INTEGRAL JENSEN INEQUALITY

Let us consider a convex set C' C R?, and a convex function f: C — (—o0, +oc].
For any x1,...,2n, € C and Ai,..., A, > 0 with > 7' A = 1, we have
(1) SO Xiwi) < 370 Aif (i) -

For a € R?, let 8, be the Dirac measure concentrated at a, that is

5a(E) = 1 ifackE
0 ifag¢ B

Then p = > 1 \ids, is a probability measure on C, defined for all subsets of C.
Moreover, we can write Y 1" X f(z;) = [ fdp and Y7 Niws = [ 2 dp(x), where the
last integral is the integral of the vector-valued function ¢(z) = z. (Vector-valued

integration will be recalled below.) Thus the finite Jensen inequality (1) can be
written in the integral form

2) F(fowdu(@) < [ f du.

Our aim is to show that (2) holds, under suitable assumptions, also for more general
probability measures on C.

Vector integration. Let (2, %, i) be a positive measure space, and F' = (Fy, ..., Fy): Q —
R? a measurable function (that is, F~1(A) € ¥ for each open set A C RY). Tt is easy to
see that F' is measurable if and only if each F} is a measurable function. We say that F' is
integrable on a set E € ¥ if Fy, € L1(E, ) for each k = 1,...,d. Tt is easy to see that F is
integrable on E if and only if [, | F||du < 4oc0. In this case, we define

/qu:(/Fld,u,...,/Fddu>.
E E E

Observe that, for each linear functional £ € (R%)*, we have

(3) £</EFd“>:/E£OFd“

(this follows immediately by representing ¢ with a vector of R%). As an easy consequence,
we obtain that [}, F du exists if and only if £ o F € Ly (E, ji) for each ¢ € (R%)*.

Returning to our aim, our measure p should be defined on a g-algebra of subsets
of C, for which the restriction of the identity function x — x to C' is measurable.
The smallest such o-algebra is the family

B(C)={BNC : B e Borel(R%)}

where Borel(R?) is the Borel g-algebra of R? (that is, the g-algebra generated by
the family of all open sets). Thus we shall consider the following family of measures:

My (C) = {p: B(C) — [0,+00) : p measure, u(C) =1} .
The barycenter x,, of a measure u € M;(C) is defined by

5= [ aduta)
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(if the vector integral exists). Notice that by (3) we have £(z,) = [, {du for each
0 € (R

Observation 0.1. Let C C R? be a nonempty convex set, u € My(C).

(a) z,, exists <= ||-|| € Li(n) <= € € Ly(u) for each £ € (R?)*. (This follows
easily from the fact that z, exists if and only if [ |x(i)|du(z) < +oo for
eachi=1,...,d.)

(b) If u is concentrated on a bounded subset of C' (in particular, if C is bounded),
then x,, exists.

Proposition 0.2. Let C C RY be a nonempty convex set, u € My(C). If the
barycenter x, exists, then x, € C.

Proof. Let us proceed by induction with respect to n := dim(C). For n = 0, we
have C' = {xo} and hence yu = d,,, x, = xo € C.

Now, fix 0 < m < d and suppose that the statement holds whenever n < m.
Now, let dim(C) = m+1 and z,, ¢ C. By the Relative Interior Theorem, ri(C) # 0,
and hence we can suppose that 0 € ri(C). In this case, L := span(C) = aff(C') and
0 € intz,(C). Let us consider two cases.

(a) If z,, ¢ L, there exists £ € (R?)* such that ¢|;, = 0 and ¢(x,) > 0.
(b) If x,, € L, there exists £ € L* \ {0} such that ¢(x,) > sup ¢(C) (by the H-B
Separation Theorem), and this ¢ can be extended to an element (denoted
again by /) of (R%)*.
In both cases, we have

/C[g(mu) - a@’)] dp(z) = £(z,) — /ngﬂ =l(x,) =1 (/deu(x)) =0.

Since the expression in square brackets is nonnegative, it must be p-a.e. null. This
implies that necessarily x, € L. But in this case, ¢ is not identically zero on L.
Consequently, p is concentrated on the set C1 := CNH where H ={z € L : {(z) =
{(x,)} is a hyperplane in L. Thus dim(Cy) < m, 1 = ple, € Mi(Ch) and, by
the induction assumption, z, = z,, € C; C C. This contradiction completes the
proof. O

Let us state an interesting corollary to the above proposition. By an infinite
convex combination of elements of C' we mean any point zg of the form

“+o00
xo = E Aici
i—1

where ¢; € C, \; > 0, Zj:o? Aj =1

Corollary 0.3. Let C be a finite-dimensional convexr set in a Hausdorff t.v.s. X.
Then each infinite convexr combination of elements of C' belongs to C'.

Proof. Let zg = ZLOIO Aic; be an infinite convex combination of elements of C. Of
course, we can restrict ourselves to the subspace Y = span(C U {xo}). Since Y,
being a finite-dimensional t.v.s., is isomorphic to R%, d = dim(Y"), we can suppose
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that X = R? We can also suppose that ¢; # c¢; whenever ¢ # j. Consider the
measure p concentrated on {¢; : i € N}, given by pu(c;) = A;. Since x, = x¢, we can
apply Proposition 0.2. O

Before proving the Jensen inequality, we shall need the following separation
lemma.

Lemma 0.4. Let X be a locally convex t.v.s., C C X a conver set, f: C —
(=00, +0o0] a l.s.c. conver function, vo € dom(f), and ty < f(xo). Then there
exists a continuous affine function a: X — R such that a < f on C, and a(xg) > to.

Proof. Fix a € R such that tg < a < f(z¢). By lower semicontinuity, there exists a
convex neighborhood V' of xg such that a < f(z) for each x € V. N C. Extend f to
the whole X defining f(z) = +oo for = ¢ C, and consider the concave function

g(x):{a ifreV

—oo otherwise

Since g < f and g is continuous at xp, we can use a H-B Theorem on Separation
of Functions to get a continuous affine function a; on X such that g < a; < f.
Now, tg < a < ai(xg) < f(zp). Thus, for a sufficiently small £ > 0, the function
a := a1 — ¢ has the required properties. O

Theorem 0.5 (Jensen inequality). Let C' C R? be a nonempty convex set, f: C —
(=00, +00] a convex l.s.c. function, and p € My (C). Assume that the baricenter x,,
exists (which is automatically true for a bounded C). Then x, € C and

4) fla) < [ fan
(in particular, the integral on the right-hand side exists).

Proof. We already know that x, € C' (Proposition 0.2). If f = +o0, the assertion
is obvious. Now, suppose that f is proper. Notice that f is B(C')-measurable since
the sublevel sets {z € C : f(z) < a} are relatively closed in C. We claim that
the right-hand-side integral in (4) exists. Indeed, by Lemma 0.4, there exists a
continuous affine function a: R® — R such that a < f on C. Write a in the form
a(r) = {(z) + B where £ € (R)*, 3 € R. By Observation 0.1, a € L;(u), which
implies that f~ € Li(u).

The effective domain dom(f) = f~!(R) is convex and belongs to B(C). If u(C \
dom(f)) > 0, then obviously [, fdu =400 and (4) trivially holds.

Let u(C \ dom(f)) = 0. In this case, p is concentrated on dom(f), and hence,
by Proposition 0.2, z, € dom(f). Assume that (4) is false, that is tp := fC fdu <
f(z,). By Lemma 0.4, there exist £ € (R%)* and 3 € R such that £+ 8 < f on C,
and ¢(x,) + [ > typ. But these two properties are in contradiction:

to_/cfdu>/(J(uﬁ)du_/Cmum_e(x#)mno.
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Corollary 0.6 (Hermite-Hadamard inequalities). Let f: [a,b] — R be a continuous
convex function. Then

1(550) <5 [ o< 2000

Proof. The measure p, defined by du = ;22 belongs to M ( [a,b]). Moreover, its

b—a’
barycenter is x, = ﬁ ;:L‘dl‘ = “7“’. Thus the first inequality follows from the

integral Jensen inequality.
Let us show the second inequality. Substituting z = a + t(b — a), we get

AL P f@)de = [} (1= t)a+tb)dt < [ [(1—t)f(a) +tf(b)] dt = LOHO)
0

Image of a probability measure. Let (2,%, 1) be a probability space, and (T,7) a
topological space. Let g: 2 — T be a measurable mapping, that is g~*(A4) € ¥ whenever
A C T is an T-open set. Let Borel(7) denote the o-algebra of all Borel sets in 7. Since
g 1(B) € X for each B € Borel(T), we can consider the function
v: Borel(t) — [0,1], v(B) = u(g~*(B)).

It is easy to verify that v is a (borelian) probability measure on T, called the image of u
by the map g. Moreover, v is concentrated on the image g(2), in the sense that v(B) =0
whenever B € Borel(r) is disjoint from g¢(€2).

Let us see how to integrate with respect to v. Let s = > a; X g, be a nonnegative simple
function on T such that the sets B; are borelian and pairwise disjoint. Then the composition
sog is a measurable simple function on {2 and it can be represented as sog = E? QX g—1(B;)-
Thus we have

/Tsdy = leaiV(Bi) = zl:aiu(gf (By)) = /Qsogdu.

Now, if f is a nonnegative Borel-measurable function on 7', we can approximate it by a
pointwise converging nondecresing sequence of simple Borel-measurable functions. Passing
to limits in the above formula, we get

(5) /del/z/ﬂfogdw

It follows that, for an arbitrary Borel-measurable function f on T', we have:
o [, fdv exists if and only if [, f o gdp exists; in this case, the two integrals are
equal;
o feLi(v)ifand only if fog € Li(u).
Let us return to the Jensen inequality. We can apply it to an image measure to
obtain the following

Theorem 0.7 (Second Jensen inequality). Let (2,%,u) be a probability measure
space, and g: Q@ — R? a measurable mapping that is p-integrable. Let C C R? be
a convez set such that g(w) € C for p-a.e. w € Q, and f: C — (—o00,+00] a Ls.c.
convez function. Then:



o [ fogdu exists;
e we have the inequality

f(/ggdu> S/ﬂfogdu-

Proof. Let v be the image of the measure p by the mapping g: Q@ — C. Then v is
a probability measure on C, defined on the relative Borel o-algebra of B(C) C. Its
barycenter is , = [,xdv = [, gdp. The rest follows directly from Theorem 0.5

since [, fdv = [, fogdpu. O
Corollary 0.8 (Examples of applications). Let (2, %, 1) be a probability measure
space, and g € L1().

(a) Second Jensen inequality for C =R and f(x) = |z|P (p > 1) gives

1/p
‘/gdu < (/ Ig!pdu> :
Q Q

(b) Second Jensen inequality for C =R and f(x) = e* = exp(z) gives

exp(/gd,u) S/egdu.
Q Q

(c) Second Jensen inequality for C = (0,400) and f(x) = —logx gives

/10g9du§10g </gdu) -
Q Q

Holder via Jensen. Let us show how the well-known Hoélder inequality can be derived
from the Second Jensen inequality.

Let (©,%, 1) be a (not necessarily probability) nonnegative measure space. Let p,p’ €
(1,400) be two conjugate Holder exponents (that is, % + ﬁ =1). Let f,g be nonnegative

measurable functions on £, such that their norms in L,(u) and L, (p) satisfy 0 < || f||, <
+00 and 0 < ||g|l,» < +o0. Consider the set Q1 = {g > 0} (€ ¥) and the measure v on X,

defined by
1 /
dv = ——+— ¢P du.
fQ g7 dp g ap

Then v is a probability measure which is concentrated on ;. Applying Corollary 0.8(a) to
the function fg'=?' (deﬁned on the set 1), we get

/ fgdu= [ fg" " dv
Q1

1/p
< ( frgr=r") d,/>
951

fp p+p’ —pp’ d e
fQ gp d/~L a
1 » 1/p
e — d
(fg g?' d,u) L/p (/Q f N)

ngp dp
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since p+p' — pp’ = pp’(l% + 1% — 1) = 0. Multiplying by [, g”" du, we obtain the Holder
inequality

LMWSWMMW

Finally, notice that if our assumption on the Ly-norm of f and the L,-norm of g is not
satisfied, the Holder inequality is trivially satisfied (with the usual convention “0-oco = 0”).

A generalization of the Hermite-Hadamard inequalities. Let || - || be an arbitrary
norm on R%, B C R? a closed || - ||-ball centered at a point zy € R?, and S = dB. Let m
denote the Lebesgue measure in R? and o the surface measure. Then, for each continuous
convex function f: B — R, we have the inequalities

1 1
(6) f(xo)SW/demgﬁ/sfda.

Proof. By translation, we can suppose that 2o = 0. For the probability measure dy = —22

m(B)’
we have z, = 0 by symmetry, and hence the Jensen inequality implies the first inequality

in (6). Let us show the second inequality. Notice that

m(B) = /O1 o(rS) dr = o(S) /01 ri=L gy — éo—<5).

Now, a similar “onion-skin integration” and convexity of f imply

foram= [ (f,ro) o
= [ s0s@ 0w )
< [([ i@+ s r-0laow) o

S
—</01rd1dr>/sfda—zl((§))/sfda.

The second inequality in (6) follows by dividing by m(B). O

Possible generalizations. Some of the above results, except Proposition 0.2, can be eas-
ily generalized to the infinite-dimensional setting. The main problem is that we have to
introduce appropriately the barycenter of a probability measure. The most general is the
following Pettis-integral approach which defines the integral of a vector-valued function by
requiring the equality (3) for every continuous linear functional /.

Let X be a t.v.s., and £ C X a nonempty set. We shall say that a point z, € X is a
barycenter for a probability measure p € M;(E) (defined on the relative Borel o-algebra
B(E)) if

yH(xy) = [yt dp for each y* € X*.

Then we have the following results. Let X be a locally convez t.v.s., C C X a nonempty
convez set, and p € M1(C).

(i) p has at most one barycenter x,. (This follows from the fact that X* separates
the points of X.)

(ii) Ifx, exists and C is either closed or open, then x,, € C'. (The proof by contradic-
tion uses the H-B Separation Theorem, in the same spirit as in Proposition 0.2.)



(iii) If C is compact, then x,, exists. (This is a bit more difficult.)
(iv) Theorem 0.5 (Jensen inequality) holds with X in place of R, under the additional
assumption that C is either closed or open, and f is finite. (The proof is the same.)



