INTEGRAL JENSEN INEQUALITY

Let us consider a convex set $C \subset \mathbb{R}^d$, and a convex function $f: C \to (-\infty, +\infty]$. For any $x_1, \ldots, x_n \in C$ and $\lambda_1, \ldots, \lambda_n \geq 0$ with $\sum_{i=1}^n \lambda_i = 1$, we have

(1)
$$f(\sum_{1}^{n} \lambda_{i} x_{i}) \leq \sum_{1}^{n} \lambda_{i} f(x_{i}).$$

For $a \in \mathbb{R}^d$, let δ_a be the Dirac measure concentrated at a, that is

$$\delta_a(E) = \begin{cases} 1 & \text{if } a \in E \\ 0 & \text{if } a \notin E \end{cases}$$

Then $\mu := \sum_{1}^{n} \lambda_i \delta_{x_i}$ is a probability measure on C, defined for all subsets of C. Moreover, we can write $\sum_{1}^{n} \lambda_i f(x_i) = \int_C f d\mu$ and $\sum_{1}^{n} \lambda_i x_i = \int_C x d\mu(x)$, where the last integral is the integral of the vector-valued function $\psi(x) = x$. (Vector-valued integration will be recalled below.) Thus the finite Jensen inequality (1) can be written in the integral form

(2)
$$f(\int_C x \, d\mu(x)) \le \int_C f \, d\mu.$$

Our aim is to show that (2) holds, under suitable assumptions, also for more general probability measures on C.

Vector integration. Let (Ω, Σ, μ) be a positive measure space, and $F = (F_1, \ldots, F_d) \colon \Omega \to \mathbb{R}^d$ a measurable function (that is, $F^{-1}(A) \in \Sigma$ for each open set $A \subset \mathbb{R}^d$). It is easy to see that F is measurable if and only if each F_k is a measurable function. We say that F is *integrable* on a set $E \in \Sigma$ if $F_k \in L_1(E, \mu)$ for each $k = 1, \ldots, d$. It is easy to see that F is integrable on E if and only if $\int_E ||F|| d\mu < +\infty$. In this case, we define

$$\int_E F \, d\mu = \left(\int_E F_1 \, d\mu \, , \, \dots \, , \, \int_E F_d \, d\mu \right) \, .$$

Observe that, for each linear functional $\ell \in (\mathbb{R}^d)^*$, we have

(3)
$$\ell\left(\int_E F \, d\mu\right) = \int_E \ell \circ F \, d\mu$$

(this follows immediately by representing ℓ with a vector of \mathbb{R}^d). As an easy consequence, we obtain that $\int_E F \, d\mu$ exists if and only if $\ell \circ F \in L_1(E,\mu)$ for each $\ell \in (\mathbb{R}^d)^*$.

Returning to our aim, our measure μ should be defined on a σ -algebra of subsets of C, for which the restriction of the identity function $x \mapsto x$ to C is measurable. The smallest such σ -algebra is the family

$$\mathcal{B}(C) = \{ B \cap C : B \in Borel(\mathbb{R}^d) \}$$

where $Borel(\mathbb{R}^d)$ is the Borel σ -algebra of \mathbb{R}^d (that is, the σ -algebra generated by the family of all open sets). Thus we shall consider the following family of measures:

$$\mathcal{M}_1(C) = \left\{ \mu \colon \mathcal{B}(C) \to [0, +\infty) \colon \mu \text{ measure, } \mu(C) = 1 \right\}.$$

The barycenter x_{μ} of a measure $\mu \in \mathcal{M}_1(C)$ is defined by

$$x_{\mu} = \int_{C} x \, d\mu(x)$$

(if the vector integral exists). Notice that by (3) we have $\ell(x_{\mu}) = \int_C \ell d\mu$ for each $\ell \in (\mathbb{R}^d)^*.$

Observation 0.1. Let $C \subset \mathbb{R}^d$ be a nonempty convex set, $\mu \in \mathcal{M}_1(C)$.

- (a) $x_{\mu} \text{ exists} \iff \|\cdot\| \in L_1(\mu) \iff \ell \in L_1(\mu) \text{ for each } \ell \in (\mathbb{R}^d)^*$. (This follows easily from the fact that x_{μ} exists if and only if $\int_{C} |x(i)| d\mu(x) < +\infty$ for each i = 1, ..., d.)
- (b) If μ is concentrated on a bounded subset of C (in particular, if C is bounded), then x_{μ} exists.

Proposition 0.2. Let $C \subset \mathbb{R}^d$ be a nonempty convex set, $\mu \in \mathcal{M}_1(C)$. If the barycenter x_{μ} exists, then $x_{\mu} \in C$.

Proof. Let us proceed by induction with respect to $n := \dim(C)$. For n = 0, we have $C = \{x_0\}$ and hence $\mu = \delta_{x_0}, x_{\mu} = x_0 \in C$.

Now, fix $0 \le m < d$ and suppose that the statement holds whenever $n \le m$. Now, let dim(C) = m + 1 and $x_{\mu} \notin C$. By the Relative Interior Theorem, ri $(C) \neq \emptyset$, and hence we can suppose that $0 \in \operatorname{ri}(C)$. In this case, $L := \operatorname{span}(C) = \operatorname{aff}(C)$ and $0 \in \operatorname{int}_L(C)$. Let us consider two cases.

- (a) If $x_{\mu} \notin L$, there exists $\ell \in (\mathbb{R}^d)^*$ such that $\ell|_L \equiv 0$ and $\ell(x_{\mu}) > 0$. (b) If $x_{\mu} \in L$, there exists $\ell \in L^* \setminus \{0\}$ such that $\ell(x_{\mu}) \ge \sup \ell(C)$ (by the H-B Separation Theorem), and this ℓ can be extended to an element (denoted again by ℓ) of $(\mathbb{R}^d)^*$.

In both cases, we have

$$\int_C \left[\ell(x_\mu) - \ell(x) \right] d\mu(x) = \ell(x_\mu) - \int_C \ell \, d\mu = \ell(x_\mu) - \ell \left(\int_C x \, d\mu(x) \right) = 0 \,.$$

Since the expression in square brackets is nonnegative, it must be μ -a.e. null. This implies that necessarily $x_{\mu} \in L$. But in this case, ℓ is not identically zero on L. Consequently, μ is concentrated on the set $C_1 := C \cap H$ where $H = \{x \in L : \ell(x) =$ $\ell(x_{\mu})$ is a hyperplane in L. Thus $\dim(C_1) \leq m, \ \mu_1 := \mu|_{C_1} \in \mathcal{M}_1(C_1)$ and, by the induction assumption, $x_{\mu} = x_{\mu_1} \in C_1 \subset C$. This contradiction completes the proof.

Let us state an interesting corollary to the above proposition. By an *infinite* convex combination of elements of C we mean any point x_0 of the form

$$x_0 = \sum_{i=1}^{+\infty} \lambda_i c_i$$

where $c_i \in C$, $\lambda_i \ge 0$, $\sum_{j=1}^{+\infty} \lambda_j = 1$.

Corollary 0.3. Let C be a finite-dimensional convex set in a Hausdorff t.v.s. X. Then each infinite convex combination of elements of C belongs to C.

Proof. Let $x_0 = \sum_{i=1}^{+\infty} \lambda_i c_i$ be an infinite convex combination of elements of C. Of course, we can restrict ourselves to the subspace $Y = \text{span}(C \cup \{x_0\})$. Since Y, being a finite-dimensional t.v.s., is isomorphic to \mathbb{R}^d , $d = \dim(Y)$, we can suppose

that $X = \mathbb{R}^d$. We can also suppose that $c_i \neq c_j$ whenever $i \neq j$. Consider the measure μ concentrated on $\{c_i : i \in \mathbb{N}\}$, given by $\mu(c_i) = \lambda_i$. Since $x_{\mu} = x_0$, we can apply Proposition 0.2.

Before proving the Jensen inequality, we shall need the following separation lemma.

Lemma 0.4. Let X be a locally convex t.v.s., $C \subset X$ a convex set, $f: C \to (-\infty, +\infty)$ a l.s.c. convex function, $x_0 \in \text{dom}(f)$, and $t_0 < f(x_0)$. Then there exists a continuous affine function $a: X \to \mathbb{R}$ such that a < f on C, and $a(x_0) > t_0$.

Proof. Fix $\alpha \in \mathbb{R}$ such that $t_0 < \alpha < f(x_0)$. By lower semicontinuity, there exists a convex neighborhood V of x_0 such that $\alpha < f(x)$ for each $x \in V \cap C$. Extend f to the whole X defining $f(x) = +\infty$ for $x \notin C$, and consider the concave function

$$g(x) = \begin{cases} \alpha & \text{if } x \in V \\ -\infty & \text{otherwise} \end{cases}$$

Since $g \leq f$ and g is continuous at x_0 , we can use a H-B Theorem on Separation of Functions to get a continuous affine function a_1 on X such that $g \leq a_1 \leq f$. Now, $t_0 < \alpha \leq a_1(x_0) \leq f(x_0)$. Thus, for a sufficiently small $\varepsilon > 0$, the function $a := a_1 - \varepsilon$ has the required properties.

Theorem 0.5 (Jensen inequality). Let $C \subset \mathbb{R}^d$ be a nonempty convex set, $f: C \to (-\infty, +\infty)$ a convex l.s.c. function, and $\mu \in \mathcal{M}_1(C)$. Assume that the baricenter x_μ exists (which is automatically true for a bounded C). Then $x_\mu \in C$ and

(4)
$$f(x_{\mu}) \le \int_C f \, d\mu$$

(in particular, the integral on the right-hand side exists).

Proof. We already know that $x_{\mu} \in C$ (Proposition 0.2). If $f \equiv +\infty$, the assertion is obvious. Now, suppose that f is proper. Notice that f is $\mathcal{B}(C)$ -measurable since the sublevel sets $\{x \in C : f(x) \leq \alpha\}$ are relatively closed in C. We claim that the right-hand-side integral in (4) exists. Indeed, by Lemma 0.4, there exists a continuous affine function $a: \mathbb{R}^d \to \mathbb{R}$ such that a < f on C. Write a in the form $a(x) = \ell(x) + \beta$ where $\ell \in (\mathbb{R}^d)^*, \beta \in \mathbb{R}$. By Observation 0.1, $a \in L_1(\mu)$, which implies that $f^- \in L_1(\mu)$.

The effective domain dom $(f) = f^{-1}(\mathbb{R})$ is convex and belongs to $\mathcal{B}(C)$. If $\mu(C \setminus \text{dom}(f)) > 0$, then obviously $\int_C f \, d\mu = +\infty$ and (4) trivially holds.

Let $\mu(C \setminus \operatorname{dom}(f)) = 0$. In this case, μ is concentrated on $\operatorname{dom}(f)$, and hence, by Proposition 0.2, $x_{\mu} \in \operatorname{dom}(f)$. Assume that (4) is false, that is $t_0 := \int_C f \, d\mu < f(x_{\mu})$. By Lemma 0.4, there exist $\ell \in (\mathbb{R}^d)^*$ and $\beta \in \mathbb{R}$ such that $\ell + \beta < f$ on C, and $\ell(x_{\mu}) + \beta > t_0$. But these two properties are in contradiction:

$$t_0 = \int_C f \, d\mu > \int_C (\ell + \beta) \, d\mu = \int_C \ell \, d\mu + \beta = \ell(x_\mu) + \beta > t_0 \, .$$

Corollary 0.6 (Hermite-Hadamard inequalities). Let $f: [a, b] \to \mathbb{R}$ be a continuous convex function. Then

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x) \, dx \le \frac{f(a)+f(b)}{2} \, .$$

Proof. The measure μ , defined by $d\mu = \frac{dx}{b-a}$, belongs to $\mathcal{M}_1([a,b])$. Moreover, its barycenter is $x_{\mu} = \frac{1}{b-a} \int_a^b x \, dx = \frac{a+b}{2}$. Thus the first inequality follows from the integral Jensen inequality.

Let us show the second inequality. Substituting x = a + t(b - a), we get

$$\frac{1}{b-a} \int_a^b f(x) \, dx = \int_0^1 f((1-t)a + tb) \, dt \le \int_0^1 \left[(1-t)f(a) + tf(b) \right] dt = \frac{f(a) + f(b)}{2} \, .$$

Image of a probability measure. Let (Ω, Σ, μ) be a probability space, and (T, τ) a topological space. Let $g: \Omega \to T$ be a measurable mapping, that is $g^{-1}(A) \in \Sigma$ whenever $A \subset T$ is an τ -open set. Let $Borel(\tau)$ denote the σ -algebra of all Borel sets in T. Since $g^{-1}(B) \in \Sigma$ for each $B \in Borel(\tau)$, we can consider the function

$$\nu: Borel(\tau) \to [0,1], \quad \nu(B) = \mu(g^{-1}(B)).$$

It is easy to verify that ν is a (borelian) probability measure on T, called the *image* of μ by the map g. Moreover, ν is *concentrated on the image* $g(\Omega)$, in the sense that $\nu(B) = 0$ whenever $B \in Borel(\tau)$ is disjoint from $g(\Omega)$.

Let us see how to integrate with respect to ν . Let $s = \sum_{i=1}^{n} \alpha_i \chi_{B_i}$ be a nonnegative simple function on T such that the sets B_i are borelian and pairwise disjoint. Then the composition $s \circ g$ is a measurable simple function on Ω and it can be represented as $s \circ g = \sum_{i=1}^{n} \alpha_i \chi_{g^{-1}(B_i)}$. Thus we have

$$\int_{T} s \, d\nu = \sum_{1}^{n} \alpha_{i} \nu(B_{i}) = \sum_{1}^{n} \alpha_{i} \mu(g^{-1}(B_{i})) = \int_{\Omega} s \circ g \, d\mu \, .$$

Now, if f is a nonnegative Borel-measurable function on T, we can approximate it by a pointwise converging nondecreasing sequence of simple Borel-measurable functions. Passing to limits in the above formula, we get

(5)
$$\int_T f \, d\nu = \int_\Omega f \circ g \, d\mu \, .$$

It follows that, for an arbitrary Borel-measurable function f on T, we have:

- $\int_T f \, d\nu$ exists if and only if $\int_\Omega f \circ g \, d\mu$ exists; in this case, the two integrals are equal;
- $f \in L_1(\nu)$ if and only if $f \circ g \in L_1(\mu)$.

Let us return to the Jensen inequality. We can apply it to an image measure to obtain the following

Theorem 0.7 (Second Jensen inequality). Let (Ω, Σ, μ) be a probability measure space, and $g: \Omega \to \mathbb{R}^d$ a measurable mapping that is μ -integrable. Let $C \subset \mathbb{R}^d$ be a convex set such that $g(\omega) \in C$ for μ -a.e. $\omega \in \Omega$, and $f: C \to (-\infty, +\infty)$ a l.s.c. convex function. Then:

• $\int_{\Omega} g \, d\mu \in C;$

- $\int_{\Omega} f \circ g \, d\mu$ exists;
- we have the inequality

$$f\left(\int_{\Omega}g\,d\mu\right)\leq\int_{\Omega}f\circ g\,d\mu\,.$$

Proof. Let ν be the image of the measure μ by the mapping $g: \Omega \to C$. Then ν is a probability measure on C, defined on the relative Borel σ -algebra of $\mathcal{B}(C)$ C. Its barycenter is $x_{\nu} = \int_{C} x \, d\nu = \int_{\Omega} g \, d\mu$. The rest follows directly from Theorem 0.5 since $\int_{C} f \, d\nu = \int_{\Omega} f \circ g \, d\mu$.

Corollary 0.8 (Examples of applications). Let (Ω, Σ, μ) be a probability measure space, and $g \in L_1(\Omega)$.

(a) Second Jensen inequality for $C = \mathbb{R}$ and $f(x) = |x|^p$ $(p \ge 1)$ gives

$$\left| \int_{\Omega} g \, d\mu \right| \le \left(\int_{\Omega} |g|^p \, d\mu \right)^{1/p}$$

(b) Second Jensen inequality for $C = \mathbb{R}$ and $f(x) = e^x = \exp(x)$ gives

$$\exp\left(\int_{\Omega} g \, d\mu\right) \leq \int_{\Omega} e^g \, d\mu \, .$$

(c) Second Jensen inequality for $C = (0, +\infty)$ and $f(x) = -\log x$ gives

$$\int_{\Omega} \log g \, d\mu \leq \log \left(\int_{\Omega} g \, d\mu \right) \, .$$

Hölder via Jensen. Let us show how the well-known Hölder inequality can be derived from the Second Jensen inequality.

Let (Ω, Σ, μ) be a (not necessarily probability) nonnegative measure space. Let $p, p' \in (1, +\infty)$ be two conjugate Hölder exponents (that is, $\frac{1}{p} + \frac{1}{p'} = 1$). Let f, g be nonnegative measurable functions on Ω , such that their norms in $L_p(\mu)$ and $L_{p'}(\mu)$ satisfy $0 < ||f||_p < +\infty$ and $0 < ||g||_{p'} < +\infty$. Consider the set $\Omega_1 = \{g > 0\} \ (\in \Sigma)$ and the measure ν on Σ , defined by

$$d\nu = \frac{1}{\int_\Omega g^{p'} d\mu} g^{p'} d\mu \,.$$

Then ν is a probability measure which is concentrated on Ω_1 . Applying Corollary 0.8(a) to the function $fg^{1-p'}$ (defined on the set Ω_1), we get

$$\begin{aligned} \frac{1}{\int_{\Omega} g^{p'} d\mu} \cdot \int_{\Omega} fg \, d\mu &= \int_{\Omega_1} fg^{1-p'} d\nu \\ &\leq \left(\int_{\Omega_1} f^p g^{p(1-p')} \, d\nu \right)^{1/p} \\ &= \left(\frac{1}{\int_{\Omega} g^{p'} d\mu} \cdot \int_{\Omega} f^p g^{p+p'-pp'} \, d\mu \right)^{1/p} \\ &= \frac{1}{\left(\int_{\Omega} g^{p'} d\mu \right)^{1/p}} \cdot \left(\int_{\Omega} f^p \, d\mu \right)^{1/p} \end{aligned}$$

since $p + p' - pp' = pp'(\frac{1}{p'} + \frac{1}{p} - 1) = 0$. Multiplying by $\int_{\Omega} g^{p'} d\mu$, we obtain the Hölder inequality

$$\int_{\Omega} fg \, d\mu \leq \|f\|_p \, \|g\|_{p'} \, .$$

Finally, notice that if our assumption on the L_p -norm of f and the $L_{p'}$ -norm of g is not satisfied, the Hölder inequality is trivially satisfied (with the usual convention " $0 \cdot \infty = 0$ ").

A generalization of the Hermite-Hadamard inequalities. Let $\|\cdot\|$ be an arbitrary norm on \mathbb{R}^d , $B \subset \mathbb{R}^d$ a closed $\|\cdot\|$ -ball centered at a point $x_0 \in \mathbb{R}^d$, and $S = \partial B$. Let mdenote the Lebesgue measure in \mathbb{R}^d and σ the surface measure. Then, for each continuous convex function $f: B \to \mathbb{R}$, we have the inequalities

(6)
$$f(x_0) \le \frac{1}{m(B)} \int_B f \, dm \le \frac{1}{\sigma(S)} \int_S f \, d\sigma$$

Proof. By translation, we can suppose that $x_0 = 0$. For the probability measure $d\mu = \frac{dm}{m(B)}$, we have $x_{\mu} = 0$ by symmetry, and hence the Jensen inequality implies the first inequality in (6). Let us show the second inequality. Notice that

$$m(B) = \int_0^1 \sigma(rS) \, dr = \sigma(S) \int_0^1 r^{d-1} \, dr = \frac{1}{d} \, \sigma(S) \, .$$

Now, a similar "onion-skin integration" and convexity of f imply

$$\begin{split} \int_B f \, dm &= \int_0^1 \left(\int_{rS} f \, d\sigma \right) \, dr \\ &= \int_0^1 \left(\int_{rS} f \left(\frac{1+r}{2} \left(\frac{x}{r} \right) + \frac{1-r}{2} \left(-\frac{x}{r} \right) \right) \, d\sigma(x) \right) \, dr \\ &\leq \int_0^1 \left(\int_{rS} \left[\frac{1+r}{2} f \left(\frac{x}{r} \right) + \frac{1-r}{2} f \left(-\frac{x}{r} \right) \right] \, d\sigma(x) \right) \, dr \\ &= \left(\int_0^1 r^{d-1} \, dr \right) \int_S f \, d\sigma = \frac{m(B)}{\sigma(S)} \int_S f \, d\sigma \, . \end{split}$$

The second inequality in (6) follows by dividing by m(B).

Possible generalizations. Some of the above results, except Proposition 0.2, can be easily generalized to the infinite-dimensional setting. The main problem is that we have to introduce appropriately the barycenter of a probability measure. The most general is the following *Pettis-integral* approach which defines the integral of a vector-valued function by requiring the equality (3) for every continuous linear functional ℓ .

Let X be a t.v.s., and $E \subset X$ a nonempty set. We shall say that a point $x_{\mu} \in X$ is a *barycenter* for a probability measure $\mu \in \mathcal{M}_1(E)$ (defined on the relative Borel σ -algebra $\mathcal{B}(E)$) if

$$y^*(x_\mu) = \int_E y^* d\mu$$
 for each $y^* \in X^*$.

Then we have the following results. Let X be a locally convex t.v.s., $C \subset X$ a nonempty convex set, and $\mu \in \mathcal{M}_1(C)$.

- (i) μ has at most one barycenter x_{μ} . (This follows from the fact that X^* separates the points of X.)
- (ii) If x_{μ} exists and C is either closed or open, then $x_{\mu} \in C$. (The proof by contradiction uses the H-B Separation Theorem, in the same spirit as in Proposition 0.2.)

- (iii) If C is compact, then x_{μ} exists. (This is a bit more difficult.) (iv) Theorem 0.5 (Jensen inequality) holds with X in place of \mathbb{R}^d , under the additional assumption that C is either closed or open, and f is finite. (The proof is the same.)