, Corollary 2.4] we conclude that (§',[D']) is either a Del Pezzo surface
with [D'] = —Kg or a scroll over an elliptic curve B. In the former case (5",L')is

as in c). In the latter case S = Pp(V) for some rank-2 vector bundle V on B, [D']
being the tautological bundle. Consider the exact sequence

0 O0g = Os(D') = Op(D') = 0.
By taking the direct images we get the sequence on B

00—V =05y =0

for some point y € B. Note that V is ample, since so is [D']; therefore the above
sequence cannot split. This shows that the invariant of S is -1 and so (8',L') is as
in d).

2) i (S',L') is as in c) or d), then (§,L) = (5", L").

Let (S',L') be as in c). We have h°(—Ks') = 2 and since ~Kg is ample
with K3, = 1, the pencil | — K| has a single base point and all its elements are
irreducible reduced curves. Assume that r is not an isomorphism and let G' ¢

— K| be a possibly singular curve passing through z). Let G =r~!(G') and set
pi = GE; = mult,,(G'). So p; > 0 and then

=1

k k k
1<LG=(r*L! -—-ZE;)(r'G'—mE; - Zp;E,-) =L'G —p — Zp..' <3 — .
=2

=2

" Hence the positive multiplicities can only be either

B1 =2,
m=pa=10r
1751 =1.

In the first case LG = 1, so G is a line of (S,L). But also E; is a line and
GE = p; = 2, which is impossible. In the last two cases LQ < 2s0that Gisa

smooth P1. But then G' 2 G would be a smooth rational curve, contradicting the
fact that g(G) = g(—Kgs) =1.

Let (5',L') be as in d) and assume that r is not an isomorphism. The algebraic
system of Co contains an elliptic curve passing through z,. Let @ be its proper
transform; then LG = 3 — 1 = 2, contradicting the very ampleness of L.

This concludes the proof of part A).
B) Let L' < 8.

We have d := L*(< L'?) < 8 and equality implies that (S,L) =(S',L'). In this
case the proof requires several steps. '

3) If (§',L') is as in a), then r consists of a single contraction at most, so if
(S,L) is not as in a), then it can only be as in b); moreover case b) is effective.

To prove the first assertion it is enough to show that if r contracts two (-1)-
lines of (S, L), then L cannot be very ample. Actually this is true “a fortiori” if

3
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k > 2. Let Wiy, be the ideal sheaf defining =;, 1 = 1,2. By the Leray spectral
sequence we know that

RO(L) = hO(r* L' — By -~ E3) = A°(-2Kg © M,, O W, ).

On the other hand, from the exact sequence
0= —2Kst © Mg, @ My, =+ —2Ksv = Co, ® Coy =+ 0,

due to the very amplencss of —2Ksv, we get
h%(—2Ks @ Mo, @ M,,) = h%(-2Ks) —=2=T7—2=35.

So |L] would embed § in P4 On the other hand we have d = L'* — 2 = 6,
9(L) = g(-2Ks) = 3, x(Os) = 1, and putting this information into the double
point formula for surfaces in P4

d(d —10) + 12x(Os) = 2K% + 5LKs

[H, p. 434] we get a numerical contradiction.

To prove that case b) is effective we have to show that L is in fact very ample.
So-let (S',L') be the pair in a). Having k = 1, let us put for shortness E = E;.
Then L = r*(—2Ks) — E can be rewritten as Ks + £, where

(#) L=L-Ks=r'(-3Ks)-2B=r'(-Ks)+2'(-Ks) - B).

As —Kg is ample and spanned, we have that r*(—Kg) — E is nef. Hence £,
which is the sum of three nef line bundles, is nef. Since £2 =18 -4 =14 > g,
we can use Reider's theorem again to prove the very ampleness of L. Note that
LE = —2E? = 2; on the other hand for any irreducible curve ' C $ not contracted
by r, letting I'' = r(I") and taking into account (#), we have

LT2r*(-Ke)'=(-Ks)IV>0

because —Ks is ample. This shows that £ is ample. Recalling that £2 = 14,if L
is not very ample, then by Reider’s theorem [R] there exists an effective divisor D
on S such that either

£D =1 and D? = —1,0, or

LD =2and D? =0.
In the former case, from (#) we get

1=LD= r‘(-—Ks-)D +2(r* (—-Ksl) -E)D = r'(—st)D + 3(—K5)D.

Then, due to the nefness of the three summands appearing on the right hand of
(#) we have KsD = 0. Thus, since —Ks is nef and big, the Hodge index theorem
implies that D? < 0. So D? = -1, but this contradicts the genus formula. In the
latter case, from (#) we get either ~KsD = 1, which once again contradicts genus
formula, or KsD = 0, which by the Hodge index theorem would imply D? < 0, a

contradiction. .

4) Let g := g(L). Note that we can assume g > 2, since dim¢(S) = 2. We have

4
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Lemma 1. If g < 3 then cither Ksi + L' is very ample or (S',L') is as in a).

Proof. We can assume d 2> 5 in view of the known classification of surfaces of degree
< 4. Thus LKs <0, hence S is ruled. Since dim ¢(S5) = 2 we have h%(Ks+L) > 3.
Combining this with the Riemann-Roch and the Kodaira vanishing theorems we
get

3< R (Ks+ L) =g - g <3—1

hence ¢ =0, g = 3, and ¢(S) = P2, Consider a smooth curve C € |L|. Note that C
is not a plane curve, and h!(Lg) = 0 because degLg =d > 5 > 29 — 2. We thus
get from Riemann-Roch

4<h(Lg)=d+1—g.

So d > 6 and then the Hodge index theorem gives
16 = (29 — 2)* = ((Ks + L)L)* > (Ks + L)*L* > 6(Ks + L)>.

Tnview o by Then (Ks + L')? = (Ks + L)* < 2. On the other hand K& + L' is ample and
Stecn factor.. spanned, and so, looking at the morphism s : §' — P? it defines, we get two

4 = s.r,we possibilities: either
Ve ow tl«.lh

S;:{:K L (Ks» + L')* = 1, in which case s gives an isomorphism (S5',Ks + L) =
o rasipnism  (P%Opa(1)), and then K + L' is very ample, or

(Ks» + L')? = 2, in which case s is a double cover. Let 2b be the degree of the
branch locus. Thus

L' = (Ks +L‘) —Kg = 8'0p¢(1) —8'Opa(b— 3) = a‘onn(‘l - b)
and so genus formula gives
4=29-2=(Ks +L')L' = 8*"Op(1) s*Opa(4 — b) = 2(4 —b).

Hence b = 2, which says that s : §' — P? is the Del Pezzo double plane. Having
L' = 5*Opa(2) = 2(Ks + L'), we conclude that (§',L') is the pairina). 0O

Due to Lemma 1 we can continue the proof assuming K + L' not very ample
and g > 4. :

5) Let h%(L) = n+ 1. If n = 3, since d > 5 we know that Kg + L itself
is very ample, a contradiction. f n = 4 we can use the known classification of |
surfaces in P* of degree < 8 to do the same. So we can assume n > 5 and apply
the Castelnuovo inequality

d> ;l +v/2(n—2)g +¢,
Ek{,‘ anel

where ¢ = 0 or § according to whether n — 4 is even or odd. This, combined with 2o £ i
g > 4 (see the end of step 4), gives only the following possibilities: d =8, n =5, conclusion
and g =4 or 5, and ther (5, L) = (S',L'), by what we said at the beginning of part
B). But in case g = 5, for any smooth curve C € |L| we have Lg = K¢. So, since
P

5
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(S, L) is not a scroll, Weil's equivalence criterion [So, (0.9)] applies and shows that |
Kg = Og; 80 Kg + L is very ample, contradiction. Therefore

d=8, n=5, and g=4.

In particular, S is rulet}; ‘ A
6) Let g = 4. Since Kg'+ L is ample and spanned we have T-3-6-8<0
3<K(Ks+L)=g-q,
hence ¢ < 1. The Hodge theorem gives .
36 = (29 - 2)* = ((Ks + L)L)* > (Ks + L)*L? = 8(Ks + L)?,
hence (K5 + L)? < 4. On the other hand (Ks+ L)? > 1 due to the ampleness.
 When (Ks + L)? < 2 we easily get contradictions. Actually, if (Ks+L)* =1,
then ¢ gives an isomorphism (5, Ks + L) = (P?,0p(1)), contradicting g = 4. On
the other hand if (K's + L)? = 2 then either ¢ gives the isomorphism (S, Ks + L) =
(P* x P1,O(1,1)), or ¢ : S — P? is a double cover. In the former case we get

L = O(3,3), contradicting the fact that L? = 8. In the latter case let 2b be the
degree of the branch locus; then Ks + L = $*Opa(1) and Kg = ¢*Opa (b— 3). So,

from
6=29—-2=(Ks+L)L= $*Opa(l) ¢*Op (4 — b) =2(4—b)

we get b = 1, while condition
_ 8=d=L%=(4"Opa(4 - b))* =2(4 — b)?
gives b= 2.
When (K5 + L)* = 3 we also get contradictions. First of all note that

2g(Ks+L)—2=2(Ks+L)’—(Ks+L)L=a-(2g—2)=o.

So Kg -+ L is an ample line bundle with 9(Ks+ L) = @ By applying again [LP, 1
Corollary 2.4] we conclude that (S, Ks + L) is either a scroll over an elliptic curve,

or a Del Pezzo surface with Kg+L = —K. In the former case it would be K2 =0,
while, from 3 = (Kg + L)? = K% + 4 we see that K2 = —1, a contradiction. In the
latter case, from 3 = (Kgs + L)? = (-Ks)? we would get 8 = [ = (—ZKs)’ =12,
another contradiction.

7) Let (Ks+ L)* =4 and ¢ = 1. Then K3 =0, hence § is a P!-bundle over an
elliptic curve. Writing L = aCo +bf as in [H, p. 382] and using I =8, LKg = —2
and the ampleness conditions, we thus get L = 4Cq + (2e + 1)f, the invariant e
being 0 or —1. But then LCp = 1 in case e = 0, while LE = 2, for E a smooth
curve of genus 1 and = —Kj in case e = —1. In both cases this contradicts the
very ampleness of L.

8) Let (Ks + L)* = 4 and ¢ = 0. Look at the morphism ¢ : § — P%. Since
K5 + L is not very ample there are points z,y € S (y possibly infinitely near to z)
such that ¢(z) = ¢(y).
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Lemma 2. If ¢ does not separale points z,y € S (y possibly infinitely near to z), ‘]
then there ezists a smooth curve C € |L —z —y|.

Proof. If such a curve does not exist, then (S, L) contains a line | with z,y € I, by slar
[So, (0.10.2)]. Now L —1 ia spanned, hence nef. Think of S as embedded in P™ via

|L]. If (L —1)* = 0 then by projecting § from ! into & P*? we get a morphism

7:8 =T =n(l) = P! and S can be viewed as a divisor inside the projective

cone of vertex I over I'. By blowing-up P™ along ! and taking the proper transform

of this cone, we get the following situation described in [BS, Theorem 8.4.5]. Let

P :=Pw(E), where £ = Og’ ® Om (n — 2); then

S=aH + F in Pic(P),

where H is the tautological bundle on P, F' is a fibre and a > 0. Moreover L = Hy.
Thus

Ks=(Kp+[S]))s=((a —3)H + (n - 3)F)s
by the canonical bundle formula. For a = 1,2 (S, L) would be a scroll or a conic
bundle respectively; hence a > 3, since dim ¢(S5) = 2. But then
Ks+L=(a—-2)H+(n-3)F)g

would be the restriction to § of a very ample line bundle on P [BS, Lemma 3.24],
a contradiction. It thus follows that L — [ is nef and big and so we get

H\(Ks+L—1)=0

by the Kawamata vanishing theorem. Note that (Ks + L); = Op (k) with k > 0,
due to the ampleness of Kg + L. So (Ks + L); is in fact very ample on [ and then
from the exact cohomology sequence of

0—+Ks+L—-1—+Ks+L—(Ks+L)i—0

we conclude that ¢ separates z and y, a contradiction. [J

So by Lemma 2 there exists a smooth curve C € |L| through z and y such that
¢(z) = $(y). As S is ruled and g = 0, the exact cohomology sequence of

03 Ks—Ks+L—+Kg—0

shows that ¢ = ¢, the canonical map of C. Then p(z) = (y), so that C is
hyperelliptic. But then a result of Sommese claims that there exists at least a
1-dimensional family § C |L| of hyperelliptic curves [BS, Theorem 8.4.2], Thus ¢ dim SyN-2 51
cannot be generically one-to-one and so deg ¢ > 2. A

9) Due to 8), from

4= (Ks+ L) = deg - deg 4(S)

7
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we conclude that ¢ is a finite morphism of degree 2 onto ¢(5), which is either Q :=
P! x ! or the quadric cone Qg. Moreover from the equality 4 = (Kg+L)? = K} +4
we know that K3 = 0.

Let ¢(S) = Qq; then since S is smooth, ¢ is branched at the vertex v of Qo.
Looking at the double cover 7 : § — Fy induced by the desingularization Fz — Qg
we thus sce that § is S blown-up at the point ¢~ (v); so K3 =K;-1=-1 On
the other hand Kz = m*(Ky; + B), for some line bundle B on F;. This shows that
K3 has to be even, a contradiction.

Finally let $(S) = Q and let Og(2a,2b) be the class of the branch divisor of ¢.
Computing Ks, we get 0 = K% = 2(a — 2)(b — 2), so that, up to exchanging the
rulings of Q, we can assume a = 2. Thus L = (Ks + L) — Ks = ¢*Og(1,3 — b) and

from S
6=29—2=(Ks+ L)L =¢"0q(1,1) ¢*Oq(1,3 —b) = 2(4 - b)
we get b = 1. So L = ¢*Og(1,2). Now, recalling that
$.0s = Oq ® Oq(—a,~b) = Oq ® Og(-2,-1),
we get
RO(L) = BO(4.L) = hO($, 05 ® Oq(1,2)) = A(Oq(1,2)).
This says that |L| = ¢*|0q(1,2)]. So the cmbedding given by |L| would factor

through ¢, which has degree 2, a contradiction. |
This concludes the proof of part B) and of the theorem.
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