Fréchet differentiability of Lipschitz functions and Variational Principle

J. Tišer

Department of Mathematics Faculty of Electrical Engineering Czech Technical University of Prague

J. Lindenstrauss D. Preiss J. Tišer

Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces.

Princeton University Press

.⊒...>

Theorem (Rademacher)

Every Lipschitz map $f : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is differentiable a.e.

For a function *f* from a Banach space *X* into a Banach space *Y* the Gâteaux derivative at $x \in X$ is a bounded linear operator $T: X \longrightarrow Y$ such that for every $u \in X$,

$$\lim_{t\to 0}\frac{f(x+tu)-f(x)}{t}=Tu.$$

T is called the Fréchet derivative if the above limit holds uniformly in u in the unit ball.

Theorem (Rademacher)

Every Lipschitz map $f : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is differentiable a.e.

For a function *f* from a Banach space *X* into a Banach space *Y* the Gâteaux derivative at $x \in X$ is a bounded linear operator $T: X \longrightarrow Y$ such that for every $u \in X$,

$$\lim_{t\to 0}\frac{f(x+tu)-f(x)}{t}=Tu.$$

T is called the Fréchet derivative if the above limit holds uniformly in u in the unit ball.

Theorem

Every Lipschitz map from a separable Banach space X into a Banach space with the RNP is Gâteaux differentiable almost everywhere.

Theorem

Every Lipschitz function f defined on a nonempty open subset G of an Asplund space has a point of Fréchet differentiability. Moreover, for any $a, b \in G$ for which the segment [a, b] lies entirely in G, and for any $\varepsilon > 0$ there is $x \in G$ at which f is Fréchet differentiable and

$$f(b) - f(a) - \varepsilon < f'(x; b - a) < f(b) - f(a) + \varepsilon.$$

ヘロト ヘアト ヘヨト ヘ

Theorem

Every Lipschitz map from a separable Banach space X into a Banach space with the RNP is Gâteaux differentiable almost everywhere.

Theorem

Every Lipschitz function f defined on a nonempty open subset G of an Asplund space has a point of Fréchet differentiability. Moreover, for any $a, b \in G$ for which the segment [a, b] lies entirely in G, and for any $\varepsilon > 0$ there is $x \in G$ at which f is Fréchet differentiable and

$$f(b) - f(a) - \varepsilon < f'(x; b - a) < f(b) - f(a) + \varepsilon.$$

イロト イヨト イヨト イ

Definition

Suppose that (M, d) is a metric space and d₀ a continuous pseudometric on M. We say that M is (d, d₀)-complete if there are functions δ_j: M^{j+1} → (0, ∞) such that every d-Cauchy sequence (x_j)_{j=0}[∞] converges to an element of M provided

$$d_0(x_j,x_{j+1}) \leq \delta_j(x_0,\ldots,x_j) \quad ext{for each } j \geq 0.$$

• We say that a function $f: M \longrightarrow \mathbb{R}$ is (d, d_0) -continuous if

$$\lim_{j\to\infty}f(x_j)=f(x)$$

whenever $x_j \in M$ converge in metric d to x and

$$d_0(x_j, x_{j+1}) \leq \delta_j(x_0, \dots, x_j)$$
 for each $j \geq 0$

・ロット (雪) () () () ()

ъ

Definition

Suppose that (M, d) is a metric space and d₀ a continuous pseudometric on M. We say that M is (d, d₀)-complete if there are functions δ_j: M^{j+1} → (0, ∞) such that every d-Cauchy sequence (x_j)_{j=0}[∞] converges to an element of M provided

$$d_0(x_j, x_{j+1}) \leq \delta_j(x_0, \dots, x_j)$$
 for each $j \geq 0$.

• We say that a function $f: M \longrightarrow \mathbb{R}$ is (d, d_0) -continuous if

$$\lim_{j\to\infty}f(x_j)=f(x)$$

whenever $x_i \in M$ converge in metric *d* to *x* and

$$d_0(x_j,x_{j+1}) \leq \delta_j(x_0,\ldots,x_j) \quad ext{for each } j \geq 0.$$

<ロト <回 > < 注 > < 注 > 、

ъ

 $\inf_{d(x,y)>r_j}F_j(x,y)>0.$

If $x_0 \in M$ and $\varepsilon_i > 0$ such that

 $f(x_0) < \varepsilon_0 + \inf_M f(x)$

then there is sequence $x_j \rightarrow x_{\infty} \in M$ and d_0 -continuous function $\varphi \ge 0$ on M such that the function

$$h(x) = f(x) + \varphi(x) + \sum_{j=0}^{\infty} F_j(x, x_j)$$

 $\inf_{d(x,y)>r_j}F_j(x,y)>0.$

If $x_0 \in M$ and $\varepsilon_i > 0$ such that

 $f(x_0) < \varepsilon_0 + \inf_M f(x)$

then there is sequence $x_j \rightarrow x_{\infty} \in M$ and d_0 -continuous function $\varphi \ge 0$ on M such that the function

$$h(x) = f(x) + \varphi(x) + \sum_{j=0}^{\infty} F_j(x, x_j)$$

 $\inf_{d(x,y)>r_j}F_j(x,y)>0.$

If $x_0 \in M$ and $\varepsilon_i > 0$ such that

 $f(x_0) < \varepsilon_0 + \inf_M f(x)$

then there is sequence $x_j \rightarrow x_{\infty} \in M$ and d_0 -continuous function $\varphi \ge 0$ on M such that the function

 $h(x) = f(x) + \varphi(x) + \sum_{j=0}^{\infty} F_j(x, x_j)$

$$\inf_{d(x,y)>r_j}F_j(x,y)>0.$$

If $x_0 \in M$ and $\varepsilon_j > 0$ such that

 $f(x_0) < \varepsilon_0 + \inf_M f(x)$

then there is sequence $x_j \rightarrow x_{\infty} \in M$ and d_0 -continuous function $\varphi \ge 0$ on M such that the function

$$h(x) = f(x) + \varphi(x) + \sum_{j=0}^{\infty} F_j(x, x_j)$$

$$\inf_{d(x,y)>r_j}F_j(x,y)>0.$$

If $x_0 \in M$ and $\varepsilon_j > 0$ such that

$$f(x_0) < \varepsilon_0 + \inf_M f(x)$$

then there is sequence $x_j \rightarrow x_{\infty} \in M$ and d_0 -continuous function $\varphi \ge 0$ on M such that the function

$$h(x) = f(x) + \varphi(x) + \sum_{j=0}^{\infty} F_j(x, x_j)$$

Theorem

Let f be a Lipschitz and everywhere Gâteaux differentiable function on a Banach space X with separable dual. Then f has a point of Fréchet differentiability.

Fact

Let $\Theta: X \longrightarrow \mathbb{R}$ be Fréchet differentiable, $\psi: X \longrightarrow \mathbb{R}$ continuous, and $f: X \longrightarrow \mathbb{R}$ Lipschitz and Gâteaux differentiable. Suppose that the function $h: X \times X \longrightarrow \mathbb{R}$,

$$h(x, u) = f'(x; u) + \psi(x) + \Theta(u)$$

attains its minimum at (x_0, u_0) . Then f is Fréchet differentiable at x_0 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Fact

Let $f: X \longrightarrow \mathbb{R}$ be Lipschitz and everywhere Gâteaux differentiable. Let $M = X \times X$ be equipped with the metric

$$d((x, u), (y, v)) = \sqrt{\|x - y\|^2 + \|u - v\|^2}$$

and the continuous pseudometric

$$d_0((x, u), (y, v)) = ||x - y||.$$

イロト イポト イヨト イヨト 一日

Then the map $(x, u) \mapsto f'(x; u)$ is (d, d_0) -continuous.