Integral Jensen inequality

Let us consider a convex set $C \subset \mathbb{R}^{d}$, and a convex function $f: C \rightarrow(-\infty,+\infty]$. For any $x_{1}, \ldots, x_{n} \in C$ and $\lambda_{1}, \ldots, \lambda_{n} \geq 0$ with $\sum_{1}^{n} \lambda_{i}=1$, we have

$$
\begin{equation*}
f\left(\sum_{1}^{n} \lambda_{i} x_{i}\right) \leq \sum_{1}^{n} \lambda_{i} f\left(x_{i}\right) \tag{1}
\end{equation*}
$$

For $a \in \mathbb{R}^{d}$, let δ_{a} be the Dirac measure concentrated at a, that is

$$
\delta_{a}(E)= \begin{cases}1 & \text { if } a \in E \\ 0 & \text { if } a \notin E\end{cases}
$$

Then $\mu:=\sum_{1}^{n} \lambda_{i} \delta_{x_{i}}$ is a probability measure on C, defined for all subsets of C. Moreover, we can write $\sum_{1}^{n} \lambda_{i} f\left(x_{i}\right)=\int_{C} f d \mu$ and $\sum_{1}^{n} \lambda_{i} x_{i}=\int_{C} x d \mu(x)$, where the last integral is the integral of the vector-valued function $\psi(x)=x$. (Vector-valued integration will be recalled below.) Thus the finite Jensen inequality (1) can be written in the integral form

$$
\begin{equation*}
f\left(\int_{C} x d \mu(x)\right) \leq \int_{C} f d \mu \tag{2}
\end{equation*}
$$

Our aim is to show that (2) holds, under suitable assumptions, also for more general probability measures on C.

Vector integration. Let (Ω, Σ, μ) be a positive measure space, and $F=\left(F_{1}, \ldots, F_{d}\right): \Omega \rightarrow$ \mathbb{R}^{d} a measurable function (that is, $F^{-1}(A) \in \Sigma$ for each open set $A \subset \mathbb{R}^{d}$). It is easy to see that F is measurable if and only if each F_{k} is a measurable function. We say that F is integrable on a set $E \in \Sigma$ if $F_{k} \in L_{1}(E, \mu)$ for each $k=1, \ldots, d$. It is easy to see that F is integrable on E if and only if $\int_{E}\|F\| d \mu<+\infty$. In this case, we define

$$
\int_{E} F d \mu=\left(\int_{E} F_{1} d \mu, \ldots, \int_{E} F_{d} d \mu\right) .
$$

Observe that, for each linear functional $\ell \in\left(\mathbb{R}^{d}\right)^{*}$, we have

$$
\begin{equation*}
\ell\left(\int_{E} F d \mu\right)=\int_{E} \ell \circ F d \mu \tag{3}
\end{equation*}
$$

(this follows immediately by representing ℓ with a vector of \mathbb{R}^{d}). As an easy consequence, we obtain that $\int_{E} F d \mu$ exists if and only if $\ell \circ F \in L_{1}(E, \mu)$ for each $\ell \in\left(\mathbb{R}^{d}\right)^{*}$.

Returning to our aim, our measure μ should be defined on a σ-algebra of subsets of C, for which the restriction of the identity function $x \mapsto x$ to C is measurable. The smallest such σ-algebra is the family

$$
\mathcal{B}(C)=\left\{B \cap C: B \in \operatorname{Borel}\left(\mathbb{R}^{d}\right)\right\}
$$

where $\operatorname{Borel}\left(\mathbb{R}^{d}\right)$ is the Borel σ-algebra of \mathbb{R}^{d} (that is, the σ-algebra generated by the family of all open sets). Thus we shall consider the following family of measures:

$$
\mathcal{M}_{1}(C)=\{\mu: \mathcal{B}(C) \rightarrow[0,+\infty): \mu \text { measure, } \mu(C)=1\}
$$

The barycenter x_{μ} of a measure $\mu \in \mathcal{M}_{1}(C)$ is defined by

$$
x_{\mu}=\int_{C_{1}} x d \mu(x)
$$

(if the vector integral exists). Notice that by (3) we have $\ell\left(x_{\mu}\right)=\int_{C} \ell d \mu$ for each $\ell \in\left(\mathbb{R}^{d}\right)^{*}$.

Observation 0.1. Let $C \subset \mathbb{R}^{d}$ be a nonempty convex set, $\mu \in \mathcal{M}_{1}(C)$.
(a) x_{μ} exists $\Longleftrightarrow\|\cdot\| \in L_{1}(\mu) \Longleftrightarrow \ell \in L_{1}(\mu)$ for each $\ell \in\left(\mathbb{R}^{d}\right)^{*}$. (This follows easily from the fact that x_{μ} exists if and only if $\int_{C}|x(i)| d \mu(x)<+\infty$ for each $i=1, \ldots, d$.
(b) If μ is concentrated on a bounded subset of C (in particular, if C is bounded), then x_{μ} exists.

Proposition 0.2. Let $C \subset \mathbb{R}^{d}$ be a nonempty convex set, $\mu \in \mathcal{M}_{1}(C)$. If the barycenter x_{μ} exists, then $x_{\mu} \in C$.
Proof. Let us proceed by induction with respect to $n:=\operatorname{dim}(C)$. For $n=0$, we have $C=\left\{x_{0}\right\}$ and hence $\mu=\delta_{x_{0}}, x_{\mu}=x_{0} \in C$.

Now, fix $0 \leq m<d$ and suppose that the statement holds whenever $n \leq m$. Now, let $\operatorname{dim}(C)=m+1$ and $x_{\mu} \notin C$. By the Relative Interior Theorem, ri $(C) \neq \emptyset$, and hence we can suppose that $0 \in \operatorname{ri}(C)$. In this case, $L:=\operatorname{span}(C)=\operatorname{aff}(C)$ and $0 \in \operatorname{int}_{L}(C)$. Let us consider two cases.
(a) If $x_{\mu} \notin L$, there exists $\ell \in\left(\mathbb{R}^{d}\right)^{*}$ such that $\left.\ell\right|_{L} \equiv 0$ and $\ell\left(x_{\mu}\right)>0$.
(b) If $x_{\mu} \in L$, there exists $\ell \in L^{*} \backslash\{0\}$ such that $\ell\left(x_{\mu}\right) \geq \sup \ell(C)$ (by the H-B Separation Theorem), and this ℓ can be extended to an element (denoted again by $\ell)$ of $\left(\mathbb{R}^{d}\right)^{*}$.
In both cases, we have

$$
\int_{C}\left[\ell\left(x_{\mu}\right)-\ell(x)\right] d \mu(x)=\ell\left(x_{\mu}\right)-\int_{C} \ell d \mu=\ell\left(x_{\mu}\right)-\ell\left(\int_{C} x d \mu(x)\right)=0
$$

Since the expression in square brackets is nonnegative, it must be μ-a.e. null. This implies that necessarily $x_{\mu} \in L$. But in this case, ℓ is not identically zero on L. Consequently, μ is concentrated on the set $C_{1}:=C \cap H$ where $H=\{x \in L: \ell(x)=$ $\left.\ell\left(x_{\mu}\right)\right\}$ is a hyperplane in L. Thus $\operatorname{dim}\left(C_{1}\right) \leq m, \mu_{1}:=\left.\mu\right|_{C_{1}} \in \mathcal{M}_{1}\left(C_{1}\right)$ and, by the induction assumption, $x_{\mu}=x_{\mu_{1}} \in C_{1} \subset C$. This contradiction completes the proof.

Let us state an interesting corollary to the above proposition. By an infinite convex combination of elements of C we mean any point x_{0} of the form

$$
x_{0}=\sum_{i=1}^{+\infty} \lambda_{i} c_{i}
$$

where $c_{i} \in C, \lambda_{i} \geq 0, \sum_{j=1}^{+\infty} \lambda_{j}=1$.
Corollary 0.3. Let C be a finite-dimensional convex set in a Hausdorff t.v.s. X. Then each infinite convex combination of elements of C belongs to C.
Proof. Let $x_{0}=\sum_{i=1}^{+\infty} \lambda_{i} c_{i}$ be an infinite convex combination of elements of C. Of course, we can restrict ourselves to the subspace $Y=\operatorname{span}\left(C \cup\left\{x_{0}\right\}\right)$. Since Y, being a finite-dimensional t.v.s., is isomorphic to $\mathbb{R}^{d}, d=\operatorname{dim}(Y)$, we can suppose
that $X=\mathbb{R}^{d}$. We can also suppose that $c_{i} \neq c_{j}$ whenever $i \neq j$. Consider the measure μ concentrated on $\left\{c_{i}: i \in \mathbb{N}\right\}$, given by $\mu\left(c_{i}\right)=\lambda_{i}$. Since $x_{\mu}=x_{0}$, we can apply Proposition 0.2.

Before proving the Jensen inequality, we shall need the following separation lemma.

Lemma 0.4. Let X be a locally convex t.v.s., $C \subset X$ a convex set, $f: C \rightarrow$ $(-\infty,+\infty]$ a l.s.c. convex function, $x_{0} \in \operatorname{dom}(f)$, and $t_{0}<f\left(x_{0}\right)$. Then there exists a continuous affine function $a: X \rightarrow \mathbb{R}$ such that $a<f$ on C, and $a\left(x_{0}\right)>t_{0}$.

Proof. Fix $\alpha \in \mathbb{R}$ such that $t_{0}<\alpha<f\left(x_{0}\right)$. By lower semicontinuity, there exists a convex neighborhood V of x_{0} such that $\alpha<f(x)$ for each $x \in V \cap C$. Extend f to the whole X defining $f(x)=+\infty$ for $x \notin C$, and consider the concave function

$$
g(x)= \begin{cases}\alpha & \text { if } x \in V \\ -\infty & \text { otherwise }\end{cases}
$$

Since $g \leq f$ and g is continuous at x_{0}, we can use a H-B Theorem on Separation of Functions to get a continuous affine function a_{1} on X such that $g \leq a_{1} \leq f$. Now, $t_{0}<\alpha \leq a_{1}\left(x_{0}\right) \leq f\left(x_{0}\right)$. Thus, for a sufficiently small $\varepsilon>0$, the function $a:=a_{1}-\varepsilon$ has the required properties.
Theorem 0.5 (Jensen inequality). Let $C \subset \mathbb{R}^{d}$ be a nonempty convex set, $f: C \rightarrow$ $(-\infty,+\infty]$ a convex l.s.c. function, and $\mu \in \mathcal{M}_{1}(C)$. Assume that the baricenter x_{μ} exists (which is automatically true for a bounded C). Then $x_{\mu} \in C$ and

$$
\begin{equation*}
f\left(x_{\mu}\right) \leq \int_{C} f d \mu \tag{4}
\end{equation*}
$$

(in particular, the integral on the right-hand side exists).
Proof. We already know that $x_{\mu} \in C$ (Proposition 0.2). If $f \equiv+\infty$, the assertion is obvious. Now, suppose that f is proper. Notice that f is $\mathcal{B}(C)$-measurable since the sublevel sets $\{x \in C: f(x) \leq \alpha\}$ are relatively closed in C. We claim that the right-hand-side integral in (4) exists. Indeed, by Lemma 0.4, there exists a continuous affine function $a: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that $a<f$ on C. Write a in the form $a(x)=\ell(x)+\beta$ where $\ell \in\left(\mathbb{R}^{d}\right)^{*}, \beta \in \mathbb{R}$. By Observation $0.1, a \in L_{1}(\mu)$, which implies that $f^{-} \in L_{1}(\mu)$.

The effective domain $\operatorname{dom}(f)=f^{-1}(\mathbb{R})$ is convex and belongs to $\mathcal{B}(C)$. If $\mu(C \backslash$ $\operatorname{dom}(f))>0$, then obviously $\int_{C} f d \mu=+\infty$ and (4) trivially holds.

Let $\mu(C \backslash \operatorname{dom}(f))=0$. In this case, μ is concentrated on $\operatorname{dom}(f)$, and hence, by Proposition $0.2, x_{\mu} \in \operatorname{dom}(f)$. Assume that (4) is false, that is $t_{0}:=\int_{C} f d \mu<$ $f\left(x_{\mu}\right)$. By Lemma 0.4 , there exist $\ell \in\left(\mathbb{R}^{d}\right)^{*}$ and $\beta \in \mathbb{R}$ such that $\ell+\beta<f$ on C, and $\ell\left(x_{\mu}\right)+\beta>t_{0}$. But these two properties are in contradiction:

$$
t_{0}=\int_{C} f d \mu>\int_{C}(\ell+\beta) d \mu=\int_{C} \ell d \mu+\beta=\ell\left(x_{\mu}\right)+\beta>t_{0}
$$

Corollary 0.6 (Hermite-Hadamard inequalities). Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous convex function. Then

$$
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2}
$$

Proof. The measure μ, defined by $d \mu=\frac{d x}{b-a}$, belongs to $\mathcal{M}_{1}([a, b])$. Moreover, its barycenter is $x_{\mu}=\frac{1}{b-a} \int_{a}^{b} x d x=\frac{a+b}{2}$. Thus the first inequality follows from the integral Jensen inequality.

Let us show the second inequality. Substituting $x=a+t(b-a)$, we get

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x=\int_{0}^{1} f((1-t) a+t b) d t \leq \int_{0}^{1}[(1-t) f(a)+t f(b)] d t=\frac{f(a)+f(b)}{2} .
$$

Image of a probability measure. Let (Ω, Σ, μ) be a probability space, and (T, τ) a topological space. Let $g: \Omega \rightarrow T$ be a measurable mapping, that is $g^{-1}(A) \in \Sigma$ whenever $A \subset T$ is an τ-open set. Let $\operatorname{Borel}(\tau)$ denote the σ-algebra of all Borel sets in T. Since $g^{-1}(B) \in \Sigma$ for each $B \in \operatorname{Borel}(\tau)$, we can consider the function

$$
\nu: \operatorname{Borel}(\tau) \rightarrow[0,1], \quad \nu(B)=\mu\left(g^{-1}(B)\right) .
$$

It is easy to verify that ν is a (borelian) probability measure on T, called the image of μ by the map g. Moreover, ν is concentrated on the image $g(\Omega)$, in the sense that $\nu(B)=0$ whenever $B \in \operatorname{Borel}(\tau)$ is disjoint from $g(\Omega)$.

Let us see how to integrate with respect to ν. Let $s=\sum_{1}^{n} \alpha_{i} \chi_{B_{i}}$ be a nonnegative simple function on T such that the sets B_{i} are borelian and pairwise disjoint. Then the composition $s \circ g$ is a measurable simple function on Ω and it can be represented as $s \circ g=\sum_{1}^{n} \alpha_{i} \chi_{g^{-1}\left(B_{i}\right)}$. Thus we have

$$
\int_{T} s d \nu=\sum_{1}^{n} \alpha_{i} \nu\left(B_{i}\right)=\sum_{1}^{n} \alpha_{i} \mu\left(g^{-1}\left(B_{i}\right)\right)=\int_{\Omega} s \circ g d \mu .
$$

Now, if f is a nonnegative Borel-measurable function on T, we can approximate it by a pointwise converging nondecresing sequence of simple Borel-measurable functions. Passing to limits in the above formula, we get

$$
\begin{equation*}
\int_{T} f d \nu=\int_{\Omega} f \circ g d \mu \tag{5}
\end{equation*}
$$

It follows that, for an arbitrary Borel-measurable function f on T, we have:

- $\int_{T} f d \nu$ exists if and only if $\int_{\Omega} f \circ g d \mu$ exists; in this case, the two integrals are equal;
- $f \in L_{1}(\nu)$ if and only if $f \circ g \in L_{1}(\mu)$.

Let us return to the Jensen inequality. We can apply it to an image measure to obtain the following
Theorem 0.7 (Second Jensen inequality). Let (Ω, Σ, μ) be a probability measure space, and $g: \Omega \rightarrow \mathbb{R}^{d}$ a measurable mapping that is μ-integrable. Let $C \subset \mathbb{R}^{d}$ be a convex set such that $g(\omega) \in C$ for μ-a.e. $\omega \in \Omega$, and $f: C \rightarrow(-\infty,+\infty]$ a l.s.c. convex function. Then:

- $\int_{\Omega} g d \mu \in C ;$
- $\int_{\Omega} f \circ g d \mu$ exists;
- we have the inequality

$$
f\left(\int_{\Omega} g d \mu\right) \leq \int_{\Omega} f \circ g d \mu .
$$

Proof. Let ν be the image of the measure μ by the mapping $g: \Omega \rightarrow C$. Then ν is a probability measure on C, defined on the relative Borel σ-algebra of $\mathcal{B}(C) C$. Its barycenter is $x_{\nu}=\int_{C} x d \nu=\int_{\Omega} g d \mu$. The rest follows directly from Theorem 0.5 since $\int_{C} f d \nu=\int_{\Omega} f \circ g d \mu$.
Corollary 0.8 (Examples of applications). Let (Ω, Σ, μ) be a probability measure space, and $g \in L_{1}(\Omega)$.
(a) Second Jensen inequality for $C=\mathbb{R}$ and $f(x)=|x|^{p}(p \geq 1)$ gives

$$
\left|\int_{\Omega} g d \mu\right| \leq\left(\int_{\Omega}|g|^{p} d \mu\right)^{1 / p} .
$$

(b) Second Jensen inequality for $C=\mathbb{R}$ and $f(x)=e^{x}=\exp (x)$ gives

$$
\exp \left(\int_{\Omega} g d \mu\right) \leq \int_{\Omega} e^{g} d \mu
$$

(c) Second Jensen inequality for $C=(0,+\infty)$ and $f(x)=-\log x$ gives

$$
\int_{\Omega} \log g d \mu \leq \log \left(\int_{\Omega} g d \mu\right) .
$$

Hölder via Jensen. Let us show how the well-known Hölder inequality can be derived from the Second Jensen inequality.

Let (Ω, Σ, μ) be a (not necessarily probability) nonnegative measure space. Let $p, p^{\prime} \in$ $(1,+\infty)$ be two conjugate Hölder exponents (that is, $\frac{1}{p}+\frac{1}{p^{\prime}}=1$). Let f, g be nonnegative measurable functions on Ω, such that their norms in $L_{p}(\mu)$ and $L_{p^{\prime}}(\mu)$ satisfy $0<\|f\|_{p}<$ $+\infty$ and $0<\|g\|_{p^{\prime}}<+\infty$. Consider the set $\Omega_{1}=\{g>0\}(\in \Sigma)$ and the measure ν on Σ, defined by

$$
d \nu=\frac{1}{\int_{\Omega} g^{p^{\prime}} d \mu} g^{p^{\prime}} d \mu
$$

Then ν is a probability measure which is concentrated on Ω_{1}. Applying Corollary 0.8(a) to the function $f g^{1-p^{\prime}}$ (defined on the set Ω_{1}), we get

$$
\begin{aligned}
\frac{1}{\int_{\Omega} g^{p^{\prime}} d \mu} \cdot \int_{\Omega} f g d \mu & =\int_{\Omega_{1}} f g^{1-p^{\prime}} d \nu \\
& \leq\left(\int_{\Omega_{1}} f^{p} g^{p\left(1-p^{\prime}\right)} d \nu\right)^{1 / p} \\
& =\left(\frac{1}{\int_{\Omega} g^{p^{\prime}} d \mu} \cdot \int_{\Omega} f^{p} g^{p+p^{\prime}-p p^{\prime}} d \mu\right)^{1 / p} \\
& =\frac{1}{\left(\int_{\Omega} g^{p^{\prime}} d \mu\right)^{1 / p}} \cdot\left(\int_{\Omega} f^{p} d \mu\right)^{1 / p}
\end{aligned}
$$

since $p+p^{\prime}-p p^{\prime}=p p^{\prime}\left(\frac{1}{p^{\prime}}+\frac{1}{p}-1\right)=0$. Multiplying by $\int_{\Omega} g^{p^{\prime}} d \mu$, we obtain the Hölder inequality

$$
\int_{\Omega} f g d \mu \leq\|f\|_{p}\|g\|_{p^{\prime}}
$$

Finally, notice that if our assumption on the L_{p}-norm of f and the $L_{p^{\prime}}$-norm of g is not satisfied, the Hölder inequality is trivially satisfied (with the usual convention " $0 \cdot \infty=0$ ").

A generalization of the Hermite-Hadamard inequalities. Let || \|| be an arbitrary norm on $\mathbb{R}^{d}, B \subset \mathbb{R}^{d}$ a closed $\|\cdot\|$-ball centered at a point $x_{0} \in \mathbb{R}^{d}$, and $S=\partial B$. Let m denote the Lebesgue measure in \mathbb{R}^{d} and σ the surface measure. Then, for each continuous convex function $f: B \rightarrow \mathbb{R}$, we have the inequalities

$$
\begin{equation*}
f\left(x_{0}\right) \leq \frac{1}{m(B)} \int_{B} f d m \leq \frac{1}{\sigma(S)} \int_{S} f d \sigma \tag{6}
\end{equation*}
$$

Proof. By translation, we can suppose that $x_{0}=0$. For the probability measure $d \mu=\frac{d m}{m(B)}$, we have $x_{\mu}=0$ by symmetry, and hence the Jensen inequality implies the first inequality in (6). Let us show the second inequality. Notice that

$$
m(B)=\int_{0}^{1} \sigma(r S) d r=\sigma(S) \int_{0}^{1} r^{d-1} d r=\frac{1}{d} \sigma(S)
$$

Now, a similar "onion-skin integration" and convexity of f imply

$$
\begin{aligned}
\int_{B} f d m & =\int_{0}^{1}\left(\int_{r S} f d \sigma\right) d r \\
& =\int_{0}^{1}\left(\int_{r S} f\left(\frac{1+r}{2}\left(\frac{x}{r}\right)+\frac{1-r}{2}\left(-\frac{x}{r}\right)\right) d \sigma(x)\right) d r \\
& \leq \int_{0}^{1}\left(\int_{r S}\left[\frac{1+r}{2} f\left(\frac{x}{r}\right)+\frac{1-r}{2} f\left(-\frac{x}{r}\right)\right] d \sigma(x)\right) d r \\
& =\left(\int_{0}^{1} r^{d-1} d r\right) \int_{S} f d \sigma=\frac{m(B)}{\sigma(S)} \int_{S} f d \sigma
\end{aligned}
$$

The second inequality in (6) follows by dividing by $m(B)$.

Possible generalizations. Some of the above results, except Proposition 0.2, can be easily generalized to the infinite-dimensional setting. The main problem is that we have to introduce appropriately the barycenter of a probability measure. The most general is the following Pettis-integral approach which defines the integral of a vector-valued function by requiring the equality (3) for every continuous linear functional ℓ.

Let X be a t.v.s., and $E \subset X$ a nonempty set. We shall say that a point $x_{\mu} \in X$ is a barycenter for a probability measure $\mu \in \mathcal{M}_{1}(E)$ (defined on the relative Borel σ-algebra $\mathcal{B}(E)$) if

$$
y^{*}\left(x_{\mu}\right)=\int_{E} y^{*} d \mu \quad \text { for each } y^{*} \in X^{*} .
$$

Then we have the following results. Let X be a locally convex t.v.s., $C \subset X$ a nonempty convex set, and $\mu \in \mathcal{M}_{1}(C)$.
(i) μ has at most one barycenter x_{μ}. (This follows from the fact that X^{*} separates the points of X.)
(ii) If x_{μ} exists and C is either closed or open, then $x_{\mu} \in C$. (The proof by contradiction uses the H-B Separation Theorem, in the same spirit as in Proposition 0.2.)
(iii) If C is compact, then x_{μ} exists. (This is a bit more difficult.)
(iv) Theorem 0.5 (Jensen inequality) holds with X in place of \mathbb{R}^{d}, under the additional assumption that C is either closed or open, and f is finite. (The proof is the same.)

