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In questo capitolo ci limitiamo ad enunciare Assioma della scelta e Lemma di Zorn, 

aggiungendo poi un eccellente commento in inglese di C. D. Aliprantis e K. C. Border. 

 

Assioma della scelta. Su ogni insieme non vuoto X esiste un selettore, cioè una 

funzione che ad ogni sottoinsieme non vuoto di X associa un suo elemento. 

 

Un insieme X si dice parzialmente ordinato da una relazione binaria “ ≤ ” se questa 

relazione è  

1. riflessiva  (x ≤ x  per ogni x∈X), 

2. transitiva  (se  x ≤ y  e  y ≤ z  allora  x ≤ y), 

3. antisimmetrica  (se  x ≤ y  e  y ≤ x  allora  x = y). 

 

Una catena in un insieme parzialmente ordinato  (X,≤)  è un sottoinsieme C di X sul 

quale la relazione  “ ≤ ”  definisce un ordine lineare, cioè ogni due elementi di C sono 

confrontabili. 

 

Lemma di Zorn.  Sia X un insieme parzialmente ordinato. Se ogni catena in X ammette 

un elemento maggiorante in X, allora X ammette un elemento massimale (cioè, un 

elemento m tale che  x ≥ m  implichi x=m). 

 

Il testo inglese che segue 

è stato tratto dal libro 

Infinite Dimensional Analysis: 

A Hitchhiker’s Guide 

di C. D. Aliprantis e K. C. Border. 

 

 
The axiom of choice and axiomatic set theory 

 

A good reference for “naïve set theory” is Halmos [4], and indeed you may wonder if there is any 

need to go beyond that. “Axiomatic set theory” is viewed by many as an arcane subject of little 

practical relevance. Indeed you may never have been exposed to the most popular axioms of set 

theory, the Zermelo-Frankel (ZF) set theory. For your edification we mention that ZF set theory 

proper has eight axioms. There is also a ninth axiom, the Axiom of Choice, and ZF set theory 

together with this axiom is often reffered to as ZFC set theory. We shall not list them here, but 

suffice it to say that the first eight axioms are designed so that the collection of objects that we call 

sets is closed under certain set theoretic operations, such as unions and power sets. They are also 

designed to avoi the Russell’s Paradox
1
, which illustrates that it is nonsense to call the collection 

                                                           
1
 In case you have not heard it before, Russell’s Paradox goes like this. Let S be the set of all sets, and let  



of all sets itself a set. Another important axiom of ZF set theory is the Axiom of Infinity, which 

asserts the existence of an infinite set. For an excellent exposition of axiomatic set theory, we 

recommend K. J. Devlin [2] or T. Jech [8]. 

 

The ninth axiom, the Axiom of Choice, is a seemingly innocuous set theoretic axiom with much 

hidden power. 

 

Axiom of Choice.  If  { Ai : i∈I }  is a nonempty set of nonempty sets, then there is a function  

f : I → U Ii iA
∈

 satisfying  f(i)∈Ai  for each  i∈I. In other words, the Cartesian product of a 

nonempty set of nonempty sets is itself a nonempty set. 

 

The function  f, whose existence is asserted, chooses a member of  Ai  for each i. Hence the term 

“Axiom of Choice”. This axiom is both consistent with and independent of ZF set theory proper. 

That is, if the Axiom of Choice is dropped as an axiom of set theory, it cannot be proven by using 

the remaining eight axioms that the product of nonempty sets is a nonempty set. Furthermore, 

adding the Axiom of Choice does not make the axioms of ZF set theory inconsistent. (A collection 

of axioms is inconsistent if it is possible to deduce both a statement P and its negation ¬P from the 

axioms.) 

 

There has been some debate over the desirability of assuming the Axiom of Choice. (G. Moore [12] 

presents an excellent history of the Axiom of Choice and the controversy surrounding it.) Since 

there may be no way of describing the choice function, why should we assume it exists? Further, 

The Axiom of Choice has some unpleasant consequences. The Axiom of Choice makes it possible, 

for instance, to prove the existence of non-Lebesgue measurable sets of real numbers. R. Solovay 

[14] has shown that by dropping the Axiom of Choice, it is possible to construct models of set 

theory in which all subsets of the real line are Lebesgue measurable. Since measurability is a major 

headache in integration and probability theory, it would seem that dropping the Axiom of Choice 

would be desirable.  Along  the same lines is the  Banach-Tarski Paradox  due to  S. Banach and 

A. Tarski [1]. They prove, using the Axiom of Choice, that the unit ball U in R
3
 can be partitioned 

into two disjoint sets X and Y with the property that X can be partitioned into five disjoint sets, 

which can be reassembled (after translation and rotation) into U, and the same is true of Y. That is, 

the ball can be cut up into pieces and reassembled to make two balls of the same size! (These pieces 

are obviously not Lebesgue measurable. Worse yet, this paradox shows that it is impossible to 

define a finitely additive volume in any reasonable manner on R
3
.) For a proof of this remarkable 

result, see, e.g., [7, Theorem 1.2, pp. 3-6]. 

 

On the other hand, dropping the Axiom of Choice also has some unpleasant side effects. For 

example, without some version of the Axiom of Choice, our previous assertion that the countable 

union of countable sets is countable ceases to be true. Its validity can be restored by assuming the 

Countable Axiom of Choice, a weaker assumption that says only that a countable product of 

nonempty sets is a nonempty set. Without the Countable Axiom of Choice, there exist infinite sets 

that have no countably infinite subset. (See, for instance, T. Jech [7, Section 2.4, pp. 20-23].) 

 

From our point of view, the biggest problem with dropping the Axiom of Choice is that some of the 

most beautiful tools of analysis would be thrown out with it.  J. L. Kelley [9] has shown that the 

Tychonoff Product Theorem
2
 would be lost. Most of proofs of the Hahn-Banach Extension 

                                                                                                                                                                                                 

A = {X∈S : X∉X} ∈ S. If A∈A, then A∉A. On the other hand, if A∉A, then A∈A. This paradox is avoided by denying 

that the class of all sets is itself a set. 
2
 Tychonoff Product Theorem. The product of a family of topological spaces is compact in the product topology if 

and only if each factor is compact. 



Theorem make use of the Axiom of Choice. This is not strictly necessary though. The Hahn-Banach 

Theorem, which is the bread and butter of linear analysis, can be proven using the Prime Ideal 

Theorem of Boolean Algebra, see W. A. J. Luxembourg [11]. The Prime Ideal Theorem is 

equivalent to the Ultrafilter Theorem
3
, which we prove using Zorn’s Lemma (which is equivalent to 

the Axiom of Choice).  J. D. Halpern [5] has shown that the Ultrafilter Theorem does not imply the 

Axiom of Choice. Nevertheless, M. Foreman and F. Wehrung [3] have recently shown that if the 

goal is to eliminate non-measurable sets, then we have to discard the Hahn-Banach Extension 

Theorem. That is, any superset of the ZF axioms that is strong enough to prove the Hahn-Banach 

Extension Theorem is strong enough to prove the existence of non-measurable sets. We can learn to 

live with non-measurable sets, but life would be nasty, bruttish, and short without the Hahn-Banach 

Extension Theorem. Therefore we might as well assume the Axiom of Choice. For additional 

consequences of the Axiom of Choice, we recommend the monograph by P. Howard and J. E. 

Rubin [6]. 

 

Zorn’s Lemma 

 

There are a number of propositions that are equivalent to the Axiom of Choice. One of the most 

useful of these is Zorn’s Lemma, due to M.Zorn [15]. That is, Zorn’s Lemma is a theorem if the 

Axiom of Choice is assumed, but if Zorn’s Lemma is taken as an axiom, then the Axiom of Choice 

becomes a theorem.For a thorough discussion of Zorn’s Lemma and its equivalent formulations see 

Rubin and Rubin [13]. In addition, Halmos [4] and Kelley [10, Chapter 0] have extended 

discussions of the Axiom of Choice. 

 

Zorn’s Lemma.    If every chain in a partially ordered set X has an upper bound, then X has a 

maximal element. 

… 

 

Il libro di Aliprantis e Border contiene alcune applicazioni del Lemma di Zorn (per es. 

l’esistenza di una base in ogni spazio vettoriale) e il “Well Ordering Principle” (ogni insieme 

non vuoto può essere ben ordinato) che è equivalente all’Assioma della scelta. 
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 Theorem 2.16 nel libro Infinite Dimensional Analysis: A Hitchhiker’s Guide (L.V.) 
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