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1. Introduction

The following theorem is important and well known. All spaces considered
here are real normed or Banach spaces. Given a normed space X, we denote
by BX and SX its closed unit ball and its unit sphere, respectively. If the
topology on X is not specified, the topological notions are considered in the
norm topology.

Theorem 1.1. For a Banach space X, the following assertions are equivalent:

(i) X is reflexive;
(ii) BX is weakly compact;

(iii) every element of X∗ attains its norm.

About the proof. The implications (i) ⇔ (ii) ⇒ (iii) are easy and “elemen-
tary” (they only require knowledge of the Banach–Alaoglu and the Goldstine
theorems). On the other hand, the remaining implication (iii) ⇒ (i), known
as the James theorem, is a deep and difficult result by R.C. James. �

From the history. R.C. James obtained the separable version of the above
implication (iii) ⇒ (i) in 1957 [Ann. Math. 66 (1957), 159–169], and the
general version in 1963 [Studia Math. 23 (1963/1964), 205–216]. Finally, in
1964 [Trans. Amer. Math. Soc. 113 (1964) 129–140], he provided the following
general result.

Theorem 1.2. Let C be a bounded closed convex set in a Banach space X.
Then C is weakly compact if and only if every element of X∗ attains a maxi-
mum on C.

The proof of this last theorem is quite involved. An accessible (though by no
means simple) proof, even in a more general setting of complete locally convex
topological vector spaces, was given by J.D. Pryce in 1966 [Proc. Amer. Math.
Soc. 17 (1966), 148–155].

In last two decades, simpler proofs of the separable version of Theorem 1.2
appeared. We present here the proof by W.B. Moors, published in

W.B. Moors, An elementary proof of James’ characterization of weak
compactness, Bull. Aust. Math. Soc. 84 (2011), 98–102.

For a different approach by using a Simons’ lemma, see the paragraph 3.11.8
in the book
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Fabian, Habala, Hájek, Montesinos and Zizler, Banach space theory.
The basis for linear and nonlinear analysis, CMS Books in Mathe-
matics/Ouvrages de Mathématiques de la SMC, Springer, New York,
2011.

2. Boundaries

Definition 2.1. Let X be a normed space, and K ⊂ X∗ a bounded set. A
set B ⊂ K is a boundary or (James boundary) for K if every x ∈ X attains its
supremum over K at some point of B, that is,

∀x ∈ X ∃b∗ ∈ B : b∗(x) = sup
x∗∈K

x∗(x).

Examples 2.2. Let K ⊂ X∗ be a w∗-compact set (where X is a normed
space).

(a) K is a boundary for itself.
(b) ∂K is a boundary for K.
(c) If K is also convex, then extK is a boundary for K by Bauer’s maximum

principle (which is an easy consequence of the Krein–Milman theorem).

The following simple but important fact is left to the reader as an easy
exercise on the Hahn–Banach theorem.

Exercise 2.3. Let K ⊂ X∗ be a w∗-compact convex set, and B a boundary
for K. Then

K = convw∗
B .

Let us start with a simple lemma of topological nature. By U(0) we denote
the family of all neighborhoods of 0 (in a topological vector space). It is a
well-known fact that every element of U(0) contains a closed one.

Lemma 2.4. In a Hausdorff topological vector space, let S, K and Kn (n ∈ N)
be closed sets such that:

(a) K is compact,
(b) S ∩K = ∅,
(c) S ⊂

⋃
n∈N Kn , and

(d) for every V ∈ U(0), Kn ⊂ K + V for each sufficiently large n.

Then there exists M ∈ N such that S ⊂
⋃

n≤M Kn.

Proof. By (a),(b), there exists a closed V ⊂ U(0) such that S ∩ (K + V ) = ∅.
Notice that K + V is closed. By (d), there is M ∈ N such that

⋃
n>M Kn ⊂

K + V . It follows that ⋃
n>M

Kn ⊂ K + V .
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Using the general equality A ∪B = A ∪B, we obtain that

S ⊂
⋃
n∈N

Kn =
⋃
n≤M

Kn ∪
⋃
n>M

Kn ,

where the last set is disjoint from S. Thus S ⊂
⋃

n≤M Kn . �

Remark 2.5. Let us recall the following two results which will be needed in
the sequel.

(a) Let K be a compact convex set in a locally convex Hausdorff topological
vector space, and A ⊂ K. The following assertions are equivalent:

(i) K = convA ;
(ii) extK ⊂ A .

(The implication (ii)⇒ (i) is the Krein–Milman theorem, while the other
one is its “converse” due to Milman.)

(b) Let X be a Banach space, and D ⊂ X∗ a w∗-closed convex set with
nonempty interior. Then the w∗-support points of D are dense in ∂D.
(This “dual” version of the Bishop–Phelps theorem can be deduced from
the standard Bishop–Phelps theorem applied to the pre-polar ◦D ⊂ X.
Let us remark that Phelps proved a stronger result without the assump-
tion about nonempty interior, but his proof follows a different approach.)

Now we are ready for the basic theorem of this section.

Theorem 2.6. Let X be a Banach space, and K ⊂ X∗ a w∗-compact convex
set. If {Cn} is a sequence of w∗-compact convex sets whose union contains a
boundary B for K, then

K ⊂ conv

(⋃
n∈N

Cn

)
(closure in the norm topology!).

Proof. We can (and do) suppose that 0 ∈ B and Cn ⊂ K for each n. Fix an
arbitrary ε > 0, and consider the sets

Kn := Cn + ε
n
BX∗ (n ∈ N), D := convw∗(⋃

n∈N Kn

)
.

Notice that the sets Kn and D are w∗-compact since they are contained in
K + εBX∗ . Moreover, B ⊂

⋃
n∈N Cn ⊂

⋃
n∈N intKn , and hence 0 ∈ B ⊂ intD.

Let x∗ ∈ D be a w∗-support point of D, that is, there exists x ∈ X \ {0}
such that x(x∗) = max x(D) = 1. Consider the face F := [x = 1] ∩D of D.

Assume for the moment that F ∩ K 6= ∅. Since K ⊂ D, we must have
maxx(K) = 1. Take b∗ ∈ B ∩ [x = 1]. But we already know that b∗ ∈ intD ,
which contradicts the fact that b∗ ∈ F ⊂ ∂D.
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Thus we must have F ∩ K = ∅. Since F is an extremal set for D, Re-
mark 2.5(a) implies that

extF ⊂ extD ⊂
⋃
n∈N

Kn

w∗

.

Put S := F ∩
⋃

n∈N Kn

w∗

, and notice that extF ⊂ S ⊂
⋃

n∈NKn

w∗

and
S ∩K = ∅. Moreover, if V ⊂ X∗ is a w∗-neighborhood of 0 then ε

N
BX∗ ⊂ V

for some N ∈ N, and hence
⋃

n>N Kn ⊂ K + ε
N
BX∗ ⊂ K +V . By Lemma 2.4,

there exists M ∈ N such that

extF ⊂ S ⊂
⋃
n≤M

Kn .

By the Krein–Milman theorem, x∗ ∈ F = convw∗
(extF ) ⊂ convw∗ (⋃

n≤M Kn

)
=

conv
(⋃

n≤M Kn

)
⊂ conv

(⋃
n∈N Cn

)
+ εBX∗ .

This shows that all w∗-support points of D are contained in conv
(⋃

n∈N Cn

)
+

εBX∗ . By Remark 2.5(b), ∂D ⊂ conv
(⋃

n∈NCn

)
+ 2εBX∗ . Consequently,

K ⊂ D ⊂ conv

(⋃
n∈N

Cn

)
+ 2εBX∗ ,

and we are done since ε > 0 was arbitrary. �

3. Applications: theorems by Rainwater, Rodé, and James

Corollary 3.1. Let X be a Banach space, K ⊂ X∗ a w∗-compact convex set
with a boundary B ⊂ K. Let {xn} ⊂ X be a bounded sequence, and x ∈ X
such that

b∗(xn)→ b∗(x) for each b∗ ∈ B.

Then x∗(xn)→ x∗(x) for each x∗ ∈ K.

Proof. For simplicity, denote yn := xn−x. Fix an arbitrary ε > 0, and consider
the sets

Cn := K ∩
⋂
k≥n

[
|yk| ≤ ε

]
(n ∈ N).

These sets form a nondecreasing sequence of w∗-compact convex sets. Notice
that B ⊂

⋃
n Cn . By Theorem 2.6, the set C :=

⋃
nCn = conv (

⋃
nCn) is

norm-dense in K. Moreover,

lim sup
n
|yn(c∗)| ≤ ε for each c∗ ∈ C.

Since C is dense in K, and the sequence {yn} is bounded, we easily obtain
that

lim sup
n
|yn(x∗)| ≤ ε for each x∗ ∈ K,
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and we are done by arbitrariety of ε > 0. �

The last corollary immediately implies the following useful criterion of weak
convergence of a bounded sequence.

Theorem 3.2 (Rainwater 1963). Let {xn} be a bounded sequence in a Banach
space X, and x ∈ X. Assume that e∗(xn)→ e∗(x) for each e∗ ∈ extBX∗. Then
xn → x in the weak topology.

Proof. Apply Corollary 3.1 to K = BX∗ and B = extBX∗ . �

The following theorem was first proved by Rodé (1981) by a completely
different method for w∗-compact convex sets. The version stated here was
proved by Godefroy (1987) by using a lemma by Simons. The present proof
via Theorem 2.6 seems to be “the most elementary” known one.

Theorem 3.3 (Rodé’s theorem (or Rodé–Godefroy theorem)). Let X be a
Banach space, C ⊂ X∗ a closed, convex and bounded set with a separable
boundary B ⊂ C. Then C = convB , and the set C is w∗-compact.

Proof. Define K = C
w∗

. Then K is a w∗-compact convex set and B is a
boundary for K. Let {b∗n} ⊂ B be a dense sequence. Given an arbitrary
ε > 0, define Cn := (b∗n + εBX∗) ∩K (n ∈ N), and notice that B ⊂

⋃
Cn. By

Theorem 2.6,

K ⊂ conv
⋃
n

Cn ⊂ conv (B + εBX∗)

⊂ conv (B + εBX∗) + εBX∗ ⊂ convB + 2εBX∗ .

Since ε > 0 was arbitrary, we have K ⊂ convB ⊂ C ⊂ K, and we are
done. �

Corollary 3.4. If X is a Banach space such that extBX∗ is separable, then
X∗ (and hence also X) is separable.

Now, we are going to prove the following separable version of Theorem 1.2.

Theorem 3.5 (James). Let C be a separable, closed, convex and bounded set
in a Banach space X. Then C is w-compact if and only if each element of X∗

attains a maximum over C.

Proof. The “only if” part is obvious. To show the “if” part, assume that each
element of X∗ attains a maximum over C. This means that C, if considered
as a subset of X∗∗, is a separable boundary for itself. By Rodé’s theorem, C
is w∗-compact in X∗∗, and hence w-compact in X. �

Corollary 3.6 (James 1957). A separable Banach space X is reflexive if and
only if each element of X∗ attains its norm.


