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During over forty years of studying and working on problems of
metric fixed point theory, I raised some problems and asked several
questions. For some I was lucky to get answer or find followers who
did it for me. Some are still open and seem to be difficult. Some
are of my own and some came out after fruitful discussions with
my friends and colleagues. The problems are connected to the:
geometry of Banach spaces, minimal invariant sets, classification of
Lipschitz mappings, stability of fixed point property, minimal
displacement and constructions of optimal retractions.
The aim of this talk is to present a selection.
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Rotundity

Let (X , ‖·‖) be a Banach space. The first and standard method of
measuring ”the rotundity” of the unit ball in X is via defining the
modulus of convexity of X , δX : [0, 2]→ [0, 1] ,

δX (ε) = inf

[
1−

∥∥∥∥x + y

2

∥∥∥∥ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ ≥ ε
]

and the characteristic of convexity

ε0 (X ) = sup [ε : δX (ε) = 0] .
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The modulus of convexity has ”two dimensional character”,
meaning that

δX (ε) = inf [δE (ε) : E ⊂ X , dim E = 2] .

It is known that the Hilbert space H is the most rotund space
among all Banach spaces. It is understood in the sense that

δX (ε) ≤ δH (ε) = δE2 (ε) = 1−
√

1− ε2

4
,

for all Banach spaces X and E2 being the two dimensional
Euclidean space.
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Now, fix a ∈ [0, 2) and consider the class Ea of all two dimensional
spaces (E , ‖·‖) having ε0 (E ) = a. Which of these spaces is the
most rotund? It can be formulated in the following questions.

Question 1. For any ε ∈ [a, 2) what is sup[δE (ε) : E ∈ Ea]?

Question 2. Does there exist a space Ea ∈ Ea such that for all
E ∈ Ea, δE (ε) ≤ δEa (ε)?

Question 3. If the answer to the above is yes, is such space Ea in
some sense unique?
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Karlovitz Lemma

It was a time soon after the new technique based on the tool
known nowadays as Goebel-Karlovitz Lemma was introduced to
the nonexpansive mapping theory.
The standard setting is the following. Given a convex, closed and
bounded subset C of a Banach space X and a nonexpansive
mapping T : C → C ,

‖Tx − Ty‖ ≤ ‖x − y‖ .

It may be the case that there are many convex and closed subsets
D ⊂ C invariant under T ,T (D) ⊂ D. A set D ⊂ C is said to be
minimal invariant if it does not contain any proper, closed, convex
and T invariant subsets. Such invariant sets always do exists if C
is weakly compact. Any one point set {x} such that x = Tx is
minimal invariant. However there are weakly compact sets C which
do not have fixed point property. If FixT = ∅ then C contains a
minimal invariant subset D with diamD > 0.
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Sets which do not contain diametral convex subsets, other then of
consisting of one point, are known as having normal structure.
Minimal invariant sets share a lot of special properties. Any
minimal invariant D is diametral, which means that all the points
of D are diametral. In other words, for any x ∈ D,
sup {‖x − y‖ : y ∈ D} = diamD. However, there are (weakly
compact) diametral sets which are no minimal invariant for any
nonexpansive mapping. Such is the subset of c0 defined as

K = Conv {ei : i = 1, 2, ...} =

{
x = (xi ) : xi ≥ 0,

∞∑
i=1

xi ≤ 1

}
.

All the points of K , and for example two points e1 and 0, satisfy
‖e1 − 0‖ = 1 = diamK . However for any 0 < ε < 1

2 , the sets
K \ B (e1, 1− ε) and K \ B (0, 1− ε) have different structure.
First is connected of diameter 1, and the second consists of disjoint
pathways connected components of diameter smaller than ε.
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This leads to the following definition.

Definition
Let K be a convex diametral set with diamK = d > 0. A point
x ∈ K is said to be almost nondiametral if, there exists ε > 0 such
that each pathways connected component of K \ B (x , d − ε) has
diameter smaller then d .

It was shown that the weakly compact minimal invariant sets for
nonexpansive mappings can not contain almost diametral points. It
leads to a formal generalization of classical Kirk’s result.

Theorem
If any convex diametral subset K (not a singleton) of a weakly
compact convex set C contains an almost nondiametral point, then
C has FPP for nonexpansive mappings.
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Problem
Is the above a real generalization of Kirk’s theorem?

Problem
Does there exist a Banach space X , containing nontrivial diametral
sets, such that any such set contains an almost nondiametral
point?
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Minimal displacement problem

Let C be a convex, bounded, and closed subset of a Banach space
X and let T : C → C be continuous mapping. The minimal
displacement for T is the number

d (T ) = inf {‖x − Tx‖ : x ∈ C} .

I believe that the first examples of continuous and lipschitzian
mappings with d (T ) were shown in 1973 by myself. It was shown
that if T satisfies Lipschitz condition

‖Tx − Ty‖ ≤ k ‖x − y‖ ,

with k ≥ 1 then

d (T ) ≤
(

1− 1

k

)
r (C ) ,

where r (C ) is the Chebyshev radius of C .
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In some spaces, for some sets the above is the best estimate
possible. For regular spaces, whatever it means, the estimate is not
sharp. The strongest qualitative result about minimal displacement
came in 1985 in the work of P.K. Lin and Y. Sternfeld:

Theorem
For any convex, closed and bounded set C and for any k > 1 there
exists k−lipschitzian mapping T : C → C with d (T ) > 0.
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Let B = BX denote the unit ball of the space X . To formalize the
problem, let us define the characteristic of the minimal
displacement as the function

ψ (k) = ψX (k) = sup {d (T ) : T : B → B,T ∈ L (k)} .

The general estimate

ψX (k) ≤ 1− 1

k
,

is valid for all the spaces X . Equality holds for many ”square”
spaces like c0, c ,C [0, 1] ,Cn [0, 1] and others. For all uniformly
convex spaces strong inequality holds for all k > 1. Basic
properties of the function ψX are presented in my books (with
W.A. Kirk, and individual) and several articles.
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For the Hilbert space H the old (1973) estimate

ψH (k) ≤
(

1− 1

k

)√
k

k + 1
,

has not been improved till now.
For l1 which is ”very square” the basic inequality is also not sharp.
The best known estimate is

ψl1 (k) ≤

[
2+
√

3
4

(
1− 1

k

)
for 1 ≤ k ≤ 3 + 2

√
3

k+1
k+3 for k > 3 + 2

√
3

.
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Problem
What is the exact value of ψH (k)? Is the above estimate sharp?

Problem
The same for l1 or for any space for which ψ (k) < 1− 1

k .

Problem
Does there exist a space X for which ψX (k) is the smallest
possible comparing with other Banach spaces, for all k > 1 or for a
fixed k? Is this the Hilbert space?

The presented estimates for H and l1 do not give clear indications
since no one majorizes the other.
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Equivalents of Schauder Fixed Point Theorems

All proofs of classical Brouwer’s fixed Point Theorems contain
some nonelementary elements (whatever it means). There is a
temptation to find a proof as simple as possible. One way to do so
is to study various equivalents of the famous result. standard
books, usually list two or three. The most common facts are

I Sphere Sn−1 is not the retract of the ball Bn,

I Sphere Sn−1 is not contractible to a point.

Both have topological and not metrical character. Finding
”metrical” equivalents requires some tricks.
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Classical Schauder Theorem reads:

Theorem
Every convex, compact subset of a Banach space has topological
fixed point property.

It means that if K ⊂ X is convex and compact then any
continuous mapping T : K → K has a fixed point.
Let us list some ”metric” equivalents of this fact.

I Given k > 1. Any mapping T : K → K of class L (k) has a
fixed point.

I Given integer n ≥ 1 and k > 1. Any mapping of class L (k)
has a point of period n,T nx = x .
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I For any continuous mapping T : K → K , there exists a point
x ∈ K such that, ∥∥x − T 2x

∥∥ ≤ ‖x − Tx‖ .

I Given n ≥ 1 and ε > 0. For any continuous mapping
T : K → K , there exists a point x ∈ K such that,

‖x − T nx‖ ≤ (n − ε) ‖x − Tx‖ .

I For any two continuous mappings T ,S : K → K , there exists
a point x ∈ K such that

‖x − Tx‖ ≤ ‖x − Sx‖ .
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Optimal retractions

If X is a finite dimensional Banach space, then the unit sphere S is
not the retract of the unit ball B. It means that there are no
continuous mappings (retractions) R : B → S which keep all the
points of S fixed
The problem of optimal retraction is closely related to the
discussed problem of minimal displacement. In the first paper from
1973, written long before Benyamini-Sternfeld result was known,
there is the following:

Lemma
The characteristic of minimal displacement ψX (k) is positive if
and only if there exists a lipschitzian retraction R : B → S .
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In 1983 Y. Benyamini and Y. Sternfeld proved:

Theorem
If dim X =∞ then there exists a lipschitzian mapping R : B → S
such that for all x ∈ S , x = Rx .

The proof is very technical and it is difficult to evaluate the
Lipschitz constant of R from such mapping. It raises the following
optimal retraction problem.
For any Banach space X define the number

k0 (X ) = inf {k : there exists R : B → S ,R = I on S and R ∈ L (k)} .

and call it the optimal retraction constant.
The exact value of k0 (X ) is not known for any space. There are
only some estimates. The progress in finding good estimates of
this constant is very slow. Most of the results are obtained via
constructions some tricky examples.
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Basic known selected facts are:

I For any X , k0 (X ) ≥ 3 but k0 (H) ≥ 4.5 and k0

(
l1
)
≥ 4,

I 3 ≤ k0 (C [0, 1]) ≤ 4
(
2 +
√

3
)

= 14.92.. but

3 ≤ k0 (C0 [0, 1]) ≤ 2
(
2 +
√

2
)

= 6.83...

I 3 ≤ k0

(
L1 (0, 1)

)
≤ 8 and 4 ≤ k0

(
l1
)
≤ 8,

I If ψX (k) = 1− 1
k , then k0 (X ) < 32,

I k0 (H) < 28.99.
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There are many challenging and open questions in this field. The
oldest are:

Problem
Does there exist a space X such that k0 (X ) is the smallest
possible?

Problem
Is it true that k0 (X ) ≤ k0 (H) for all Banach spaces X ?

The natural and more accessible challenge is:

Problem
Improve the known estimates of k0 (X ) for classical Banach spaces.
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Back to minimal invariant sets

Working with Brailey Sims we came back to the old problem of
describing peculiar properties of minimal invariant sets. Our results
has been presented in Catania on the World Congress of Nonlinear
Analysts.
Let us recall the standard setting.
Given a convex, closed and bounded subset C of a Banach space
X and a nonexpansive mapping T : C → C ,

‖Tx − Ty‖ ≤ ‖x − y‖ .

It may be the case that there are many convex and closed subsets
D ⊂ C invariant under T ,T (D) ⊂ D. A set D ⊂ C is said to be
minimal invariant if it does not contain any proper, closed, convex
and T invariant subsets. Such invariant sets always do exists if C
is weakly compact.
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We observed that there may be a situation in which C has a
number of weakly compact minimal invariant subsets.
Stan Prus produced a very nice example showing that there may
be a convex closed and bounded set C and a fixed point free
nonexpansive mapping T : C → C such that for any ε > 0 there
exists a minimal invariant subset D ⊂ C with diam (D) < ε.
However, the set C is not weakly compact. It raises the first

Problem
Does there exist a weakly compact convex set and a nonexpansive
mapping T : C → C having no fixed points but minimal invariant
subsets of arbitrary small diameter?
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Some geometric properties prevent such existence. Two basic facts
are:

I If the space X is strictly convex then all minimal invariant sets
are isometric and each one is a translation of any other.

I If the space X has Kadec-Klee property than all the minimal
invariant sets are of the same diameter.

Advanced form of the above problem can be also formulated as
follows:

Problem
Suppose C is a weakly compact, convex set. Assume that for any
ε > 0 any nonexpansive mapping T : C → C has a minimal
invariant subset D with diamD < ε. Does C have the fixed point
property?
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Rotative mappings

The notion of rotative mappings has the origin in my old result
about involutions.

Theorem
Let T : C → C be the involution, T 2 = I . If T satisfies Lipschitz
condition with constant k < 2, then T has a fixed point.

There are examples of continuous involutions without fixed points.
It raises the natural question whether the estimate k < 2 is the
best possible. Even more, the general problem reads:

Problem
Does there exist a set C which admits an uniformly continuous
fixed point free involution?
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The same question can be raised for periodic mappings, T n = I ,
n > 2. The more general approach to the problem is based on the
definition of rotative mappings
Let T : C → C be a nonexpansive mapping. It is easy to see that
for any n = 2, 3, ... and any x ∈ C ,

‖x − T nx‖ ≤ n ‖x − Tx‖ .

If for certain 0 ≤ a < n the sharper inequality

‖x − T nx‖ ≤ a ‖x − Tx‖

holds, we call T to be (n, a)−rotative. Any n−periodic T is
(n, 0)−rotative. The basic result, obtained with M. Koter reads

Theorem
If C is convex and closed (not necessarily bounded) and
T : C → C is nonexpansive and rotative, then FixT 6= ∅.
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The condition of rotativeness is independent on regularity. It can
be considered for any mapping, not necessarily nonexpansive. Even
so, it is not as natural the following is known:

Theorem
For any n ≥ 2 and for any 0 ≤ a < n there exists a maximal
constant γn (a) > 1 such that if T : C → C is k−lipschitzian with
0 ≤ k < γn (a) , then FixT 6= ∅.
So, rotative lipschitzian mappings have fixed points even if their
Lipschitz constants exceed 1, but not too much. Present and
known estimates for the function γn (a) are rough and
unsatisfactory.
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Problem
For periodic mappings, estimate γn (0) . Is γn (0) <∞?

For n = 2 and a ∈ (1, 2) there are examples of (n, a)−rotative
mappings without fixed points. It is known that for a ∈ (1, 2) ,
γ2 (a) ≤ 1

a−1 but nothing is known for a ∈ [0, 1).

Problem
Is γ2 (a) <∞ for a ∈ [0, 1)?
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Mean nonexpansive mappings

Maria Japon Pineda, in connection with her talk, raised a simple
question. I new the answer. However in the discussion we proposed
a notion of α−nonexpansive mappings.
Let α = (α1, α2, ...αn) be multiindex such that
α1 > 0, αn > 0, αi ≥ 0, for i = 1, 2, ..., n and

∑i=n
i=1 αi = 1. A

mapping T : C → C is said to be α−nonexpansive, if for any
x , y ∈ C

n∑
i=1

αi

∥∥T ix − T iy
∥∥ ≤ ‖x − y‖ .
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For the case n = 2 the formula reads

α1 ‖Tx − Ty‖+ α2

∥∥T 2x − T 2y
∥∥ ≤ ‖x − y‖

All nonexpansive mappings are α−nonexpansive for any index α.
However, there are α−nonexpansive mappings such that none of
their powers is nonexpansive. Today it is known that on any
convex set C and any α the class of α−nonexpansive mappings is
properly wider than the class of nonexpansive ones.
A surprising finding concerning such mappings is:

Theorem
If C has the FPP for nonexpansive mappings, then all the
α−nonexpansive mappings T : C → C with α = (α1, α2, ...αn)
such that α1 ≥ 1

n−1√2
also have fixed points.
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For n = 2, the condition α1 ≥ 1
2 , can be roughly understood as

saying that the first iterate of T has an advantage over the second.
In general case there are several open problems:

Problem
For n = 2, is the α1 ≥ 1

2 estimate the best possible? Are there
mappings T satisfying the defining condition with α1 <

1
2 and

without fixed points or even such that d (T ) > 0?

Problem
For given n > 2. How can one describe the set of all α′s of length
n, for which the above theorem holds?

It is known that condition α1 ≥ 1
n−1√2

is sufficient but not

necessary. For example for n = 3 the conclusion of the Theorem
hold also for any α = (α1, α2, α3) such that α1 ≥ α2 ≥ α3 and
α1 ≥ 1

2 .
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Commuting mappings

During our discussions Art Kirk often mentioned the following
question originally raised (around 40 years ago) by J.B.Baillon,

Problem
Do two commuting nonexpansive mappings have a joint
approximate fixed point?

It means: is it true that for any ε > 0 there exists a point xε ∈ C
such that ‖xε − Txε‖ < ε and ‖xε − Sxε‖ < ε ?

The answer to this question is unknown!!!
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There are cases for which the answer is affirmative. Observe first
that if both mappings have fixed points then S : FixT → FixT and
T : FixS → FixS . If one of the mappings, say T , is affine, then the
set Fix (T ) is convex and we have

inf [‖x − Sx‖ : x ∈ Fε (T )] = 0.

If the space is strictly convex, then both sets FixT and FixS , are
convex. For the same reason as above, if at least one of them is
nonempty, the answer is also affirmative. If both are nonempty we
have

inf [‖x − Tx‖ : x ∈ FixS ] = inf [‖x − Sx‖ : x ∈ FixT ] = 0.

42



Example

In c0 space define two mappings:

Tx = T (x1, x2, x3, ...) = (x1, 1− |x1| , x2, x3, ...)

Sx = S (x1, x2, x3, ...) = (−x1, x2, x3, ...) .

Both are nonexpansive (isometric) and map the unit ball B into
itself. Also they commute,

ST (x) = TS (x) = (−x1, 1− |x1| , x1, x2, ...) .
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Both mappings have fixed points. FixT consists of two points

FixT = {(1, 0, 0, 0, ...) , (−1, 0, 0, 0, ...)}

and FixS in the whole space, as well as in B is the defined by the
condition x1 = 0,

FixS = {x : x1 = 0} = {x : x = (0, x2, x3, x4, ...)} .

Of course FixT ∩ FixS = ∅. Also, since FixS is convex, we have
inf [‖x − Tx‖ : x ∈ FixS ] = 0 but
inf [‖x − Sx‖ : x ∈ FixT ] = 2 6= 0.
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Stability of FPP
The notion of stability of FPP has its origin in our paper with Art
Kirk.
We found that, if X is uniformly convex, then in fact the bounded
closed convex subsets of X have the fixed point property for a
broader class of mappings then nonexpansive ones.
Let K be a bounded closed convex subset of a uniformly convex
space suppose T : K → K is uniformly lipschitzian in the sense
that

‖T nx − T ny‖ ≤ k ‖x − y‖
for all x , y ∈ K and n = 1, 2, · · ·. It was shown that if k > 1 is
sufficiently near 1 (how near depends on the modulus of
convexity), then T always has a fixed point. The class of all
uniformly lipschitzian mappings is also fully characterized by the
fact that such mappings are nonexpansive with respect to some
equivalent metrics but not necessarily generated by equivalent
norms. This justifies the word ”stability” and prompted further the
study of this property.
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Let us illustrate the problem in a simplified version. For any
Banach space X define the constant

γ0 (X ) = sup

{
k :

any closed bounded convex subset K ⊂ X
has the FPP for k-uniformly lipschitzian mappings

}
.

Obviously, if X does not have FPP, then γ0 (X ) = 1. The
mentioned above, basic result states that if X is uniformly convex
then γ0 (X ) > 1. There are several results concerning estimates of
γ0 (X ) for various spaces having FPP but exact value of it is not
known for any. In case of Hilbert space we have

√
2 ≤ γ0 (H) ≤ π

2
.

47



The natural problem which was recently solved was

Problem
Does there exists a Banach space X having FPP for nonexpansive
mappings for which γ0 (X ) = 1?

It came as a surprise to many when Pei-Kee Lin showed that l1

can be given a new equivalent norm ‖·‖0 for which the space

Z =
(

l1, ‖·‖0
)

has the FPP. Lin’s norm is given by

‖x‖0 = max

{
γn

∞∑
k=n

|xk | : n = 1, 2, ...

}
,

where γn = 8n

8n+1 .

Recent results of T. D. Benavides state that l1 can not be
renormed to have γ0 > 1. There is also a nice example of K.
Bolibok of a convex subset U of Lin’s space Z such that for any
ε > 0 there exists (1 + ε)−uniformly lipschitzian, fixed point free
mapping. this solves the problem, γ0 (Z ) = 1.
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Unsolved remain some problems concerning the minimal
displacement of uniformly nonexpansive mappings. It is known
that for the unit ball B in any Banach space X , for any ε > 0
there exists a uniformly lipschitzian mapping T : B → B with
d (T ) > 1− ε.
To formalize the problem, let us define the characteristic of the
minimal displacement uniformly lipschitzian mappings as the
function

ψu (k) = ψu,X (k) = sup {d (T ) : T : B → B,T ∈ UL (k)} .

For all spaces ψu,X (k) = 0 on [1, γ0 (X )] and
limk→∞ ψu,X (k) = 1.
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It prompts us to define next constant

γ0 (X ) ≤ γ1 (X ) = sup

{
k :

Any k − uniformly lipschitzian
mapping T : B → B has d (T ) = 0

}
= sup {k : ψu,X (k) = 0} .

Problem
Does there exist a space for which γ0 (X ) < γ1 (X )?

Problem
Find some estimates for ψu,X (k) for classical spaces.

Problem
(Risky and naive) Is γ0 (H) =

√
2 and γ1 (H) = π

2 ?

Problem
Does there exist a space X having FPP such that γ1 (X ) = 1? Is it
the space Z ?
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