DIFFERENTIABILITY OF CONVEX FUNCTIONS OUTSIDE SMALL SETS

Small sets. We are going to present some results of the following type: under a
suitable assumption on a normed space X, each continuous convex function, defined
on an open convex set A C X, is (Gateaux or Fréchet) differentiable outside a set
which is in some sense small.

It is natural to ask that a nonempty family S C 2% whose elements are considered
“small sets” satisfy the following conditions:

(a) AeS, BCA = BeS;

(b) A, eSforeachn e N= {J,.yAn €S;

(c) Ae S = A+v e S for each v € X (that is, S is translation invariant);
(d) S contains no nonempty open set.

Notice that (a) and the assumption that S is nonempty imply that ) € S. Each
family satisfying (a) and (b) is called a o-ideal. Thus a family of small sets has to
be a nonempty translation invariant o-ideal that cointains no open ball (of positive
radius).

Let us list a few important families of small sets.

At most countable sets. The o-ideal
C={F C X : E is at most countable}
satisfies (a)—(d).

Lebesgue null sets. Let my denote the Lebesgue measure on R%. For X = R?,
the o-ideal

N ={E CRY: my(E) =0}

satisfies (a)—(d). (The same holds for an arbitrary translation invariant complete
measure on R? which is positive on each open ball.)

Meager sets. Recall that a set E C X is called meager or a set of the first Baire
category if it is contained in a countable union of closed sets having empty interiors.
Then the family

M={E C X : E is meager}

satisfies (a)—(c). If X is a Banach space, then M satisfies also (d) by the Baire
Category Theorem.

The meager sets are considered small from the topological point of view, while
the null sets (in R?) are small from the measure point of view. However there is

no inclusion relation between these two kinds of smallness. Indeed, it is well-known
that (for each d € N) R? contains a Borel set A such that A € A" and R4\ A € M.
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Lipschitz-small sets. Let us start with the following observation. Let H C X
be a closed subspace of codimension 1, and vg € X \ H. Then X = H @& Ry in
the algebraic sense, that is, each € X has a unique expression as the sum of an
element of H and a multiple of vy. In other words, the mapping

(1) HxR— X, (ut)—u+ty,

is an algebraic isomorphism of H xR onto X. Let us show that it is also a topological
isomorphism, that is, an isomorphism between normed spaces H x R and X.

(Let us recall that the product topology of H x R is generated by any of the equivalent
norms || (u, )|, = |(|lull,|¢])], where |- |, is the standard ¢,-norm on R?, 1 < p < oo. For
example, we can consider H x R equipped with the norm ||(u,t)||1 = ||u| + |t].)

The mapping (1) is obviously continuous: ||u + tvg] < ||ul| + [t|]|ve]] < C||(u,t)|1
where C' = max{1, ||vo||}. Let us show that also its inverse is continuous. The
subspace H is the kernel of some z* € X*. By taking an appropriate multiple of x*,
we can suppose that z*(vg) = 1. Then we can write any « € X in the form

z = (z — 2" (z)vo) + z*(x)vo

where u, := z — 2*(z)vg € H and t, := z*(x) € R are such that x is the image of
(ug,tz) by the mapping (1). Obviously, x — u, and x — t, are continuous, and
hence the inverse of (1) is continuous.

Definition 0.1. A set L C X is a Lipschitz hypersurface if there exist a closed
subspace H C X of codimension 1, a vector vg € X \ H, and a Lipschitz function
@: H — R such that

L={u+¢(uuvy: ue H}.

Remark 0.2. Let L C X be a Lipschitz hypersurface given by H, vg, ¢ (in the sense
of Definition 0.1).

(a) In the isomorphism (1), the hypersurface L corresponds to the graph of the
Lipschitz function ¢ in H x R.

(b) L is a closed set without interior points (this follows e.g. from (a)).

(c) If X = R? L is of Lebesgue measure zero by Fubini’s theorem (since any
line parallel to vy intersects L in exactly one point).

Definition 0.3. A set £ C X will be called Lipschitz-small if it is contained in a
countable union of Lipschitz hypersurfaces.

The family
L={FE C X : FE is Lipschitz small}

satisfies (a)—(c). If X is a Banach space, then £ satisfies also (d) since its elements
are meager by Remark 0.2(b).

Observe that Lipschitz small sets in X = R coincide with at most countable sets.
Since the standard Cantor set is meager and uncountable, the family of Lipschitz
small sets in R is strictly contained in the family of meager sets. (This example can
be generalized to any nontrivial normed space X.)
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For X = R? £ is contained in A’'NM. Moreover, the same example of the Cantor
set shows that the inclusion is strict for d = 1 (and it can be generalized to any
finite dimension d).

Zajicek’s theorem. The following theorem by L. Zajicek is formulated for monotone
mappings since monotonicity is the only property of the subdifferential which is
used in its (quite simple) proof. Recall that a multivalued mapping T: X — 2X" g
monotone if

(" =y )x—y)>0 whenever z,y € X, 2" € T(x), y* € T(y).

(Notice that we do not require that all values of T' are nonempty:.)
Let us start with a well-known extension lemma.

Lemma 0.4 (Extension of Lipschitz functions). Let X be a metric space, E C X a
nonempty set, and p: E — R an r-Lipschitz function. Then the formula

(2) ¢(z) = inf{p(y) +rd(z,y) 1y € E}  (z € X)
defines an r-Lipschitz extension ¢: X — R of p.
If, moreover, X is a normed space and @ is convex, then ¢ is convez, too.

Proof. ¢ is r-Lipschitz since it is the infimum of a family of r-Lipschitz functions.
For each x € E, we have

¢(x) < p(x) +rd(z,z) = p(x) < p(y) +rd(z,y) (y € E).
Passing to the infimum over y € E, we get ¢(z) = ¢(z). Thus ¢ is an extension of

©.
Let us show the second part. Let x1,29 € X, ¢t € (0,1), and € > 0. There exist

y; € E (i = 1,2) such that o(y;) + 7|l — vil| < @(z;) + €. Then
(1= t)zy + twe) < (L= t)yr + ty2) + rl|(1 — t)w1 + twg — (1 —t)yr — tys

< (I =t)e(yr) +te(y2) + (1= t)rllzr =yl + trze — y2ll

<A =t)p(1) +tp(a2) + €.
Passing to limit for e — 0%, we get the needed inequality @((1 — t)zq + tag) <
(I =t)@(@1) + tp(x2). O
Theorem 0.5 (Zajicek). Let X be a separable normed space, T: X — 2X" q
monotone multivalued mapping. Then the set

M(T)={z € X : card[T(x)] > 1}

is Lipschitz-small.

Proof. Let D be a countable dense subset of Sy (the boundary of the unit ball).
Given an arbitrary = € M(T), choose a’, b’ € T(z) such that a’ # b%. There exists

xrrrT
vy € D such that a’(vy) < b%(vg). Choose rational numbers o, and (3, such that

ay(vg) < ap < By < bi(vg),

and a natural number m, such that ||ak|| < my and ||b| < my.



Now, we can write
M(T):U{E(U,a,ﬁ,m): veD, o,f€Q, a<f, meN}
where
Ew,a,8,m)={x e M(T): vy =v, ag =, By =, my =m}.

Since the above union is countable, it remains to show that each E(v,a, 3, m) is
contained in a Lipschitz hypersurface.

Fix v, a, B, m. Chose v* € X* such that v*(v) # 0, and put H = ker(v*). Then X
is the direct sum of H and Rv. Thus, each point x € E(v, a, 3, m) admits a unique
expression of the form

T = Uy + v where u, € H and t, € R.
By monotonicity, we have for each z,y € E(v, a, 3, m)
0 < (az — by)(z —y) = (ag — b)) (ue — uy) + (o — ty)[az(v) — b, (v)] .
It follows that
(te = ty)[by (v) — az(v)] < (az = by)(uz — uy) < 2mlus —uyl|-

Notice that by (v) — a3 (v) > 8 —a > 0. Thus we can devide by the expression in
square brackets to obtain

2m

te =ty < oS3
by(v) - (Z:B(’U)

2m
e — uy|l < 3—a e — uyl -
Interchanging the roles of z and y, we easily conclude that

(3) [ty —ty| < |uy — uy| whenever z,y € E(v,a, 3, m).
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In particular, if z,y € E(v, o, 5, m) and u; = u,, then t, = t,. In other words, for
each x € E(v,a, 3, m) there exists a unique ¢t € R such that u, +tv € E(v, a, 3, m)
(namely, t = t,). Define

A={uy:x € E(v,a,B,m)}, ¢: A—R, p(uy) =t,.

Then A C H and, by(3), ¢ is Lipschitz. By Lemma 0.4, there exists a Lipschitz
extension ¢: H — R of ¢. Then

E(w,a,8,m) ={u+pu)v:uec A} C {u+o(u)v:ue H}
where the last set is a Lipschitz hypersurface. This completes the proof. O

Corollary 0.6. Let X be a separable Banach space, A C X an open convex set,
and f: A — R a continuous convez function. Then the set

NG(f)={x € A: f is not Gateauz differentiable at x}

is Lipschitz-small, and hence meager.



Proof. The multivalued mapping T: X — 2%, given by

T(z) = {8f(1:) itxe A,

0 otherwise,
is monotone and NG(f) = M(T). Apply Theorem 0.5. O

Corollary 0.7. Let A C R? be an open conver set, f: A — R a convex function.
Then the set

NF(f)={x € A: f is not Fréchet differentiable at x}

is Lipschitz-small, and hence meager and of Lebesque measure zero. Moreover, the
Fréchet derivative f'(-) is continuous on the set A\ NF(f).

Proof. By a well-known fact about continuity of convex functions, f is locally Lip-
schitz on A. Thus NF(f) = NG(f) by a general fact about Lipschitz functions in
R<. By Corollary 0.6, NF(f) is Lipschitz-small. The last assertion follows immedi-
ately from the fact that, for each z € A\ NF(f), Of is single-valued and continuous

with 0f (x) = {f'(x)}. O

Notice that, for d = 1, Corollary 0.7 says nothing else that the set of nondiffer-
entiability points of a convex function of one real variable is at most countable.

An infinite-dimensional result about generic Fréchet differentiability.

Lemma 0.8. Let X be a normed space. If X* is separable then also X is separable, but not
vice-versa.

Proof. If X* is separable, there exists a sequence {v} C Sx- which is dense in Sx-. For
each n, choose v, € Sx such that v} (v,,) > % The closed linear subspace

Y =span{v, : n € N}

of X is separable since the countable set of all finite linear combinations with rational
coefficients of the vectors v, (n € N) is dense in Y.

Assume that Y # X. By the Hahn-Banach Theorem, there exists x* € Sx- such that
Y C ker(z*). There exists m € N such that [|v,, —2*|| < 3. Then we get

3 <V (Um) = 2% () + (U, = &) (vm) < 0+ [log, — 2| loml| < 3,

a contradiction. Thus X =Y is separable.
Finally, X = ¢; is an example of a separable Banach space such that X* = {,, is not
separable. O

Theorem 0.9 (Preiss—Zajicek). Let X be a Banach space with X* separable. Then, for
every continuous convez function f defined on an open convex set A C X, the set NF(f)
(see Corollary 0.7) is meager.



One more theorem. Let us conclude with one more theorem which easily follows from
theorems by Ekeland-Lebourg (1976) and Preiss—Phelps-Namioka (1990) about differen-
tiability of convex functions under existence of nice equivalent norms on the space. Our
theorem says that if a Banach space X contains one continuous convex function which is
coercive and everywhere differentiable then every continuous convex function is differen-
tiable everywhere except a small set. Recall that a function f: X — R is called coercive if
WMy oo f(z) = +00.

Theorem 0.10. Let X be a Banach space. Assume that there exists a continuous con-
vex function g: X — R such that g is coercive and everywhere Gateaux/Fréchet differen-
tiable. Then each continuous convex function, defined on an open convexr set A C X, is
Gateaux/Fréchet differentiable except a meager set.



