Premise. I very ample > K+L spanned world (5,L) = \$ 12/0(e) e of 2 on

Pf. If L'25 was Reider's thrue, first part. If L'34 we the

Claufication of surfaces of olyme <4 (Weil 4 Surhuntun Der) [B5, Risk & 10.1 p. 243]

Let propy be a morphism; then dun f(s) <1 60 (5,L) (30 6 as shown divursing adjunction for polar surfaces

[LP, Thin 2.1].

The Sommese - Van de Ven theorem on the adjunction mapping

ANTONIO LANTERI

ABSTRACT. A proof of the theorem in the title based on Reider's theorem is given with some variations with respect to the original one.

Premise

Let L be a very ample line bundle on a smooth complex projective surface S. Assume that the adjoint bundle $K_S + L$ is spanned and that the adjunction mapping ϕ has a 2-dimensional image. Let $\phi = s \circ r$ be the Stein factorization and let (S', L') be the reduction of (S, L). Then the reduction morphism $r: S \to S'$ contracts all the (-1)-lines E_1, \ldots, E_k of (S, L) to distinct points $x_1, \ldots, x_k \in S'$. We say that (S', L') is the simple reduction of (S, L) to mean that r contracts a single (-1)-line. The theorem of Sommese and Van de Ven [SV] says the following.

Theorem. Let things be as above; then $K_{S'} + L'$ is very ample unless (S, L) is one of the following pairs:

a) S is a Del Pezzo surface with $K_S^2 = 2$ and $L = -2K_S$; $L_S^2 = 8$

b) (S,L) has the pair in a) as a simple reduction;

c) S is a Del Pezzo surface with $K_S^2 = 1$ and $L = -3K_S$;
d) S is the \mathbb{P}^1 -bundle of invariant -1 over an elliptic curve and $L \equiv 3C_0$ (C_0 being a section of minimal self-intersection).

The adjunction mapping of (S, L) is a double cover $\phi: S \to \mathbb{P}^2$ branched along a smooth plane quartic in case a), a double cover of the quadric cone $\phi: S \to \mathbb{Q}_0$, branched at the vertex and along the transverse intersection with a cubic surface in case c), and a triple cover $\phi: S \to \mathbb{P}^2$ in case d).

Proof. The proof consists of two parts according to whether $L'^2 \geq 9$ or $L'^2 \leq 8$.

A) If $L'^2 \geq 9$ then (S, L) is as in c) or d). We prove this in two steps.

by N-M

- 1) Since L' is ample, Reider's theorem [R] shows that if $K_{S'} + L'$ is not very ample, then there exists an effective divisor D' on S' such that one of the following cases occurs:
 - (i) L'D' = 1 and $D'^2 = 0$ or -1,
 - (ii) L'D' = 2 and $D'^2 = 0$, or
 - (iii) $L' \equiv 3D'$ and $D'^2 = 1$.

Cases (i) and (ii) will be ruled out by looking at the proper transform $D = r^{-1}(D')$ to get information on D' which contrast the ampleness of $K_{S'} + L'$. Case (iii)

Typeset by AMS-TEX

will lead to pairs in c), d). We have $r^*D' = D + \sum_{i=1}^k \nu_i E_i$, where $\nu_i = DE_i = \text{mult}_{x_i}(D') \ge 0$. So

(*)
$$1 \leq LD = (r^*L' - \sum_{i=1}^k E_i)(r^*D' - \sum_{i=1}^k \nu_i E_i) \leq L'D' - \sum_{i=1}^k \nu_i \leq L'D'.$$

In case (i), from (*) we get $1 \le LD \le L'D' = 1$, hence D is a line of (S, L) and D' is a smooth \mathbb{P}^1 not containing any x_i . From the genus formula we thus get $D'K_{S'} = -2 - D'^2 \le -1$ and then $(K_{S'} + L')D' \le 0$, contradicting the ampleness of $K_{S'} + L'$.

In case (ii), if D' is irreducible, (*) shows that D is a line or a conic of (S,L) and $D' \cong D \cong \mathbb{P}^1$. So, as before we get $D'K_{S'} = -2 - D'^2 = -2$ and then $(K_{S'} + L')D' = 0$, contradiction. If D' is reducible, then due to the ampleness of L' it can only be $D' = D'_1 + D'_2$, with D'_j irreducible and $L'D'_j = 1$. Set $D_j = r^{-1}(D'_j)$. By applying (*) to D'_j we get $1 \leq LD_j \leq L'D'_j = 1$, hence D_j is a line of (S, L) and D'_j is a smooth \mathbb{P}^1 not containing any x_i . So either $D'_1 = D'_2$ in which case $D'_j{}^2 = 0$, or $D'_1D'_2 = D_1D_2 = 0$ or 1, because two lines cannot have more than one point in common. Then

$$0 = D'^2 = (D_1' + D_2')^2 \le D_1'^2 + 2 + D_2'^2.$$

But then we get

$$(K_{S'}+L')D'=K_{S'}D'_1+K_{S'}D'_2+L'D'=-2-D'_1{}^2-2-D'_2{}^2+2=-(D'_1{}^2+2+D'_2{}^2),$$

which, in view of the above inequality, gives again $(K_{S'} + L')D' \leq 0$, contradiction.

In case (iii) D' is an ample divisor and then it is an irreducible reduced curve, since $D'^2 = 1$. Assume that $D' \ni x_1$. Then from (*) we get

$$1 \le LD = L'D' - \sum_{i=1}^{k} \nu_i = 3 - \sum_{i=1}^{k} \nu_i,$$

hence, as to the positive multiplicities, it can only be

$$u_1 = 1,$$
 $u_1 = \nu_2 = 1, \text{ or }$
 $u_1 = 2,$

and accordingly we get LD=2, 1, or 1. In all cases D is a smooth \mathbb{P}^1 , being a conic or a line of (S,L), and in the first two cases $D'\cong D$. So in the first two cases we get, by genus formula, $(K_{S'}+L')D'=-2-D'^2+L'D'=0$, contradicting again the ampleness of $K_{S'}+L'$. In the third case, D would be a line of (S,L). But also E_1 is a line and $DE_1=\nu_1=2$, which is clearly absurd. Therefore D' does not contain any of the points x_i . Thus LD=L'D'=3 by (*), hence D' is isomorphic either to a space or to a plane cubic curve, so its arithmetic genus is ≤ 1 . But if D' were rational, as before we would get $D'K_{S'}=-2-D'^2=-3$, giving again $(K_{S'}+L')D'=0$, a contradiction. Then the arithmetic genus of D' is 1 and by

applying [LP, Corollary 2.4] we conclude that (S', [D']) is either a Del Pezzo surface with $[D'] = -K_{S'}$ or a scroll over an elliptic curve B. In the former case (S', L') is as in c). In the latter case $S' = \mathbb{P}_B(\mathcal{V})$ for some rank-2 vector bundle \mathcal{V} on B, [D'] being the tautological bundle. Consider the exact sequence

$$0 \to \mathcal{O}_{S'} \to \mathcal{O}_{S'}(D') \to \mathcal{O}_{D'}(D') \to 0.$$

By taking the direct images we get the sequence on B

$$0 \to \mathcal{O}_B \to \mathcal{V} \to \mathcal{O}_B(y) \to 0$$

for some point $y \in B$. Note that V is ample, since so is [D']; therefore the above sequence cannot split. This shows that the invariant of S' is -1 and so (S', L') is as in d).

2) If
$$(S', L')$$
 is as in c) or d), then $(S, L) = (S', L')$.

Let (S', L') be as in c). We have $h^0(-K_{S'}) = 2$ and since $-K_{S'}$ is ample with $K_{S'}^2 = 1$, the pencil $|-K_{S'}|$ has a single base point and all its elements are irreducible reduced curves. Assume that r is not an isomorphism and let $G' \in |-K_{S'}|$ be a possibly singular curve passing through x_1 . Let $G = r^{-1}(G')$ and set $\mu_i = GE_i = \text{mult}_{x_i}(G')$. So $\mu_i \geq 0$ and then

$$1 \leq LG = (r^*L' - \sum_{i=1}^k E_i)(r^*G' - \mu_1E_1 - \sum_{i=2}^k \mu_iE_i) = L'G' - \mu_1 - \sum_{i=2}^k \mu_i \leq 3 - \mu_1.$$

Hence the positive multiplicities can only be either

$$\mu_1 = 2,$$

 $\mu_1 = \mu_2 = 1, \text{ or }$
 $\mu_1 = 1.$

In the first case LG = 1, so G is a line of (S, L). But also E_1 is a line and $GE = \mu_1 = 2$, which is impossible. In the last two cases $LG \leq 2$ so that G is a smooth \mathbb{P}^1 . But then $G' \cong G$ would be a smooth rational curve, contradicting the fact that $g(G) = g(-K_{S'}) = 1$.

Let (S', L') be as in d) and assume that r is not an isomorphism. The algebraic system of C_0 contains an elliptic curve passing through x_1 . Let G be its proper transform; then LG = 3 - 1 = 2, contradicting the very ampleness of L.

This concludes the proof of part A).

B) Let
$$L'^{2} \le 8$$
.

We have $d := L^2(\leq L'^2) \leq 8$ and equality implies that (S, L) = (S', L'). In this case the proof requires several steps.

3) If (S', L') is as in a), then r consists of a single contraction at most, so if (S, L) is not as in a), then it can only be as in b); moreover case b) is effective.

To prove the first assertion it is enough to show that if r contracts two (-1)-lines of (S, L), then L cannot be very ample. Actually this is true "a fortiori" if

k > 2. Let \mathfrak{M}_{w_i} be the ideal sheaf defining x_i , i = 1, 2. By the Leray spectral sequence we know that

$$h^{0}(L) = h^{0}(r^{*}L' - E_{1} - E_{2}) = h^{0}(-2K_{S^{*}} \otimes \mathfrak{M}_{x_{1}} \otimes \mathfrak{M}_{x_{2}}).$$

On the other hand, from the exact sequence

$$0 \to -2K_{S'} \otimes \mathfrak{M}_{\pi_1} \otimes \mathfrak{M}_{\pi_2} \to -2K_{S'} \to \mathbb{C}_{\pi_1} \oplus \mathbb{C}_{\pi_2} \to 0,$$

due to the very ampleness of $-2K_{S'}$, we get

$$h^{0}(-2K_{S'}\otimes \mathfrak{M}_{\sigma_{1}}\otimes \mathfrak{M}_{\sigma_{2}})=h^{0}(-2K_{S'})-2=7-2=5.$$

So |L| would embed S in \mathbb{P}^4 . On the other hand we have $d = L'^2 - 2 = 6$, $g(L) = g(-2K_{S'}) = 3$, $\chi(O_S) = 1$, and putting this information into the double point formula for surfaces in \mathbb{P}^4

$$d(d-10) + 12\chi(O_S) = 2K_S^2 + 5LK_S$$

[H, p. 434] we get a numerical contradiction.

To prove that case b) is effective we have to show that L is in fact very ample. So let (S', L') be the pair in a). Having k = 1, let us put for shortness $E = E_1$. Then $L = r^*(-2K_{S'}) - E$ can be rewritten as $K_S + \mathcal{L}$, where

(#)
$$\mathcal{L} = L - K_S = r^*(-3K_{S'}) - 2E = r^*(-K_{S'}) + 2(r^*(-K_{S'}) - E).$$

As $-K_{S'}$ is ample and spanned, we have that $r^*(-K_{S'}) - E$ is nef. Hence \mathcal{L} , which is the sum of three nef line bundles, is nef. Since $\mathcal{L}^2 = 18 - 4 = 14 > 9$, we can use Reider's theorem again to prove the very ampleness of L. Note that $\mathcal{L}E = -2E^2 = 2$; on the other hand for any irreducible curve $\Gamma \subset S$ not contracted by r, letting $\Gamma' = r(\Gamma)$ and taking into account (#), we have

$$\mathcal{L}\Gamma \geq r^*(-K_{S'})\Gamma = (-K_{S'})\Gamma' > 0$$

because $-K_{S'}$ is ample. This shows that \mathcal{L} is ample. Recalling that $\mathcal{L}^2 = 14$, if L is not very ample, then by Reider's theorem [R] there exists an effective divisor D on S such that either

$$LD = 1 \text{ and } D^2 = -1, 0, \text{ or }$$

$$\mathcal{L}D=2$$
 and $D^2=0$.

In the former case, from (#) we get

$$1 = \mathcal{L}D = r^*(-K_{S'})D + 2(r^*(-K_{S'}) - E)D = r^*(-K_{S'})D + 2(-K_{S})D.$$

Then, due to the nefness of the three summands appearing on the right hand of (#) we have $K_SD = 0$. Thus, since $-K_S$ is nef and big, the Hodge index theorem implies that $D^2 < 0$. So $D^2 = -1$, but this contradicts the genus formula. In the latter case, from (#) we get either $-K_SD = 1$, which once again contradicts genus formula, or $K_SD = 0$, which by the Hodge index theorem would imply $D^2 < 0$, a contradiction.

4) Let g := g(L). Note that we can assume $g \ge 2$, since $\dim \phi(S) = 2$. We have and inview

and inview of the classifter g < 1, done to the setting of polar surf.

Lemma 1. If $g \leq 3$ then either $K_{S'} + L'$ is very ample or (S', L') is as in a).

Proof. We can assume $d \geq 5$ in view of the known classification of surfaces of degree ≤ 4 . Thus $LK_S < 0$, hence S is ruled. Since dim $\phi(S) = 2$ we have $h^0(K_S + L) \geq 3$. Combining this with the Riemann-Roch and the Kodaira vanishing theorems we get

$$3 \le h^0(K_S + L) = g - q \le 3 - q$$

hence q=0, g=3, and $\phi(S)=\mathbb{P}^2$. Consider a smooth curve $C\in |L|$. Note that C is not a plane curve, and $h^1(L_C)=0$ because $\deg L_C=d\geq 5>2g-2$. We thus get from Riemann-Roch

$$4 \leq h^0(L_G) = d + 1 - g.$$

So $d \ge 6$ and then the Hodge index theorem gives

$$16 = (2g-2)^2 = ((K_S+L)L)^2 \ge (K_S+L)^2L^2 \ge 6(K_S+L)^2.$$

Inview of the Stein factor.

\$ = 5.00, we know that \$ = \$ \langle Kill is a morphism

Then $(K_{S'} + L')^2 = (K_S + L)^2 \le 2$. On the other hand $K_{S'} + L'$ is ample and spanned and so, looking at the morphism $s: S' \to \mathbb{P}^2$ it defines, we get two possibilities: either

 $(K_{S'}+L')^2=1$, in which case s gives an isomorphism $(S',K_{S'}+L')\cong (\mathbb{P}^2,\mathcal{O}_{\mathbb{P}^2}(1))$, and then $K_{S'}+L'$ is very ample, or

 $(K_{S'} + L')^2 = 2$, in which case s is a double cover. Let 2b be the degree of the branch locus. Thus

$$L' = (K_{S'} + L') - K_{S'} = s^* \mathcal{O}_{\mathbb{P}^2}(1) - s^* \mathcal{O}_{\mathbb{P}^2}(b-3) = s^* \mathcal{O}_{\mathbb{P}^2}(4-b)$$

and so genus formula gives

$$4 = 2g - 2 = (K_{S'} + L')L' = s^*\mathcal{O}_{\mathbb{P}^2}(1) \ s^*\mathcal{O}_{\mathbb{P}^2}(4 - b) = 2(4 - b).$$

Hence b=2, which says that $s:S'\to\mathbb{P}^2$ is the Del Pezzo double plane. Having $L'=s^*\mathcal{O}_{\mathbb{P}^2}(2)=2(K_{S'}+L')$, we conclude that (S',L') is the pair in a). \square

Due to Lemma 1 we can continue the proof assuming $K_{S'} + L'$ not very ample and $g \ge 4$.

5) Let $h^0(L) = n + 1$. If n = 3, since $d \ge 5$ we know that $K_S + L$ itself is very ample, a contradiction. If n = 4 we can use the known classification of surfaces in \mathbb{P}^4 of degree ≤ 8 to do the same. So we can assume $n \ge 5$ and apply the Castelnuovo inequality

$$d \geq \frac{n}{2} + \sqrt{2(n-2)g + \varepsilon},$$

where $\varepsilon = 0$ or $\frac{1}{4}$ according to whether n-4 is even or odd. This, combined with $g \geq 4$ (see the end of step 4), gives only the following possibilities: d=8, n=5, and g=4 or 5, and then (S,L)=(S',L'), by what we said at the beginning of part B). But in case g=5, for any smooth curve $C \in |L|$ we have $L_C=K_C$. So, since

skip and go to the conclusion (S, L) is not a scroll, Weil's equivalence criterion [So, (0.9)] applies and shows that $K_S = \mathcal{O}_S$; so $K_S + L$ is very ample, contradiction. Therefore

$$d = 8$$
, $n = 5$, and $g = 4$.

In particular, S is ruled.

6) Let g = 4. Since $K_{S}' + L'$ is ample and spanned we have

$$3\leq h^0(K_{S'}+L')=g-q,$$

hence $q \leq 1$. The Hodge theorem gives

$$36 = (2g-2)^2 = ((K_S + L)L)^2 \ge (K_S + L)^2L^2 = 8(K_S + L)^2,$$

hence $(K_S + L)^2 \le 4$. On the other hand $(K_S + L)^2 \ge 1$ due to the ampleness.

When $(K_S+L)^2 \leq 2$ we easily get contradictions. Actually, if $(K_S+L)^2=1$, then ϕ gives an isomorphism $(S,K_S+L)\cong (\mathbb{P}^2,\mathcal{O}_{\mathbb{P}^2}(1))$, contradicting g=4. On the other hand if $(K_S+L)^2=2$ then either ϕ gives the isomorphism $(S,K_S+L)\cong (\mathbb{P}^1\times\mathbb{P}^1,\mathcal{O}(1,1))$, or $\phi:S\to\mathbb{P}^2$ is a double cover. In the former case we get $L=\mathcal{O}(3,3)$, contradicting the fact that $L^2=8$. In the latter case let 2b be the degree of the branch locus; then $K_S+L=\phi^*\mathcal{O}_{\mathbb{P}^2}(1)$ and $K_S=\phi^*\mathcal{O}_{\mathbb{P}^2}(b-3)$. So, from

$$6 = 2g - 2 = (K_S + L)L = \phi^* \mathcal{O}_{\mathbf{F}^2}(1) \ \phi^* \mathcal{O}_{\mathbf{F}^2}(4 - b) = 2(4 - b)$$

we get b = 1, while condition

$$8 = d = L^2 = (\phi^* \mathcal{O}_{\mathbb{P}^2} (4 - b))^2 = 2(4 - b)^2$$

gives b=2.

When $(K_S + L)^2 = 3$ we also get contradictions. First of all note that

$$2g(K_S+L)-2=2(K_S+L)^2-(K_S+L)L=6-(2g-2)=0.$$

So $K_S + L$ is an ample line bundle with $g(K_S + L) = 2$. By applying again [LP, Corollary 2.4] we conclude that $(S, K_S + L)$ is either a scroll over an elliptic curve, or a Del Pezzo surface with $K_S + L = -K_S$. In the former case it would be $K_S^2 = 0$, while, from $3 = (K_S + L)^2 = K_S^2 + 4$ we see that $K_S^2 = -1$, a contradiction. In the latter case, from $3 = (K_S + L)^2 = (-K_S)^2$ we would get $8 = L^2 = (-2K_S)^2 = 12$, another contradiction.

- 7) Let $(K_S+L)^2=4$ and q=1. Then $K_S^2=0$, hence S is a P¹-bundle over an elliptic curve. Writing $L\equiv aC_0+bf$ as in [H, p. 382] and using $L^2=8$, $LK_S=-2$ and the ampleness conditions, we thus get $L\equiv 4C_0+(2e+1)f$, the invariant e being 0 or -1. But then $LC_0=1$ in case e=0, while LE=2, for E a smooth curve of genus 1 and $\equiv -K_S$ in case e=-1. In both cases this contradicts the very ampleness of L.
- 8) Let $(K_S + L)^2 = 4$ and q = 0. Look at the morphism $\phi : S \to \mathbb{P}^3$. Since $K_S + L$ is not very ample there are points $x, y \in S$ (y possibly infinitely near to x) such that $\phi(x) = \phi(y)$.

Lemma 2. If ϕ does not separate points $x,y \in S$ (y possibly infinitely near to x), then there exists a smooth curve $C \in |L-x-y|$.

Proof. If such a curve does not exist, then (S,L) contains a line l with $x,y \in l$, by [So, (0.10.2)]. Now L-l is spanned, hence nef. Think of S as embedded in \mathbb{P}^n via |L|. If $(L-l)^2=0$ then by projecting S from l into a \mathbb{P}^{n-2} we get a morphism $\pi:S\to\Gamma=\pi(l)=\mathbb{P}^1$ and S can be viewed as a divisor inside the projective cone of vertex l over Γ . By blowing-up \mathbb{P}^n along l and taking the proper transform of this cone, we get the following situation described in [BS, Theorem 8.4.5]. Let $P:=\mathbb{P}_{\mathbb{P}^1}(\mathcal{E})$, where $\mathcal{E}=\mathcal{O}_{\mathbb{P}^1}^{\oplus 2}\oplus\mathcal{O}_{\mathbb{P}^1}(n-2)$; then

$$S = aH + F$$
 in $Pic(P)$,

where H is the tautological bundle on P, F is a fibre and a > 0. Moreover $L = H_S$. Thus

$$K_S = (K_P + [S])_S = ((a-3)H + (n-3)F)_S$$

by the canonical bundle formula. For a=1,2 (S,L) would be a scroll or a conic bundle respectively; hence $a\geq 3$, since $\dim \phi(S)=2$. But then

$$K_S + L = ((a-2)H + (n-3)F)_S$$

would be the restriction to S of a very ample line bundle on P [BS, Lemma 3.2.4], a contradiction. It thus follows that L-l is nef and big and so we get

$$H^1(K_S+L-l)=0$$

by the Kawamata vanishing theorem. Note that $(K_S + L)_l = \mathcal{O}_{\mathbb{P}^1}(k)$ with k > 0, due to the ampleness of $K_S + L$. So $(K_S + L)_l$ is in fact very ample on l and then from the exact cohomology sequence of

$$0 \to K_S + L - l \to K_S + L \to (K_S + L)_l \to 0$$

we conclude that ϕ separates x and y, a contradiction. \square

So by Lemma 2 there exists a smooth curve $C \in |L|$ through x and y such that $\phi(x) = \phi(y)$. As S is ruled and q = 0, the exact cohomology sequence of

$$0 \to K_S \to K_S + L \to K_O \to 0$$

shows that $\phi_{|\mathcal{O}} = \varphi$, the canonical map of C. Then $\varphi(x) = \varphi(y)$, so that C is hyperelliptic. But then a result of Sommese claims that there exists at least a 1-dimensional family $S \subset |L|$ of hyperelliptic curves [BS, Theorem 8.4.2]. Thus $\phi \in \mathbb{R}$ cannot be generically one-to-one and so $\deg \phi \geq 2$.

9) Due to 8), from

$$4 = (K_S + L)^2 = \deg \phi \cdot \deg \phi(S)$$

we conclude that ϕ is a finite morphism of degree 2 onto $\phi(S)$, which is either $\mathbb{Q} := \mathbb{P}^1 \times \mathbb{P}^1$ or the quadric cone \mathbb{Q}_0 . Moreover from the equality $4 = (K_S + L)^2 = K_S^2 + 4$ we know that $K_S^2 = 0$.

Let $\phi(S) = \mathbb{Q}_0$; then since S is smooth, ϕ is branched at the vertex v of \mathbb{Q}_0 . Looking at the double cover $\pi: \tilde{S} \to \mathbb{F}_2$ induced by the desingularization $\mathbb{F}_2 \to \mathbb{Q}_0$ we thus see that \tilde{S} is S blown-up at the point $\phi^{-1}(v)$; so $K_{\tilde{S}}^2 = K_{\tilde{S}}^2 - 1 = -1$. On the other hand $K_{\tilde{S}} = \pi^*(K_{\mathbb{F}_2} + \mathcal{B})$, for some line bundle \mathcal{B} on \mathbb{F}_2 . This shows that $K_{\tilde{S}}^2$ has to be even, a contradiction.

Finally let $\phi(S) = \mathbb{Q}$ and let $\mathcal{O}_{\mathbb{Q}}(2a,2b)$ be the class of the branch divisor of ϕ . Computing K_S , we get $0 = K_S^2 = 2(a-2)(b-2)$, so that, up to exchanging the rulings of \mathbb{Q} , we can assume a = 2. Thus $L = (K_S + L) - K_S = \phi^* \mathcal{O}_{\mathbb{Q}}(1,3-b)$ and from

$$6 = 2g - 2 = (K_S + L)L = \phi^* \mathcal{O}_{\mathbb{Q}}(1,1) \ \phi^* \mathcal{O}_{\mathbb{Q}}(1,3-b) = 2(4-b)$$

we get b=1. So $L=\phi^*\mathcal{O}_{\mathbf{Q}}(1,2)$. Now, recalling that

$$\phi_{\bullet}\mathcal{O}_S = \mathcal{O}_{\mathbb{Q}} \oplus \mathcal{O}_{\mathbb{Q}}(-a,-b) = \mathcal{O}_{\mathbb{Q}} \oplus \mathcal{O}_{\mathbb{Q}}(-2,-1),$$

we get

$$h^0(L)=h^0(\phi_*L)=h^0(\phi_*\mathcal{O}_S\otimes\mathcal{O}_{\mathbb{Q}}(1,2))=h^0(\mathcal{O}_{\mathbb{Q}}(1,2)).$$

This says that $|L| = \phi^* |\mathcal{O}_{\mathbb{Q}}(1,2)|$. So the embedding given by |L| would factor through ϕ , which has degree 2, a contradiction.

This concludes the proof of part B) and of the theorem.

REFERENCES

- [BS] M. Beltrametti and A.J. Sommese, The Adjunction Theory of Complex Projective Varieties, Expositions in Math., vol. 16, De Gruyter, Berlin New York, 1995.
- [H] R. Hartshorne, Algebraic Geometry, Springer Verlag, Berlin Heidelberg New York, 1977.
- [LP] A. Lanteri and M. Palleschi, About the adjunction process for polarized algebraic surfaces, J. Reine Angew. Math. 352 (1984), 15-23.
- [R] I. Reider, Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. of Math. 127 (1988), 309-316.
- [So] A.J. Sommese, Hyperplane sections of projective surfaces, I: The adjunction mapping, Duke Math. J. 46 (1979), 377-401.
- [SV] A.J. Sommese and A. Van de Ven, On the adjunction mapping, Math. Ann. 278 (1987), 593-603.