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Theorem (Rademacher)

Every Lipschitz map f : Rn −→ Rm is differentiable a.e.

For a function f from a Banach space X into a Banach space Y
the Gâteaux derivative at x ∈ X is a bounded linear operator
T : X −→ Y such that for every u ∈ X ,

lim
t→0

f (x + tu)− f (x)

t
= Tu.

T is called the Fréchet derivative if the above limit holds
uniformly in u in the unit ball.
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Theorem
Every Lipschitz map from a separable Banach space X into a
Banach space with the RNP is Gâteaux differentiable almost
everywhere.

Theorem
Every Lipschitz function f defined on a nonempty open subset
G of an Asplund space has a point of Fréchet differentiability.
Moreover, for any a,b ∈ G for which the segment [a,b] lies
entirely in G, and for any ε > 0 there is x ∈ G at which f is
Fréchet differentiable and

f (b)− f (a)− ε < f ′(x ; b − a) < f (b)− f (a) + ε.
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Definition
Suppose that (M,d) is a metric space and d0 a continuous
pseudometric on M. We say that M is (d ,d0)-complete if
there are functions δj : M j+1 −→ (0,∞) such that every
d-Cauchy sequence (xj)

∞
j=0 converges to an element of M

provided

d0(xj , xj+1) ≤ δj(x0, . . . , xj) for each j ≥ 0.

We say that a function f : M −→ R is (d ,d0)-continuous if

lim
j→∞

f (xj) = f (x)

whenever xj ∈ M converge in metric d to x and

d0(xj , xj+1) ≤ δj(x0, . . . , xj) for each j ≥ 0.
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Variational Principle.

Let f : M −→ R be a function bounded from below on a metric
space (M,d). Let d0 be a continuous pseudometric on M such
that M is (d ,d0)-complete, and f is (d ,d0)-continuous. Let
Fj : M ×M −→ [0,∞), j ≥ 0, be functions (d ,d0)-continuous
with Fj(x , x) = 0 for all x ∈ M and let rj ↘ 0 be such that

infd(x ,y)>rj
Fj(x , y) > 0.

If x0 ∈ M and εj > 0 such that

f (x0) < ε0 + infM f (x)

then there is sequence xj → x∞ ∈ M and d0-continuous
function ϕ ≥ 0 on M such that the function

h(x) = f (x) + ϕ(x) +
∑∞

j=0 Fj(x , xj)

attains its minimum at x∞, d(xj , x∞) < rj , and Fj(x∞, xj) < εj .
J. Tišer



Variational Principle.

Let f : M −→ R be a function bounded from below on a metric
space (M,d). Let d0 be a continuous pseudometric on M such
that M is (d ,d0)-complete, and f is (d ,d0)-continuous. Let
Fj : M ×M −→ [0,∞), j ≥ 0, be functions (d ,d0)-continuous
with Fj(x , x) = 0 for all x ∈ M and let rj ↘ 0 be such that

infd(x ,y)>rj
Fj(x , y) > 0.

If x0 ∈ M and εj > 0 such that

f (x0) < ε0 + infM f (x)

then there is sequence xj → x∞ ∈ M and d0-continuous
function ϕ ≥ 0 on M such that the function

h(x) = f (x) + ϕ(x) +
∑∞

j=0 Fj(x , xj)

attains its minimum at x∞, d(xj , x∞) < rj , and Fj(x∞, xj) < εj .
J. Tišer



Variational Principle.

Let f : M −→ R be a function bounded from below on a metric
space (M,d). Let d0 be a continuous pseudometric on M such
that M is (d ,d0)-complete, and f is (d ,d0)-continuous. Let
Fj : M ×M −→ [0,∞), j ≥ 0, be functions (d ,d0)-continuous
with Fj(x , x) = 0 for all x ∈ M and let rj ↘ 0 be such that

infd(x ,y)>rj
Fj(x , y) > 0.

If x0 ∈ M and εj > 0 such that

f (x0) < ε0 + infM f (x)

then there is sequence xj → x∞ ∈ M and d0-continuous
function ϕ ≥ 0 on M such that the function

h(x) = f (x) + ϕ(x) +
∑∞

j=0 Fj(x , xj)

attains its minimum at x∞, d(xj , x∞) < rj , and Fj(x∞, xj) < εj .
J. Tišer



Variational Principle.

Let f : M −→ R be a function bounded from below on a metric
space (M,d). Let d0 be a continuous pseudometric on M such
that M is (d ,d0)-complete, and f is (d ,d0)-continuous. Let
Fj : M ×M −→ [0,∞), j ≥ 0, be functions (d ,d0)-continuous
with Fj(x , x) = 0 for all x ∈ M and let rj ↘ 0 be such that

infd(x ,y)>rj
Fj(x , y) > 0.

If x0 ∈ M and εj > 0 such that

f (x0) < ε0 + infM f (x)

then there is sequence xj → x∞ ∈ M and d0-continuous
function ϕ ≥ 0 on M such that the function

h(x) = f (x) + ϕ(x) +
∑∞

j=0 Fj(x , xj)

attains its minimum at x∞, d(xj , x∞) < rj , and Fj(x∞, xj) < εj .
J. Tišer



Variational Principle.

Let f : M −→ R be a function bounded from below on a metric
space (M,d). Let d0 be a continuous pseudometric on M such
that M is (d ,d0)-complete, and f is (d ,d0)-continuous. Let
Fj : M ×M −→ [0,∞), j ≥ 0, be functions (d ,d0)-continuous
with Fj(x , x) = 0 for all x ∈ M and let rj ↘ 0 be such that

infd(x ,y)>rj
Fj(x , y) > 0.

If x0 ∈ M and εj > 0 such that

f (x0) < ε0 + infM f (x)

then there is sequence xj → x∞ ∈ M and d0-continuous
function ϕ ≥ 0 on M such that the function

h(x) = f (x) + ϕ(x) +
∑∞

j=0 Fj(x , xj)

attains its minimum at x∞, d(xj , x∞) < rj , and Fj(x∞, xj) < εj .
J. Tišer



An illustrative case.

Theorem
Let f be a Lipschitz and everywhere Gâteaux differentiable
function on a Banach space X with separable dual. Then f has
a point of Fréchet differentiability.
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Fact
Let Θ: X −→ R be Fréchet differentiable, ψ : X −→ R
continuous, and f : X −→ R Lipschitz and Gâteaux
differentiable. Suppose that the function h : X × X −→ R,

h(x ,u) = f ′(x ; u) + ψ(x) + Θ(u)

attains its minimum at (x0,u0). Then f is Fréchet differentiable
at x0.
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Fact
Let f : X −→ R be Lipschitz and everywhere Gâteaux
differentiable. Let M = X × X be equipped with the metric

d
(
(x ,u), (y , v)

)
=
√
‖x − y‖2 + ‖u − v‖2

and the continuous pseudometric

d0
(
(x ,u), (y , v)

)
= ‖x − y‖.

Then the map (x ,u) 7→ f ′(x ; u) is (d ,d0)-continuous.
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