
Integral Jensen inequality

Let us consider a convex set C ⊂ Rd, and a convex function f : C → (−∞,+∞].
For any x1, . . . , xn ∈ C and λ1, . . . , λn ≥ 0 with

∑n
1 λi = 1, we have

(1) f(
∑n

1 λixi) ≤
∑n

1 λif(xi) .

For a ∈ Rd, let δa be the Dirac measure concentrated at a, that is

δa(E) =

{
1 if a ∈ E
0 if a /∈ E

.

Then µ :=
∑n

1 λiδxi is a probability measure on C, defined for all subsets of C.
Moreover, we can write

∑n
1 λif(xi) =

∫
C f dµ and

∑n
1 λixi =

∫
C x dµ(x), where the

last integral is the integral of the vector-valued function ψ(x) = x. (Vector-valued
integration will be recalled below.) Thus the finite Jensen inequality (1) can be
written in the integral form

(2) f
(∫
C x dµ(x)

)
≤
∫
C f dµ .

Our aim is to show that (2) holds, under suitable assumptions, also for more general
probability measures on C.

Vector integration. Let (Ω,Σ, µ) be a positive measure space, and F = (F1, . . . , Fd) : Ω→
Rd a measurable function (that is, F−1(A) ∈ Σ for each open set A ⊂ Rd). It is easy to
see that F is measurable if and only if each Fk is a measurable function. We say that F is
integrable on a set E ∈ Σ if Fk ∈ L1(E,µ) for each k = 1, . . . , d. It is easy to see that F is
integrable on E if and only if

∫
E
‖F‖ dµ < +∞. In this case, we define∫

E

F dµ =

(∫
E

F1 dµ , . . . ,

∫
E

Fd dµ

)
.

Observe that, for each linear functional ` ∈ (Rd)∗, we have

(3) `

(∫
E

F dµ

)
=

∫
E

` ◦ F dµ

(this follows immediately by representing ` with a vector of Rd). As an easy consequence,

we obtain that
∫
E
F dµ exists if and only if ` ◦ F ∈ L1(E,µ) for each ` ∈ (Rd)∗.

Returning to our aim, our measure µ should be defined on a σ-algebra of subsets
of C, for which the restriction of the identity function x 7→ x to C is measurable.
The smallest such σ-algebra is the family

B(C) = {B ∩ C : B ∈ Borel(Rd)}

where Borel(Rd) is the Borel σ-algebra of Rd (that is, the σ-algebra generated by
the family of all open sets). Thus we shall consider the following family of measures:

M1(C) =
{
µ : B(C)→ [0,+∞) : µ measure, µ(C) = 1

}
.

The barycenter xµ of a measure µ ∈M1(C) is defined by

xµ =

∫
C
x dµ(x)
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(if the vector integral exists). Notice that by (3) we have `(xµ) =
∫
C ` dµ for each

` ∈ (Rd)∗.

Observation 0.1. Let C ⊂ Rd be a nonempty convex set, µ ∈M1(C).

(a) xµ exists ⇐⇒ ‖·‖ ∈ L1(µ) ⇐⇒ ` ∈ L1(µ) for each ` ∈ (Rd)∗. (This follows
easily from the fact that xµ exists if and only if

∫
C |x(i)| dµ(x) < +∞ for

each i = 1, . . . , d.)
(b) If µ is concentrated on a bounded subset of C (in particular, if C is bounded),

then xµ exists.

Proposition 0.2. Let C ⊂ Rd be a nonempty convex set, µ ∈ M1(C). If the
barycenter xµ exists, then xµ ∈ C.

Proof. Let us proceed by induction with respect to n := dim(C). For n = 0, we
have C = {x0} and hence µ = δx0 , xµ = x0 ∈ C.

Now, fix 0 ≤ m < d and suppose that the statement holds whenever n ≤ m.
Now, let dim(C) = m+1 and xµ /∈ C. By the Relative Interior Theorem, ri(C) 6= ∅,
and hence we can suppose that 0 ∈ ri(C). In this case, L := span(C) = aff(C) and
0 ∈ intL(C). Let us consider two cases.

(a) If xµ /∈ L, there exists ` ∈ (Rd)∗ such that `|L ≡ 0 and `(xµ) > 0.
(b) If xµ ∈ L, there exists ` ∈ L∗ \ {0} such that `(xµ) ≥ sup `(C) (by the H-B

Separation Theorem), and this ` can be extended to an element (denoted
again by `) of (Rd)∗.

In both cases, we have∫
C

[
`(xµ)− `(x)

]
dµ(x) = `(xµ)−

∫
C
` dµ = `(xµ)− `

(∫
C
x dµ(x)

)
= 0 .

Since the expression in square brackets is nonnegative, it must be µ-a.e. null. This
implies that necessarily xµ ∈ L. But in this case, ` is not identically zero on L.
Consequently, µ is concentrated on the set C1 := C ∩H where H = {x ∈ L : `(x) =
`(xµ)} is a hyperplane in L. Thus dim(C1) ≤ m, µ1 := µ|C1 ∈ M1(C1) and, by
the induction assumption, xµ = xµ1 ∈ C1 ⊂ C. This contradiction completes the
proof. �

Let us state an interesting corollary to the above proposition. By an infinite
convex combination of elements of C we mean any point x0 of the form

x0 =
+∞∑
i=1

λici

where ci ∈ C, λi ≥ 0,
∑+∞

j=1 λj = 1.

Corollary 0.3. Let C be a finite-dimensional convex set in a Hausdorff t.v.s. X.
Then each infinite convex combination of elements of C belongs to C.

Proof. Let x0 =
∑+∞

i=1 λici be an infinite convex combination of elements of C. Of
course, we can restrict ourselves to the subspace Y = span(C ∪ {x0}). Since Y ,
being a finite-dimensional t.v.s., is isomorphic to Rd, d = dim(Y ), we can suppose
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that X = Rd. We can also suppose that ci 6= cj whenever i 6= j. Consider the
measure µ concentrated on {ci : i ∈ N}, given by µ(ci) = λi. Since xµ = x0, we can
apply Proposition 0.2. �

Before proving the Jensen inequality, we shall need the following separation
lemma.

Lemma 0.4. Let X be a locally convex t.v.s., C ⊂ X a convex set, f : C →
(−∞,+∞] a l.s.c. convex function, x0 ∈ dom(f), and t0 < f(x0). Then there
exists a continuous affine function a : X → R such that a < f on C, and a(x0) > t0.

Proof. Fix α ∈ R such that t0 < α < f(x0). By lower semicontinuity, there exists a
convex neighborhood V of x0 such that α < f(x) for each x ∈ V ∩ C. Extend f to
the whole X defining f(x) = +∞ for x /∈ C, and consider the concave function

g(x) =

{
α if x ∈ V
−∞ otherwise

.

Since g ≤ f and g is continuous at x0, we can use a H-B Theorem on Separation
of Functions to get a continuous affine function a1 on X such that g ≤ a1 ≤ f .
Now, t0 < α ≤ a1(x0) ≤ f(x0). Thus, for a sufficiently small ε > 0, the function
a := a1 − ε has the required properties. �

Theorem 0.5 (Jensen inequality). Let C ⊂ Rd be a nonempty convex set, f : C →
(−∞,+∞] a convex l.s.c. function, and µ ∈M1(C). Assume that the baricenter xµ
exists (which is automatically true for a bounded C). Then xµ ∈ C and

(4) f(xµ) ≤
∫
C
f dµ

(in particular, the integral on the right-hand side exists).

Proof. We already know that xµ ∈ C (Proposition 0.2). If f ≡ +∞, the assertion
is obvious. Now, suppose that f is proper. Notice that f is B(C)-measurable since
the sublevel sets {x ∈ C : f(x) ≤ α} are relatively closed in C. We claim that
the right-hand-side integral in (4) exists. Indeed, by Lemma 0.4, there exists a
continuous affine function a : Rd → R such that a < f on C. Write a in the form
a(x) = `(x) + β where ` ∈ (Rd)∗, β ∈ R. By Observation 0.1, a ∈ L1(µ), which
implies that f− ∈ L1(µ).

The effective domain dom(f) = f−1(R) is convex and belongs to B(C). If µ(C \
dom(f)) > 0, then obviously

∫
C f dµ = +∞ and (4) trivially holds.

Let µ(C \ dom(f)) = 0. In this case, µ is concentrated on dom(f), and hence,
by Proposition 0.2, xµ ∈ dom(f). Assume that (4) is false, that is t0 :=

∫
C f dµ <

f(xµ). By Lemma 0.4, there exist ` ∈ (Rd)∗ and β ∈ R such that ` + β < f on C,
and `(xµ) + β > t0. But these two properties are in contradiction:

t0 =

∫
C
f dµ >

∫
C

(`+ β) dµ =

∫
C
` dµ+ β = `(xµ) + β > t0 .

�
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Corollary 0.6 (Hermite-Hadamard inequalities). Let f : [a, b]→ R be a continuous
convex function. Then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x) dx ≤ f(a) + f(b)

2
.

Proof. The measure µ, defined by dµ = dx
b−a , belongs to M1([a, b]). Moreover, its

barycenter is xµ = 1
b−a

∫ b
a x dx = a+b

2 . Thus the first inequality follows from the
integral Jensen inequality.

Let us show the second inequality. Substituting x = a+ t(b− a), we get

1
b−a

∫ b
a f(x) dx =

∫ 1
0 f((1− t)a+ tb) dt ≤

∫ 1
0

[
(1− t)f(a) + tf(b)

]
dt = f(a)+f(b)

2 .

�

Image of a probability measure. Let (Ω,Σ, µ) be a probability space, and (T, τ) a
topological space. Let g : Ω → T be a measurable mapping, that is g−1(A) ∈ Σ whenever
A ⊂ T is an τ -open set. Let Borel(τ) denote the σ-algebra of all Borel sets in T . Since
g−1(B) ∈ Σ for each B ∈ Borel(τ), we can consider the function

ν : Borel(τ)→ [0, 1] , ν(B) = µ(g−1(B)) .

It is easy to verify that ν is a (borelian) probability measure on T , called the image of µ
by the map g. Moreover, ν is concentrated on the image g(Ω), in the sense that ν(B) = 0
whenever B ∈ Borel(τ) is disjoint from g(Ω).

Let us see how to integrate with respect to ν. Let s =
∑n

1 αiχBi
be a nonnegative simple

function on T such that the sets Bi are borelian and pairwise disjoint. Then the composition
s◦g is a measurable simple function on Ω and it can be represented as s◦g =

∑n
1 αiχg−1(Bi).

Thus we have ∫
T

s dν =

n∑
1

αiν(Bi) =

n∑
1

αiµ(g−1(Bi)) =

∫
Ω

s ◦ g dµ .

Now, if f is a nonnegative Borel-measurable function on T , we can approximate it by a
pointwise converging nondecresing sequence of simple Borel-measurable functions. Passing
to limits in the above formula, we get

(5)

∫
T

f dν =

∫
Ω

f ◦ g dµ .

It follows that, for an arbitrary Borel-measurable function f on T , we have:

•
∫
T
f dν exists if and only if

∫
Ω
f ◦ g dµ exists; in this case, the two integrals are

equal;
• f ∈ L1(ν) if and only if f ◦ g ∈ L1(µ).

Let us return to the Jensen inequality. We can apply it to an image measure to
obtain the following

Theorem 0.7 (Second Jensen inequality). Let (Ω,Σ, µ) be a probability measure
space, and g : Ω → Rd a measurable mapping that is µ-integrable. Let C ⊂ Rd be
a convex set such that g(ω) ∈ C for µ-a.e. ω ∈ Ω, and f : C → (−∞,+∞] a l.s.c.
convex function. Then:

•
∫

Ω g dµ ∈ C;
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•
∫

Ω f ◦ g dµ exists;
• we have the inequality

f

(∫
Ω
g dµ

)
≤
∫

Ω
f ◦ g dµ .

Proof. Let ν be the image of the measure µ by the mapping g : Ω → C. Then ν is
a probability measure on C, defined on the relative Borel σ-algebra of B(C) C. Its
barycenter is xν =

∫
C x dν =

∫
Ω g dµ. The rest follows directly from Theorem 0.5

since
∫
C f dν =

∫
Ω f ◦ g dµ. �

Corollary 0.8 (Examples of applications). Let (Ω,Σ, µ) be a probability measure
space, and g ∈ L1(Ω).

(a) Second Jensen inequality for C = R and f(x) = |x|p (p ≥ 1) gives∣∣∣∣∫
Ω
g dµ

∣∣∣∣ ≤ (∫
Ω
|g|p dµ

)1/p

.

(b) Second Jensen inequality for C = R and f(x) = ex = exp(x) gives

exp

(∫
Ω
g dµ

)
≤
∫

Ω
eg dµ .

(c) Second Jensen inequality for C = (0,+∞) and f(x) = − log x gives∫
Ω

log g dµ ≤ log

(∫
Ω
g dµ

)
.

Hölder via Jensen. Let us show how the well-known Hölder inequality can be derived
from the Second Jensen inequality.

Let (Ω,Σ, µ) be a (not necessarily probability) nonnegative measure space. Let p, p′ ∈
(1,+∞) be two conjugate Hölder exponents (that is, 1

p + 1
p′ = 1). Let f, g be nonnegative

measurable functions on Ω, such that their norms in Lp(µ) and Lp′(µ) satisfy 0 < ‖f‖p <
+∞ and 0 < ‖g‖p′ < +∞. Consider the set Ω1 = {g > 0} (∈ Σ) and the measure ν on Σ,
defined by

dν =
1∫

Ω
gp′ dµ

gp
′
dµ .

Then ν is a probability measure which is concentrated on Ω1. Applying Corollary 0.8(a) to

the function fg1−p′ (defined on the set Ω1), we get

1∫
Ω
gp′ dµ

·
∫

Ω

fg dµ =

∫
Ω1

fg1−p′ dν

≤
(∫

Ω1

fpgp(1−p
′) dν

)1/p

=

(
1∫

Ω
gp′ dµ

·
∫

Ω

fpgp+p
′−pp′ dµ

)1/p

=
1(∫

Ω
gp′ dµ

)1/p · (∫
Ω

fp dµ

)1/p
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since p + p′ − pp′ = pp′( 1
p′ + 1

p − 1) = 0. Multiplying by
∫

Ω
gp
′
dµ , we obtain the Hölder

inequality ∫
Ω

fg dµ ≤ ‖f‖p ‖g‖p′ .

Finally, notice that if our assumption on the Lp-norm of f and the Lp′ -norm of g is not
satisfied, the Hölder inequality is trivially satisfied (with the usual convention “0 ·∞ = 0”).

A generalization of the Hermite-Hadamard inequalities. Let ‖ · ‖ be an arbitrary
norm on Rd, B ⊂ Rd a closed ‖ · ‖-ball centered at a point x0 ∈ Rd, and S = ∂B. Let m
denote the Lebesgue measure in Rd and σ the surface measure. Then, for each continuous
convex function f : B → R, we have the inequalities

(6) f(x0) ≤ 1

m(B)

∫
B

f dm ≤ 1

σ(S)

∫
S

f dσ .

Proof. By translation, we can suppose that x0 = 0. For the probability measure dµ = dm
m(B) ,

we have xµ = 0 by symmetry, and hence the Jensen inequality implies the first inequality
in (6). Let us show the second inequality. Notice that

m(B) =

∫ 1

0

σ(rS) dr = σ(S)

∫ 1

0

rd−1 dr =
1

d
σ(S) .

Now, a similar “onion-skin integration” and convexity of f imply∫
B

f dm =

∫ 1

0

(∫
rS

f dσ

)
dr

=

∫ 1

0

(∫
rS

f
(

1+r
2 (xr ) + 1−r

2 (−xr )
)
dσ(x)

)
dr

≤
∫ 1

0

(∫
rS

[
1+r

2 f(xr ) + 1−r
2 f(−xr )

]
dσ(x)

)
dr

=

(∫ 1

0

rd−1 dr

)∫
S

f dσ =
m(B)

σ(S)

∫
S

f dσ .

The second inequality in (6) follows by dividing by m(B). �

Possible generalizations. Some of the above results, except Proposition 0.2, can be eas-
ily generalized to the infinite-dimensional setting. The main problem is that we have to
introduce appropriately the barycenter of a probability measure. The most general is the
following Pettis-integral approach which defines the integral of a vector-valued function by
requiring the equality (3) for every continuous linear functional `.

Let X be a t.v.s., and E ⊂ X a nonempty set. We shall say that a point xµ ∈ X is a
barycenter for a probability measure µ ∈ M1(E) (defined on the relative Borel σ-algebra
B(E)) if

y∗(xµ) =
∫
E
y∗ dµ for each y∗ ∈ X∗.

Then we have the following results. Let X be a locally convex t.v.s., C ⊂ X a nonempty
convex set, and µ ∈M1(C).

(i) µ has at most one barycenter xµ. (This follows from the fact that X∗ separates
the points of X.)

(ii) If xµ exists and C is either closed or open, then xµ ∈ C. (The proof by contradic-
tion uses the H-B Separation Theorem, in the same spirit as in Proposition 0.2.)
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(iii) If C is compact, then xµ exists. (This is a bit more difficult.)
(iv) Theorem 0.5 (Jensen inequality) holds with X in place of Rd, under the additional

assumption that C is either closed or open, and f is finite. (The proof is the same.)


