Integral Jensen inequality

Let us consider a convex set $C \subset \mathbb{R}^d$, and a convex function $f : C \to (-\infty, +\infty]$. For any $x_1, \ldots, x_n \in C$ and $\lambda_1, \ldots, \lambda_n \geq 0$ with $\sum_1^n \lambda_i = 1$, we have
\begin{equation}
\label{eq:finite_jensen}
f(\sum_1^n \lambda_i x_i) \leq \sum_1^n \lambda_i f(x_i).
\end{equation}
For $a \in \mathbb{R}^d$, let δ_a be the Dirac measure concentrated at a, that is
\[
\delta_a(E) = \begin{cases}
1 & \text{if } a \in E \\
0 & \text{if } a \notin E.
\end{cases}
\]
Then $\mu := \sum_1^n \lambda_i \delta_{x_i}$ is a probability measure on C, defined for all subsets of C. Moreover, we can write $\sum_1^n \lambda_i f(x_i) = \int_C f d\mu$ and $\sum_1^n \lambda_i x_i = \int_C x d\mu(x)$, where the last integral is the integral of the vector-valued function $\psi(x) = x$. (Vector-valued integration will be recalled below.) Thus the finite Jensen inequality \eqref{eq:finite_jensen} can be written in the integral form
\begin{equation}
\label{eq:vector_jensen}
f\left(\int_C x d\mu(x)\right) \leq \int_C f d\mu.
\end{equation}
Our aim is to show that \eqref{eq:vector_jensen} holds, under suitable assumptions, also for more general probability measures on C.

Vector integration. Let (Ω, Σ, μ) be a positive measure space, and $F = (F_1, \ldots, F_d) : \Omega \to \mathbb{R}^d$ a measurable function (that is, $F^{-1}(A) \in \Sigma$ for each open set $A \subset \mathbb{R}^d$). It is easy to see that F is measurable if and only if each F_k is a measurable function. We say that F is integrable on a set $E \in \Sigma$ if $F_k \in L^1(E, \mu)$ for each $k = 1, \ldots, d$. It is easy to see that F is integrable on E if and only if $\int_E \|F\| d\mu < +\infty$. In this case, we define
\[
\int_E F d\mu = \left(\int_E F_1 d\mu, \ldots, \int_E F_d d\mu\right).
\]
Observe that, for each linear functional $\ell \in (\mathbb{R}^d)^*$, we have
\begin{equation}
\label{eq:linear.functional}
\ell\left(\int_E F d\mu\right) = \int_E \ell \circ F d\mu
\end{equation}
(this follows immediately by representing ℓ with a vector of \mathbb{R}^d). As an easy consequence, we obtain that $\int_E F d\mu$ exists if and only if $\ell \circ F \in L^1(E, \mu)$ for each $\ell \in (\mathbb{R}^d)^*$.

Returning to our aim, our measure μ should be defined on a σ-algebra of subsets of C, for which the restriction of the identity function $x \mapsto x$ to C is measurable. The smallest such σ-algebra is the family
\[
\mathcal{B}(C) = \{B \cap C : B \in \text{Borel}(\mathbb{R}^d)\}
\]
where $\text{Borel}(\mathbb{R}^d)$ is the Borel σ-algebra of \mathbb{R}^d (that is, the σ-algebra generated by the family of all open sets). Thus we shall consider the following family of measures:
\[
\mathcal{M}_1(C) = \{\mu : \mathcal{B}(C) \to [0, +\infty) : \mu \text{ measure, } \mu(C) = 1\}.
\]
The barycenter x_μ of a measure $\mu \in \mathcal{M}_1(C)$ is defined by
\[
x_\mu = \int_C x d\mu(x)
\]
(if the vector integral exists). Notice that by (3) we have $\ell(x_\mu) = \int_C \ell \, d\mu$ for each $\ell \in (\mathbb{R}^d)^\ast$.

Observation 0.1. Let $C \subset \mathbb{R}^d$ be a nonempty convex set, $\mu \in \mathcal{M}_1(C)$.

(a) x_μ exists if and only if $\ell(x_\mu) > 0$ for each $\ell \in (\mathbb{R}^d)^\ast$. This follows easily from the fact that x_μ exists if and only if $\int_C |x(i)| \, d\mu(x) < +\infty$ for each $i = 1, \ldots, d$.

(b) If μ is concentrated on a bounded subset of C (in particular, if C is bounded), then x_μ exists.

Proposition 0.2. Let $C \subset \mathbb{R}^d$ be a nonempty convex set, $\mu \in \mathcal{M}_1(C)$. If the barycenter x_μ exists, then $x_\mu \in C$.

Proof. Let us proceed by induction with respect to $n := \dim(C)$. For $n = 0$, we have $C = \{x_0\}$ and hence $\mu = \delta_{x_0}$, $x_\mu = x_0 \in C$.

Now, fix $0 \leq m < d$ and suppose that the statement holds whenever $n \leq m$. Now, let $\dim(C) = m + 1$ and $x_\mu \notin C$. By the Relative Interior Theorem, $\text{ri}(C) \neq \emptyset$, and hence we can suppose that $0 \in \text{ri}(C)$. In this case, $L := \text{span}(C) = \text{aff}(C)$ and $0 \in \text{int}_L(C)$. Let us consider two cases.

(a) If $x_\mu \notin L$, there exists $\ell \in (\mathbb{R}^d)^\ast$ such that $\ell|_L \equiv 0$ and $\ell(x_\mu) > 0$.

(b) If $x_\mu \in L$, there exists $\ell \in L^\ast \setminus \{0\}$ such that $\ell(x_\mu) \geq \sup \ell(C)$ (by the H-B Separation Theorem), and this ℓ can be extended to an element (denoted again by ℓ) of $(\mathbb{R}^d)^\ast$.

In both cases, we have

$$\int_C [\ell(x_\mu) - \ell(x)] \, d\mu(x) = \ell(x_\mu) - \int_C \ell \, d\mu - \ell \left(\int_C x \, d\mu(x) \right) = 0.$$

Since the expression in square brackets is nonnegative, it must be μ-a.e. null. This implies that necessarily $x_\mu \in L$. But in this case, ℓ is not identically zero on L. Consequently, μ is concentrated on the set $C_1 := C \cap H$ where $H = \{x \in L : \ell(x) = \ell(x_\mu)\}$ is a hyperplane in L. Thus $\dim(C_1) \leq m$, $\mu_1 := \mu|_{C_1} \in \mathcal{M}_1(C_1)$ and, by the induction assumption, $x_\mu = x_{\mu_1} \in C_1 \subset C$. This contradiction completes the proof.

Let us state an interesting corollary to the above proposition. By an *infinite convex combination* of elements of C we mean any point x_0 of the form

$$x_0 = \sum_{i=1}^{+\infty} \lambda_i c_i$$

where $c_i \in C$, $\lambda_i \geq 0$, $\sum_{j=1}^{+\infty} \lambda_j = 1$.

Corollary 0.3. Let C be a finite-dimensional convex set in a Hausdorff t.v.s. X. Then each infinite convex combination of elements of C belongs to C.

Proof. Let $x_0 = \sum_{i=1}^{+\infty} \lambda_i c_i$ be an infinite convex combination of elements of C. Of course, we can restrict ourselves to the subspace $Y = \text{span}(C \cup \{x_0\})$. Since Y, being a finite-dimensional t.v.s., is isomorphic to \mathbb{R}^d, $d = \dim(Y)$, we can suppose
that $X = \mathbb{R}^d$. We can also suppose that $c_i \neq c_j$ whenever $i \neq j$. Consider the measure μ concentrated on \{ $c_i : i \in \mathbb{N}$ \}, given by $\mu(c_i) = \lambda_i$. Since $x_\mu = x_0$, we can apply Proposition 0.2.

Before proving the Jensen inequality, we shall need the following separation lemma.

Lemma 0.4. Let X be a locally convex t.v.s., $C \subset X$ a convex set, $f : C \to (-\infty, +\infty]$ a l.s.c. convex function, $x_0 \in \text{dom}(f)$, and $t_0 < f(x_0)$. Then there exists a continuous affine function $a : X \to \mathbb{R}$ such that $a < f$ on C, and $a(x_0) > t_0$.

Proof. Fix $\alpha \in \mathbb{R}$ such that $t_0 < \alpha < f(x_0)$. By lower semicontinuity, there exists a convex neighborhood V of x_0 such that $\alpha < f(x)$ for each $x \in V \cap C$. Extend f to the whole X defining $f(x) = +\infty$ for $x \notin C$, and consider the concave function

$$g(x) = \begin{cases} \alpha & \text{if } x \in V \\ -\infty & \text{otherwise} \end{cases}.$$

Since $g \leq f$ and g is continuous at x_0, we can use a H-B Theorem on Separation of Functions to get a continuous affine function a_1 on X such that $g \leq a_1 \leq f$. Now, $t_0 < \alpha \leq a_1(x_0) \leq f(x_0)$. Thus, for a sufficiently small $\varepsilon > 0$, the function $a := a_1 - \varepsilon$ has the required properties.

Theorem 0.5 (Jensen inequality). Let $C \subset \mathbb{R}^d$ be a nonempty convex set, $f : C \to (-\infty, +\infty]$ a convex l.s.c. function, and $\mu \in \mathcal{M}_1(C)$. Assume that the baricenter x_μ exists (which is automatically true for a bounded C). Then $x_\mu \in C$ and

$$f(x_\mu) \leq \int_C f \, d\mu$$

(in particular, the integral on the right-hand side exists).

Proof. We already know that $x_\mu \in C$ (Proposition 0.2). If $f \equiv +\infty$, the assertion is obvious. Now, suppose that f is proper. Notice that f is $\mathcal{B}(C)$-measurable since the sublevel sets \{ $x \in C : f(x) \leq \alpha$ \} are relatively closed in C. We claim that the right-hand-side integral in (4) exists. Indeed, by Lemma 0.4, there exists a continuous affine function $a : \mathbb{R}^d \to \mathbb{R}$ such that $a < f$ on C. Write a in the form $a(x) = \ell(x) + \beta$ where $\ell \in (\mathbb{R}^d)^*$, $\beta \in \mathbb{R}$. By Observation 0.1, $a \in L_1(\mu)$, which implies that $f^- \in L_1(\mu)$.

The effective domain $\text{dom}(f) = f^{-1}(\mathbb{R})$ is convex and belongs to $\mathcal{B}(C)$. If $\mu(C \setminus \text{dom}(f)) > 0$, then obviously $\int_C f \, d\mu = +\infty$ and (4) trivially holds.

Let $\mu(C \setminus \text{dom}(f)) = 0$. In this case, μ is concentrated on $\text{dom}(f)$, and hence, by Proposition 0.2, $x_\mu \in \text{dom}(f)$. Assume that (4) is false, that is $t_0 := \int_C f \, d\mu < f(x_\mu)$. By Lemma 0.4, there exist $\ell \in (\mathbb{R}^d)^*$ and $\beta \in \mathbb{R}$ such that $\ell + \beta < f$ on C, and $\ell(x_\mu) + \beta > t_0$. But these two properties are in contradiction:

$$t_0 = \int_C f \, d\mu > \int_C (\ell + \beta) \, d\mu = \int_C \ell \, d\mu + \beta = \ell(x_\mu) + \beta > t_0.$$

\square
Corollary 0.6 (Hermite-Hadamard inequalities). Let \(f : [a, b] \to \mathbb{R} \) be a continuous convex function. Then
\[
f\left(\frac{a + b}{2}\right) \leq \frac{1}{b - a} \int_a^b f(x) \, dx \leq \frac{f(a) + f(b)}{2}.
\]

Proof. The measure \(\mu \), defined by \(d\mu = \frac{dx}{b - a} \), belongs to \(\mathcal{M}_1([a, b]) \). Moreover, its barycenter is \(x_\mu = \int_a^b x \, dx = \frac{a + b}{2} \). Thus the first inequality follows from the integral Jensen inequality.

Let us show the second inequality. Substituting \(x = a + t(b - a) \), we get
\[
\int_a^b f(x) \, dx = \int_0^1 f((1 - t)a + tb) \, dt \leq \int_0^1 [(1 - t)f(a) + tf(b)] \, dt = \frac{f(a) + f(b)}{2}.
\]

\(\square \)

Image of a probability measure. Let \((\Omega, \Sigma, \mu) \) be a probability space, and \((T, \tau) \) a topological space. Let \(g : \Omega \to T \) be a measurable mapping, that is \(g^{-1}(A) \in \Sigma \) whenever \(A \subset T \) is an \(\tau \)-open set. Let \(\text{Borel}(\tau) \) denote the \(\sigma \)-algebra of all Borel sets in \(T \). Since \(g^{-1}(B) \in \Sigma \) for each \(B \in \text{Borel}(\tau) \), we can consider the function
\[
\nu : \text{Borel}(\tau) \to [0, 1], \quad \nu(B) = \mu(g^{-1}(B)).
\]

It is easy to verify that \(\nu \) is a (borelian) probability measure on \(T \), called the image of \(\mu \) by the map \(g \). Moreover, \(\nu \) is concentrated on the image \(g(\Omega) \), in the sense that \(\nu(B) = 0 \) whenever \(B \in \text{Borel}(\tau) \) is disjoint from \(g(\Omega) \).

Let us see how to integrate with respect to \(\nu \). Let \(s = \sum_i^n \alpha_i \chi_{B_i} \) be a nonnegative simple function on \(T \) such that the sets \(B_i \) are borelian and pairwise disjoint. Then the composition \(s \circ g \) is a measurable simple function on \(\Omega \) and it can be represented as \(s \circ g = \sum_i^n \alpha_i \chi_{g^{-1}(B_i)} \).

Thus we have
\[
\int_T s \, d\nu = \sum_{i=1}^n \alpha_i \nu(B_i) = \sum_{i=1}^n \alpha_i \mu(g^{-1}(B_i)) = \int_\Omega s \circ g \, d\mu.
\]

Now, if \(f \) is a nonnegative Borel-measurable function on \(T \), we can approximate it by a pointwise converging nondecreasing sequence of simple Borel-measurable functions. Passing to limits in the above formula, we get
\[
\int_T f \, d\nu = \int_\Omega f \circ g \, d\mu.
\]

It follows that, for an arbitrary Borel-measurable function \(f \) on \(T \), we have:

\begin{itemize}
 \item \(\int_T f \, d\nu \) exists if and only if \(\int_\Omega f \circ g \, d\mu \) exists; in this case, the two integrals are equal;
 \item \(f \in L_1(\nu) \) if and only if \(f \circ g \in L_1(\mu) \).
\end{itemize}

Let us return to the Jensen inequality. We can apply it to an image measure to obtain the following

Theorem 0.7 (Second Jensen inequality). Let \((\Omega, \Sigma, \mu) \) be a probability measure space, and \(g : \Omega \to \mathbb{R}^d \) a measurable mapping that is \(\mu \)-integrable. Let \(C \subset \mathbb{R}^d \) be a convex set such that \(g(\omega) \in C \) for \(\mu \)-a.e. \(\omega \in \Omega \), and \(f : C \to (-\infty, +\infty] \) a l.s.c. convex function. Then:

\begin{itemize}
 \item \(\int_\Omega g \, d\mu \in C \);
\end{itemize}
• \(\int_{\Omega} f \circ g \, d\mu \) exists;
• we have the inequality

\[
f \left(\int_{\Omega} g \, d\mu \right) \leq \int_{\Omega} f \circ g \, d\mu.
\]

Proof. Let \(\nu \) be the image of the measure \(\mu \) by the mapping \(g: \Omega \to C \). Then \(\nu \) is a probability measure on \(C \), defined on the relative Borel \(\sigma \)-algebra of \(B(C) \). Its barycenter is \(x_\nu = \int_C x \, d\nu = \int_{\Omega} g \, d\mu \). The rest follows directly from Theorem 0.5 since \(\int_C f \, d\nu = \int_{\Omega} f \circ g \, d\mu \). \(\square \)

Corollary 0.8 (Examples of applications). Let \((\Omega, \Sigma, \mu)\) be a probability measure space, and \(g \in L_1(\Omega) \).

(a) Second Jensen inequality for \(C = \mathbb{R} \) and \(f(x) = |x|^p \) (\(p \geq 1 \)) gives

\[
\left| \int_{\Omega} g \, d\mu \right| \leq \left(\int_{\Omega} |g|^p \, d\mu \right)^{1/p}.
\]

(b) Second Jensen inequality for \(C = \mathbb{R} \) and \(f(x) = e^x = \exp(x) \) gives

\[
\exp \left(\int_{\Omega} g \, d\mu \right) \leq \int_{\Omega} e^g \, d\mu.
\]

(c) Second Jensen inequality for \(C = (0, +\infty) \) and \(f(x) = -\log x \) gives

\[
\int_{\Omega} \log g \, d\mu \leq \log \left(\int_{\Omega} g \, d\mu \right).
\]

Hölder via Jensen. Let us show how the well-known Hölder inequality can be derived from the Second Jensen inequality.

Let \((\Omega, \Sigma, \mu)\) be a (not necessarily probability) nonnegative measure space. Let \(p, p' \in (1, +\infty) \) be two conjugate Hölder exponents (that is, \(\frac{1}{p} + \frac{1}{p'} = 1 \)). Let \(f, g \) be nonnegative measurable functions on \(\Omega \), such that their norms in \(L_p(\mu) \) and \(L_{p'}(\mu) \) satisfy \(0 < \|f\|_p < +\infty \) and \(0 < \|g\|_{p'} < +\infty \). Consider the set \(\Omega_1 = \{ g > 0 \} \) (\(\in \Sigma \)) and the measure \(\nu \) on \(\Sigma \), defined by

\[
d\nu = \frac{1}{\int_{\Omega} g^{p'} \, d\mu} g^{p'} \, d\mu.
\]

Then \(\nu \) is a probability measure which is concentrated on \(\Omega_1 \). Applying Corollary 0.8(a) to the function \(fg^{1-p'} \) (defined on the set \(\Omega_1 \)), we get

\[
\frac{1}{\int_{\Omega} g^{p'} \, d\mu} \cdot \int_{\Omega} fg \, d\mu = \int_{\Omega_1} fg^{1-p'} \, d\nu \leq \left(\int_{\Omega_1} f^p g^{p(1-p')} \, d\nu \right)^{1/p} = \left(\frac{1}{\int_{\Omega_1} g^{p'} \, d\mu} \cdot \int_{\Omega_1} f^p g^{p-p'} \, d\mu \right)^{1/p} = \frac{1}{\left(\int_{\Omega} g^{p'} \, d\mu \right)^{1/p}} \cdot \left(\int_{\Omega} f^p \, d\mu \right)^{1/p}.
\]
since $p + p' - pp' = pp'(\frac{1}{p} + \frac{1}{p} - 1) = 0$. Multiplying by $\int_{\Omega} g^{p'} \, d\mu$, we obtain the Hölder inequality

$$\int_{\Omega} fg \, d\mu \leq \|f\|_p \|g\|_{p'}.$$

Finally, notice that if our assumption on the L_p-norm of f and the $L_{p'}$-norm of g is not satisfied, the Hölder inequality is trivially satisfied (with the usual convention “$0 \cdot \infty = 0$”).

A generalization of the Hermite-Hadamard inequalities. Let $\|\cdot\|$ be an arbitrary norm on \mathbb{R}^d, $B \subset \mathbb{R}^d$ a closed $\|\cdot\|$-ball centered at a point $x_0 \in \mathbb{R}^d$, and $S = \partial B$. Let m denote the Lebesgue measure in \mathbb{R}^d and σ the surface measure. Then, for each continuous convex function $f : B \to \mathbb{R}$, we have the inequalities

$$f(x_0) \leq \frac{1}{m(B)} \int_B f \, dm \leq \frac{1}{\sigma(S)} \int_S f \, d\sigma. \tag{6}$$

Proof. By translation, we can suppose that $x_0 = 0$. For the probability measure $d\mu = \frac{dm}{m(B)}$, we have $x_\mu = 0$ by symmetry, and hence the Jensen inequality implies the first inequality in (6). Let us show the second inequality. Notice that

$$m(B) = \int_0^1 \sigma(rS) \, dr = \sigma(S) \int_0^1 r^{d-1} \, dr = \frac{1}{d} \sigma(S).$$

Now, a similar “onion-skin integration” and convexity of f imply

$$\int_B f \, dm = \int_0^1 \left(\int_{rS} f \, d\sigma \right) \, dr = \int_0^1 \left(\int_{rS} f(\frac{1+r}{2}x) + \frac{1-r}{2}f(-x) \right) \, d\sigma(x) \, dr$$

$$\leq \int_0^1 \left(\int_{rS} \left[\frac{1+r}{2}f(x) + \frac{1-r}{2}f(-x) \right] \, d\sigma(x) \right) \, dr$$

$$= \left(\int_0^1 r^{d-1} \, dr \right) \int_S f \, d\sigma = \frac{m(B)}{\sigma(S)} \int_S f \, d\sigma.$$

The second inequality in (6) follows by dividing by $m(B)$. □

Possible generalizations. Some of the above results, except Proposition 0.2, can be easily generalized to the infinite-dimensional setting. The main problem is that we have to introduce appropriately the barycenter of a probability measure. The most general is the following Pettis-integral approach which defines the integral of a vector-valued function by requiring the equality (3) for every continuous linear functional ℓ.

Let X be a t.v.s., and $E \subset X$ a nonempty set. We shall say that a point $x_\mu \in X$ is a barycenter for a probability measure $\mu \in \mathcal{M}_1(E)$ (defined on the relative Borel σ-algebra $\mathcal{B}(E)$) if

$$y^*(x_\mu) = \int_E y^* \, d\mu \quad \text{for each } y^* \in X^*.$$

Then we have the following results. Let X be a locally convex t.v.s., $C \subset X$ a nonempty convex set, and $\mu \in \mathcal{M}_1(C)$.

(i) μ has at most one barycenter x_μ. (This follows from the fact that X^* separates the points of X.)

(ii) If x_μ exists and C is either closed or open, then $x_\mu \in C$. (The proof by contradiction uses the H-B Separation Theorem, in the same spirit as in Proposition 0.2.)
(iii) If C is compact, then x_{μ} exists. (This is a bit more difficult.)
(iv) Theorem 0.5 (Jensen inequality) holds with X in place of \mathbb{R}^d, under the additional assumption that C is either closed or open, and f is finite. (The proof is the same.)