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The aim of this note is to provide a very elementary proof, accessible to a
first-year student, of the following important well-known theorem. (See below,
for the definition of “almost everywhere”.)

Theorem 0.1. A function f: [a,b] — R is Riemann integrable if and only if
f 1s bounded and almost everywhere continuous.

For a standard proof, using measure theory, see e.g. the book [W. Rudin,
Principles of Mathematical Analysis], §11.7. The proof that follows uses only
the definition of a null set, and no other measure theoretical result. We shall
prove separately the two implications. The proof of necessity is very elemen-
tary, while the clever proof of sufficiency was taken from the paper

[R.A. Gordon, The use of tagged partitions in elementary real analysis,
Amer. Math. Monthly 105 (1998), no. 2, 107-117].

1. PRELIMINARIES

Given a function f: [a,b] — R, the oscillation of f on a set A C [a,b] is the
quantity

w(f,A) = sup f(A) —inf f(A).
For x € (a,b), the oscillation of f at the point x is defined as

w(f,z) :=1inf{w(f,I): I C (a,b) is an open interval, = € I}.

Exercise 1.1. Le f be as above, and z € (a,b). Show that f is continuous at
x if and only if w(f, z) = 0.

A partition of [a,b] is a finite family of intervals {I; : j = 1,...,n}, where
neN I =[zjy,z;](1<j<n),anda =2y <z <--- <z, =0b The
length of an interval I C R is denoted by |I|, and the notation f € R[a, ]
means that f is Riemann integrable on [a, b].

Exercise 1.2. Notice that the standard test of Riemann integrability can be
formulated as follows: f € Rla,b] if and only if for every e > 0 there exists a
partition {I; : 5 =1,...,n} of [a,b] such that
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Definition 1.3. A set A C R is said to be a null set or to have measure
zero if for every € > 0 there exists a sequence {J;}3° of open (not necessarily
nonempty) intervals such that A C (J3o, Ji and > o |Ji| <e.

A property holds almost everywhere if it holds at each point outside a null set.

It is obvious that a subset of a null set is again a null set.

Exercise 1.4. Show that a finite or countable union of null sets is a null set,
and that every at most countable set is a null set.

2. PROOF OF SUFFICIENCY

Theorem 2.1 (Sufficiency). Let f: [a,b] — R be bounded and almost every-
where continuous. Then f € R|a,b].

Our proof follows the elegant idea from the paper [R.A. Gordon, The use
of tagged partitions in elementary real analysis, Amer. Math. Monthly 105
(1998), no. 2, 107-117]. It is based on the following notion of a “/-fine tagged

partition”.
Definition 2.2. A tagged partition of |a,b] is a set of the form

{(¢j,1;):5=1,...,n}

where {I; : 5 =1,...,n} is a partition of [a,b], and ¢; € [; (1 <j <n). So, a
tagged partition is a partition for which we fix a distinguished point (a “tag”,
“etichetta” in Italian) in each of its intervals.
Given a function §: [a,b] — (0, 00), the tagged partition is said to be d-fine
if
I; C(¢; —6(cj),c;+6(cj)) foreach 1 <j<n.

The following simple lemma could be easily proved also by using compact-
ness of [a, b] via open coverings. The proof we give here, based on completeness
of R (that is, existence of supremum), is taken from Gordon’s paper.

Lemma 2.3. For every d: [a,b] — (0,00) there exists a §-fine tagged partition
of [a,b].

Proof. Let E be the set of all points x € (a, b] such that there exists a J-fine
tagged partition of [a, z]. Let us proceed in three easy steps.

(a) E is nonempty. Indeed, for every point x € (a,a + d(a)) the singleton
{(a, [a,x])} is a d-fine partition of [a, x|, and hence x € E.

(b) s:=sup E is an element of E. Assume this is not the case. Then there
exists u € E such that s —d(s) < u < s. Now, if P is a o-fine tagged partition
of [a,u], then P’ := P U{(s,[u,s])} is a d-fine tagged partition of [a, s]. But
this means that s € E, which is a contradiction.
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(¢) s = b. Assume that s < b. Fix v € (s,b] such that v < s+ J(s), and
a 0-fine tagged partition P of [a,s]. Then P’ := P U {(s,[s,v])} is a d-fine
tagged partition of [a, v], contradicting the definition of s. We are done. [

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let |f| < M on [a,b], and let D denote the set of
discontinuity points of f in [a,b]. Given ¢ > 0, let {Jx}}° be a sequence of
open intervals such that D C |J;—, Jx and >/~ |Jk| < e. For each = € [a,b],
let us define d(z) > 0 as follows:
o if ¢ D, let 6(z) > 0 be such that |f(y) — f(z)| < € whenever
|y — x| < o(x);
o if v € D, there exists an index k(z) € N such that x € Ji,), and we
fix some §(x) > 0 for which (z — d(x),z + 6(2)) C Ji(w).
Now, let {(¢;,1;) : j = 1,...,n} be a é-fine tagged partition of [a, b] (Lemma 2.3).
Put A := {j:c; € D}. Then I; C Jy(,) whenever j € A, and hence
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Since £ > 0 was arbitrary, Exercise 1.2 implies that f € R]a,b]. O

Now we have the following easy corollary (cf. Exercise 1.4).
Corollary 2.4. If f: [a,b] — R is bounded and has at most countably many
points of discontinuity, then f € R|a,b].
3. PROOF OF NECESSITY

The proof of necessity is easier than that of the other implication. In the
following proof, I° denotes the interior of an interval I.

Theorem 3.1 (Necessity). If f € R[a,b], then (it is bounded and) the set of
its discontinuity points is a null set.

Proof. For a > 0, consider the set
D, :={x € (a,b) :w(f,z) > a}.
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Let us show that each such set D, is a null set. Fix an arbitrary ¢ > 0. By
Exercise 1.4, there exists a partition {/; : j = 1,...,n} of [a,b], such that
> i w(fs )] < ea. Let E be the (finite) set of the extreme points of the
intervals I; (1 <j <n), let and A := {j: I[N D, # 0}. Then
(1) Do = (Do \E)U(DoNE)C | ]I} UE.
jea
Therefore we have
ea > Y w(f, )L >a) |,
jeA jeA
and hence ;1 |;| <. Since E is finite, (1) easily implies that D. can be
covered by finitely many open intervals sum of whose lengths is less than 2¢.
Since € > 0 was arbitrary, D, is a null set.
To finish the proof, observe that the set D of points of discontinuity of f
in [a,b] is contained in the union (J, .y D1/n U {a,b} (see Exercise 1.1). By
Exercise 1.4, D is a null set. 0

4. AN IMPORTANT COROLLARY
Corollary 4.1. If f,g € Rla,b], then the functions

Ifl, f-g, max{f,g}, min{f,g} (and similar)
are Riemann integrable on [a,b].

Proof. The sets of discontinuity points of these functions is clearly contained
in the union of the sets of discontinuity points of f and g. Apply Theorem 0.1
together with Exercise 1.4. ([l
Exercise 4.2. Show that |f| € R[a,b] does not imply that f € R[a,b|.
(Hint: consider a Dirichlet-like function with values +1.)



