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The aim of this note is to provide a very elementary proof, accessible to a
first-year student, of the following important well-known theorem. (See below,
for the definition of “almost everywhere”.)

Theorem 0.1. A function f : [a, b] → R is Riemann integrable if and only if
f is bounded and almost everywhere continuous.

For a standard proof, using measure theory, see e.g. the book [W. Rudin,
Principles of Mathematical Analysis], §11.7. The proof that follows uses only
the definition of a null set, and no other measure theoretical result. We shall
prove separately the two implications. The proof of necessity is very elemen-
tary, while the clever proof of sufficiency was taken from the paper

[R.A. Gordon, The use of tagged partitions in elementary real analysis,
Amer. Math. Monthly 105 (1998), no. 2, 107–117].

1. Preliminaries

Given a function f : [a, b]→ R, the oscillation of f on a set A ⊂ [a, b] is the
quantity

ω(f, A) := sup f(A)− inf f(A).

For x ∈ (a, b), the oscillation of f at the point x is defined as

ω(f, x) := inf{ω(f, I) : I ⊂ (a, b) is an open interval, x ∈ I}.

Exercise 1.1. Le f be as above, and x ∈ (a, b). Show that f is continuous at
x if and only if ω(f, x) = 0.

A partition of [a, b] is a finite family of intervals {Ij : j = 1, . . . , n}, where
n ∈ N, Ij = [xj−1, xj] (1 ≤ j ≤ n), and a = x0 < x1 < · · · < xn = b. The
length of an interval I ⊂ R is denoted by |I|, and the notation f ∈ R[a, b]
means that f is Riemann integrable on [a, b].

Exercise 1.2. Notice that the standard test of Riemann integrability can be
formulated as follows: f ∈ R[a, b] if and only if for every ε > 0 there exists a
partition {Ij : j = 1, . . . , n} of [a, b] such that

n∑
j=1

ω(f, Ij)|Ij| ≤ ε.
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Definition 1.3. A set A ⊂ R is said to be a null set or to have measure
zero if for every ε > 0 there exists a sequence {Jk}∞1 of open (not necessarily
nonempty) intervals such that A ⊂

⋃∞
k=1 Jk and

∑∞
k=1 |Jk| < ε.

A property holds almost everywhere if it holds at each point outside a null set.

It is obvious that a subset of a null set is again a null set.

Exercise 1.4. Show that a finite or countable union of null sets is a null set,
and that every at most countable set is a null set.

2. Proof of sufficiency

Theorem 2.1 (Sufficiency). Let f : [a, b] → R be bounded and almost every-
where continuous. Then f ∈ R[a, b].

Our proof follows the elegant idea from the paper [R.A. Gordon, The use
of tagged partitions in elementary real analysis, Amer. Math. Monthly 105
(1998), no. 2, 107–117]. It is based on the following notion of a “δ-fine tagged
partition”.

Definition 2.2. A tagged partition of [a, b] is a set of the form

{(cj, Ij) : j = 1, . . . , n}

where {Ij : j = 1, . . . , n} is a partition of [a, b], and cj ∈ Ij (1 ≤ j ≤ n). So, a
tagged partition is a partition for which we fix a distinguished point (a “tag”,
“etichetta” in Italian) in each of its intervals.

Given a function δ : [a, b]→ (0,∞), the tagged partition is said to be δ-fine
if

Ij ⊂ (cj − δ(cj), cj + δ(cj)) for each 1 ≤ j ≤ n.

The following simple lemma could be easily proved also by using compact-
ness of [a, b] via open coverings. The proof we give here, based on completeness
of R (that is, existence of supremum), is taken from Gordon’s paper.

Lemma 2.3. For every δ : [a, b]→ (0,∞) there exists a δ-fine tagged partition
of [a, b].

Proof. Let E be the set of all points x ∈ (a, b] such that there exists a δ-fine
tagged partition of [a, x]. Let us proceed in three easy steps.

(a) E is nonempty. Indeed, for every point x ∈ (a, a + δ(a)) the singleton
{(a, [a, x])} is a δ-fine partition of [a, x], and hence x ∈ E.

(b) s := supE is an element of E. Assume this is not the case. Then there
exists u ∈ E such that s− δ(s) < u < s. Now, if P is a δ-fine tagged partition
of [a, u], then P ′ := P ∪ {(s, [u, s])} is a δ-fine tagged partition of [a, s]. But
this means that s ∈ E, which is a contradiction.
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(c) s = b. Assume that s < b. Fix v ∈ (s, b] such that v < s + δ(s), and
a δ-fine tagged partition P of [a, s]. Then P ′ := P ∪ {(s, [s, v])} is a δ-fine
tagged partition of [a, v], contradicting the definition of s. We are done. �

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let |f | ≤ M on [a, b], and let D denote the set of
discontinuity points of f in [a, b]. Given ε > 0, let {Jk}∞1 be a sequence of
open intervals such that D ⊂

⋃∞
k=1 Jk and

∑∞
k=1 |Jk| < ε. For each x ∈ [a, b],

let us define δ(x) > 0 as follows:

• if x /∈ D, let δ(x) > 0 be such that |f(y) − f(x)| < ε whenever
|y − x| < δ(x);
• if x ∈ D, there exists an index k(x) ∈ N such that x ∈ Jk(x), and we

fix some δ(x) > 0 for which (x− δ(x), x+ δ(x)) ⊂ Jk(x).

Now, let {(cj, Ij) : j = 1, . . . , n} be a δ-fine tagged partition of [a, b] (Lemma 2.3).
Put ∆ := {j : cj ∈ D}. Then Ij ⊂ Jk(cj) whenever j ∈ ∆, and hence∑

j∈∆

|Ij| ≤
∞∑
k=1

|Jk| < ε.

Therefore,
n∑
j=1

ω(f, Ij)|Ij| =
∑
j∈∆

ω(f, Ij)|Ij|+
∑
j /∈∆

ω(f, Ij)|Ij|

≤ 2M
∑
j∈∆

|Ij|+ 2ε
∑
j /∈∆

|Ij|

≤ 2Mε+ 2ε(b− a) = 2ε(M + b− a).

Since ε > 0 was arbitrary, Exercise 1.2 implies that f ∈ R[a, b]. �

Now we have the following easy corollary (cf. Exercise 1.4).

Corollary 2.4. If f : [a, b] → R is bounded and has at most countably many
points of discontinuity, then f ∈ R[a, b].

3. Proof of necessity

The proof of necessity is easier than that of the other implication. In the
following proof, I◦ denotes the interior of an interval I.

Theorem 3.1 (Necessity). If f ∈ R[a, b], then (it is bounded and) the set of
its discontinuity points is a null set.

Proof. For α > 0, consider the set

Dα := {x ∈ (a, b) : ω(f, x) > α}.
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Let us show that each such set Dα is a null set. Fix an arbitrary ε > 0. By
Exercise 1.4, there exists a partition {Ij : j = 1, . . . , n} of [a, b], such that∑n

j=1 ω(f, Ij)|Ij| < εα. Let E be the (finite) set of the extreme points of the

intervals Ij (1 ≤ j ≤ n), let and ∆ := {j : I◦j ∩Dα 6= ∅}. Then

(1) Dα = (Dα \ E) ∪ (Dα ∩ E) ⊂
⋃
j∈∆

I◦j ∪ E.

Therefore we have

εα >
∑
j∈∆

ω(f, Ij)|Ij| > α
∑
j∈∆

|Ij| ,

and hence
∑

j∈∆ |Ij| < ε. Since E is finite, (1) easily implies that Dε can be
covered by finitely many open intervals sum of whose lengths is less than 2ε.
Since ε > 0 was arbitrary, Dα is a null set.

To finish the proof, observe that the set D of points of discontinuity of f
in [a, b] is contained in the union

⋃
n∈ND1/n ∪ {a, b} (see Exercise 1.1). By

Exercise 1.4, D is a null set. �

4. An important corollary

Corollary 4.1. If f, g ∈ R[a, b], then the functions

|f |, f · g, max{f, g}, min{f, g} (and similar)

are Riemann integrable on [a, b].

Proof. The sets of discontinuity points of these functions is clearly contained
in the union of the sets of discontinuity points of f and g. Apply Theorem 0.1
together with Exercise 1.4. �

Exercise 4.2. Show that |f | ∈ R[a, b] does not imply that f ∈ R[a, b].

(Hint: consider a Dirichlet-like function with values ±1.)


