
Minimization of convex functions

In this chapter, we shall apply weak topologies to minimization of convex func-
tions. The main general result in which convexity plays an important role is Theo-
rem 0.5(c).

Let us recall that, given a Hausdorff topological space T , a function f : T → (−∞,+∞]
is lower semicontinuous (l.s.c.) if, for each t0 ∈ T and each α < f(t0) there exists a
neighborhood U of t0 such that α < f(t) for each t ∈ U . It is an easy exercise to show that
the following assertions are equivalent:

• f is l.s.c.;
• for each α ∈ R, the set {f ≤ α} is closed in T ;
• the epigraph epi(f) is closed in T × R.

Moreover, a pointwise supremum of any family of l.s.c. functions is again a l.s.c. function
(this follows easily from the above epigraph ciriterion), and a sum of finitely many l.s.c.
functions is again a l.s.c. function (this follows easily from the definition, using the fact that
if t < f(x0) + g(x0), there exist t1 < f(x0) and t2 < g(x0) such that t = t1 + t2).

The following theorem is the “lower part” of the well-known Weierstrass theorem.

Theorem 0.1. Let f : T → (−∞, +∞] be a l.s.c. function on a compact Hausdorff topolog-
ical space T . Then T attains its infimum over T .

Proof. Let α0 = inf f(T ). If α0 = +∞, then f ≡ +∞ and the assertion trivially holds. Let
α0 < +∞. Then, for each real α > α0, the set {f ≤ α} is closed and nonempty. Obviously,
any finite collection of such sets has a nonempty intersection. By compactness, also the set⋂

α>α0
{f ≤ α} = {f ≤ α0} = f−1(α0) is nonempty. (In particular, this implies that α0 is

finite.) ¤

Theorem 0.2. Let X be a normed space, and f : X → (−∞, +∞] a l.s.c. convex
function. Then f is w-l.s.c. (In particular, the norm of X is w-l.s.c.)

Proof. The sets {f ≤ α} are convex and closed, and hence w-closed. ¤
Corollary 0.3. Let X be a normed space, f : X → (−∞, +∞] a l.s.c. convex func-
tion. Then f has a minimum on each nonempty w-compact subset of X. (In par-
ticular, if X is a reflexive Banach space, then f has a minimum on each bounded
closed convex subset of X.)

Lemma 0.4. Let X be a normed space. Then the dual norm ‖ · ‖X∗ is w∗-l.s.c.

Proof. The sets {‖ · ‖X∗ ≤ α} are closed balls, and hence w∗-closed. ¤
Now, we are ready to prove a general theorem about existence of global minima.

Theorem 0.5. Let X be a Banach space, f : X → (−∞, +∞] a function. Assume
that f is coercive, that is,

lim
‖x‖→+∞

f(x) = +∞ .

Suppose that at least one of the following conditions is satisfied:
(a) X = Z∗ for some normed space Z, and f is w∗-l.s.c. (that is, l.s.c. in the

σ(Z∗, Z)-topology).
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(b) X is a reflexive and f is w-l.s.c.;
(c) X is reflexive, and f is convex and (norm-)l.s.c.;

Then f attains a global minimum.

Proof. Let α0 = inf f(X) and α ∈ (α0,+∞). By coercivity, there exists r > 0 such
that f(x) > α whenever ‖x‖ > r. It follows that α0 = inf f(rBX). Now, the case
(a) follows from Theorem 0.1 since the ball rBX = rBZ∗ is w∗-compact. The case
(b) follows from (a) since we can take Z = X∗, and, in this case, Z is reflexive and
w∗X = σ(Z∗, Z) = σ(Z∗, Z∗∗) = σ(X, X∗) = wX . Finally, (c) follows from (b) by
Theorem 0.2. ¤

Let us state two applications in Abstract Approximation Theory.

Existence of nearest points. Let M be a metric space, E ⊂ M a set and x ∈ M
a point. We say that y ∈ M is a nearest point to x in M if d(x, y) = d(x,M). The
set E is called proximinal if each point of M has at least one nearest point in M .

Theorem 0.6.
(a) Every nonempty w∗-closed set in a dual of a normed space is proximinal.
(b) Every nonempty w-closed set in a reflexive Banach space is proximinal.
(c) Every nonempty closed convex set in a reflexive Banach space is proximinal.

Proof. As in the proof of Theorem 0.5, it suffices to prove the case (a). Let E ⊂ X∗
be a nonempty w∗-closed set, and x∗0 ∈ X∗ \ E. The function x∗ 7→ ‖x∗ − x∗0‖ is
w∗-l.s.c. on X∗ (Lemma 0.4) and coercive. Then also the function

f : X∗ → (−∞,+∞] , f(x∗) =

{
‖x∗ − x∗0‖ if x∗ ∈ E

+∞ otherwise
,

is w∗-l.s.c. and coercive. By Theorem 0.5, f attains a global minimum. Any such
point of minimum is a nearest point to x∗0 in E. ¤

Using the James theorem, we can show that the property (c) in Theorem 0.6
characterizes reflexive spaces among all Banach spaces.

Theorem 0.7. For a Banach space X, the following assertions are equivalent.
(i) X is reflexive.
(ii) Each nonempty closed convex set C ⊂ X is proximinal.
(iii) Each closed hyperplane H ⊂ X is proximinal.

Proof. The implication (i) ⇒ (ii) follows from Theorem 0.6, and (ii) ⇒ (iii) is
trivial. It remains to show that (iii) implies (i).

Assume (iii). Let x∗ ∈ X∗ be such that ‖x∗‖ = 1, and consider the closed
hyperplane H = {y ∈ X : x∗(y) = 1}. We claim that d(0,H) = 1. Indeed,
supx∗(rBX) = r‖x∗‖ = r for each r > 0. It follows easily that rBX ∩ H = ∅
whenever 0 < r < 1, and rBX ∩H 6= ∅ whenever r > 1; and this gives our claim.
Since H is proximinal, there exists y ∈ X such that ‖y‖ = 1 and x∗(y) = 1, that is,
x∗ attains its norm. It follows that each element of X∗ attains its supremum over
BX . By the James theorem, BX is w-compact, and hence X is reflexive. ¤
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A normed space X is called strictly convex if its unit sphere SX = {x ∈ X : ‖x‖ = 1}
contains no nontrivial line segment. We omit the simple proof of the following theorem
about uniqueness of nearest points.

Theorem 0.8. For a normed space X, the following assertions are equivalent.
(i) X is strictly convex.
(ii) For each convex set C ⊂ X, every point of X has at most one nearest point in C.
(iii) For each line L ⊂ X, every point of X has exactly one nearest point in L.

A Chebyshev set is a set E ⊂ X, such that each point of X has a unique nearest point in
E.

Corollary 0.9. For a Banach space X, the following are equivalent:
(i) X is reflexive and strictly convex;
(ii) each nonempty closed convex set C ⊂ X is a Chebyshev set.

Lower semicontinuity of the distance function in weak topologies. For this appli-
cation of We shall need the following general lemma.

Lemma 0.10. Let (X, τ) be a t.v.s., A,B ⊂ X two sets. If A is τ -closed and B is τ -compact,
then A + B is τ -closed.

Proof. Fix an arbitrary x∗ ∈ X∗ \ (A+B). This means that (x∗−A)∩B = ∅. Since x∗−A
is τ -closed and B is τ -compact, there exists V ∈ Uτ (0) such that (x∗−A)∩ (B +V ) = ∅ (see
a lemma before the Hahn-Banach Strong Separation Theorem). This easily implies that
(x∗ − V ) ∩ (A + B) = ∅. Since x∗ − V is a τ -neighborhood of x∗, and x∗ was an arbitrary
element of the complement of A + B, this shows that this complement is τ -open. ¤
Theorem 0.11. In a dual Banach space, the distance function of every w∗-closed set is
w∗-l.s.c. (In particular, the distance function of any w-closed subset of a reflexive Banach
space is w-l.s.c.)

Proof. Let E ⊂ X∗ be a nonempty w∗-closed set. Since E is proximinal (Theorem 0.6), we
have (for r ≥ 0)

{x∗ : dE(x∗) ≤ r} = {x∗ : ‖x∗ − e∗‖ ≤ r for some e∗ ∈ E} = E + rBX∗ , .

By previous lemma, all sublevel sets {dE ≤ r} are w∗-closed. Thus dE is w∗-l.s.c. ¤
Remark 0.12. In the proof of Theorem 0.11, the equality {dE ≤ r} = E + rBX∗ holds
thanks to proximinality of E. For a general set E, we can only say that {dE ≤ r} =⋂

s>r(E + sBX∗).

Existence of centers and medians. Let X be a normed space, and A ⊂ X a
nonempty bounded set. We are looking for a point x0 ∈ X that would somehow
approximate the set A. Of course, we should decide what “approximates” means
for us.

One possibility is to consider points, for which is minimal the “worst error”, that
is, minimizers (over X) of the function

ϕA,∞(x) = sup
a∈A

‖x− a‖ .

The points of X that minimize ϕA,∞ are called Chebyshev centers of the set A.
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This is not the unique possibility. For instance, if the set A is finite, that is
A = {a1, . . . , an}, we can try to minimize the sum of the distances

ϕA,1(x) =
n∑

i=1

‖x− ai‖ ,

or the sum of their squares

ϕA,2(x) =
n∑

i=1

‖x− ai‖2 .

Any minimizer of ϕA,1 is called a median for A, and any minimizer of ϕA,2 is called
a square median for A.

Since the functions of the type x 7→ ‖x−a‖p (with a ∈ X, p ≥ 1) are convex, also
the functions ϕA,k (k ∈ {1, 2,∞}) are convex. Moreover, they are also continuous
since they are bounded an bounded sets.

Observe that, if X is a dual Banach space (that is X = Z∗ for some normed
space Z), the functions x 7→ ‖x−a‖p are also w∗-l.s.c., and hence the same holds for
the functions ϕA,k (k ∈ {1, 2,∞}). These latter functions are clearly also coercive.
Thus we can apply Theorem 0.5 to obtain the following result.

Theorem 0.13. In a dual Banach space (in particular, in a reflexive Banach space),
every bounded set has a Chebyshev center, and every finite set has a median and a
square median.

Remark 0.14. It is known that even a three-point set can have no Chebyshev
center, no median and no square median. Moreover, even if one of the three types
of centers exists, it is not necessarily unique.


