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An infinite-dimensional Banach space X is called a Lindenstrauss space
if X∗ is isometric to L1(µ).

A separable Banach space G is called a Gurariy space if given ε > 0 and
an isometric embedding T : L → G of a finite-dimensional normed space
L into G, for any finite-dimensional space M ⊃ L there is an extension
T̃ : M → G with ||T̃ ||||T̃−1|| ≤ 1 + ε.

The first example of a space G with the property above was given by
Gurariy.

Also it was proved by Gurariy that G has the following property: if
L,M ⊂ G are isometric finite-dimensional subspaces of G and I : L→M
is an isometry then for any ε > 0 there is an extension Ĩ : G → G with
||Ĩ||||Ĩ−1|| < 1 + ε.
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It was proved by Lazar-Lindenstrauss that a Gurariy space is a Linden-
strauss space and Lusky proved that a Gurariy space is isometrically unique.
The following 2 properties of the Gurariy space will be important for us:

(M) Let (ain)i≤n be a triangular matrix with vectors (a1n, a2n, ..., ann, 0, 0, ...), n =
1, 2, ..., dense in the unit ball of l1. Then the Lindenstrauss space with rep-
resenting matrix (ain)i≤n is the Gurariy space.

(D) A separable Lindenstrauss spaceX is the Gurariy space iffw∗−cl extBX∗ =
BX∗ .
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The initial point of our investigation was the following question: for
which pairs L ⊂ M in the definition of the Gurariy space an extension
T̃ may be chosen to be an isometry?

Definition 0.1. We say that the pair L ⊂ M of normed spaces has the
unique Hahn-Banach extension property (UHB in short) if for any func-
tional f ∈ L∗ there is a unique extension f̂ ∈M∗ with ||f̂ || = ||f ||.

Note that x ∈ SM is a smooth point of SM iff the pair L = [x] ⊂ M has
UHB.

Theorem 0.2. Let X be a separable Banach space. TFAE
(a) X = G.
(b) Let L ⊂ M, codimML = 1, be a pair with property (UHB) and let
T : L → X be an isometric embedding of L into X. Then there is an
isometric extension T̃ : M → X of T.

Remark. The condition UHB in Theorem 0.2 is important. Indeed, let e1, e2
be a natural basis of the space l(2)1 . Take L = [e1] and M = l

(2)
1 . Next pick

u1 ∈ smSG and define T : L → G by Te1 = u1. Clearly, T does not have
an isometric extension on M.
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Proof of (b)⇒(a).
We will prove (b) ⇒

(i) X is a Lindenstrauss space

(ii) w∗ − cl extBX∗ = BX∗

X is a Lindenstrauss space:

It is enough to show that

for any finite-dimensional subspace M ⊂ X and any ε > 0, there is a
subspace N ⊂ X isometric ln∞ with

min{d(x,N) : x ∈M} < ε (0.1)

We will need the Proposition here:

Proposition 0.3. Let M be an n-dimensional normed space and ε > 0.
Then there is a 2n-dimensional normed space Z such that
(i) M ⊂ Z.
(ii) There is a polyhedral subspace E ⊂ Z with θ(M,E) < ε.
(iii) There is a chain M = Y0 ⊂ Y1 ⊂ Y2 ⊂ ... ⊂ Yn−1 ⊂ Yn = Z, such
that each pair Yk−1 ⊂ Yk has UHB and codimYk

Yk−1 = 1, k = 1, ..., n,

By using Proposition 0.3 and (b) find a finite-dimensional polyhedral
space Y ⊂ X with θ(M,Y ) < ε/2.
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Next:

Definition 0.4. LetE be a polyhedral finite-dimensional space and extBE∗ =
{±hi}n

i=1. Define ψE : E → ln∞ as follows

ψEx = (hi(x))
n
i=1, x ∈ E.

We call ψE a canonical embedding of E.
We say that E is a fine space and BE is a fine polytope if the pair

ψE(E) ⊂ ln∞ has UHB.

Proposition 0.5. LetE be a finite-dimensional polyhedral space and ε > 0.
Then there are a finite-dimensional polyhedral spaceM, M ⊃ E, such that
the pair E ⊂M has UHB, and a fine subspace L ⊂M with θ(E,L) < ε.

Proposition 0.6. Let L ⊂ M be a pair of finite-dimensional polyhedral
spaces with UHB. Then there is a chain

L = L0 ⊂ L1 ⊂ L2 ⊂ ... ⊂ Lm−1 ⊂ Lm = M (0.2)

such that for any k = 0, 1, ...,m − 1, the pair Lk ⊂ Lk+1 has UHB and
codimLk+1

Lk = 1.

By using Propositions 0.5, 0.6, and (b) we find a fine subspace L ⊂ X
with θ(L, Y ) < ε/2.

Clearly, θ(L,M) < ε. Finally, by using the definition of a fine space,
Proposition 0.6, and (b) we find a subspace N ⊂ X isometric ln∞ with (0.1).

So we proved that X is a Lindenstrauss space.
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Next we check that w∗ − cl extBX∗ = BX∗ .

SinceX is a separable Lindenstrauss space we haveX = cl∪nXn, Xn =
ln∞, n = 1, 2, .....

Clearly, the w∗−topology on BX∗ is defined by Xn’s.

It is enough to prove that

cl (extBX∗|Xn) = BX∗
n
, for any n = 1, 2, ....

Denote L = Xn = ln∞.

Let {ei}n
i=1 be a natural basis of ln1 = L∗ and f =

∑n
i=1 aiei ∈ intBL∗ ,

∑n
i=1 |ai| <

1.

LetM ⊃ L be ln+1
∞ containing L in such a way that if {ei}n+1

i=1 is a natural
basis of M∗ = ln+1

1 then en+1|L =
∑n

i=1 aiei|L.

The pair L ⊂M has property (UHB).

Let T : L→ X be a natural (isometric) embedding L into X.

By the condition (b) of the theorem there is an isometric extension T̃ :
M → X.

By the Krein-Milman theorem there is e ∈ extBX∗ with T̃ ∗e = en+1.

It is easily seen that e|L = f which proves that (extBX∗)L = BL∗ .

This completes the (b) ⇒ (a).
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Corollary 0.7. Let L ⊂ M be a pair of finite-dimensional polyhedral
spaces (i.e. BM is a polytope) with UHB. Assume that T : L → G is
an isometry. Then there is an isometric extension T̃ : M → G of T.

Proof. Apply Proposition 0.6 and Theorem 0.2, (a)⇒(b) which finish the
proof.

Corollary 0.8. extBG = ∅

Proof. Let u ∈ SG and u1, u2 be a standard basis of the space M = l2∞.
If L = [u1] then the pair L ⊂ M has (UHB). If T : L → G is defined by
Tu1 = u, then by Theorem 0.2 there is an isometric extension T̃ : M → G.
In particular, ||T̃ (u1±u2)|| = 1,which proves that u is not an extreme point
of BG.

Corollary 0.9. Let Y be a separable smooth Banach space (say Y = l2)
and E ⊂ Y be a finite-dimensional subspace of Y. Assume that E ⊂ G.
Then there is a subspace Z ⊂ G isometric Y with Z ⊃ E.

Proof. Apply Theorem 0.2 infinitely many times.
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Rotations of the Gurariy space:

Theorem 0.10. For a separable Lindenstrauss space X TFAE:
(a) Let L1 and L2 be 2 isometric polyhedral finite-dimensional subspaces of
X such that the pairs L1 ⊂ X and L2 ⊂ X has UHB, and let I : L1 → L2

be an isometry. Then there is a rotation (isometry onto) ψ : X → X such
that ψ|L1 = I.
(b) X = G.

We only prove (a) ⇒ (b).

Proof of Theorem 0.10. (a)⇒(b).

It is enough to prove that w∗ − cl extBX∗ = BX∗ .
or equivalently:

(d) IfX = cl∪nXn, Xn = ln∞, n = 1, 2, ..., then cl extBX∗|Xn
= BX∗

n
, n =

1, 2, ....

We state a Proposition:

Proposition 0.11. Let X be a Lindenstrauss space,

X = cl∪nXn, Xn = ln∞, {ei}i ⊂ extBX∗ , en+1|Xn
=

n∑
i=1

ainei|Xn
, n = 1, 2, ..., .

Let {εn} be a sequence of positive numbers with
∑
εn < ∞. Then there is

an increasing sequence {En} of subspaces of X such that

(1) En is isometric ln∞ and en+1|En
= (1− εn)

∑n
i=1 ainei|En

, n = 1, 2, ....

(2) θ(Ep, Xp) <
∑∞

i=p+1 εi, p = 1, 2, .... In particular cl ∪n En = X.

(3) Each pair Ep ⊂ X has UHB.

By Proposition 0.11 we can assume that each pair Xn ⊂ X has UHB.
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A Lemma:

Lemma 0.12. Let X be a separable Lindenstrauss space. Assume that
X = cl∪∞n=1Xn,whereXn is an increasing sequence of subspaces such that
eachXn is isometric to ln∞. Then there is a sequence {ei}∞i=1 ⊂ extBX∗ with
w∗ − cl{±ei}∞i=1 ⊃ extBX∗ , and such that extBX∗

n
= {±ei|Xn}n

i=1, n =
1, 2, ....

By Lemma 0.12 there is a sequence {ei}∞i=1 ⊂ extBX∗ such that {±ei|Xn}n
i=1 =

extBX∗
n
, for any n.

Fix an integer p and ε > 0.

Let {fi}q
i=1 be a finite ε-net in (1− ε)BX∗

p
.

Clearly, fi =
∑p

j=1 a
i
jei,

∑p
j=1 |ai

j| ≤ 1− ε.

Choose a subspace Y ⊂ Xp+q, Y isometric to lp∞, such that ep+i|Y =∑p
j=1 a

i
jei, i = 1, ..., q.

Another Proposition:

Proposition 0.13. Let L ⊂ M be a pair of normed spaces with L = lp∞
and M = lq∞, p < q. Assume that {±ei}q

i=1 = extBM∗ and {±ei}p
i=1 =

extBL∗ . Then

L ⊂M has UHB iff for any i, p+ 1 ≤ i ≤ q, we have ||ei|L || < 1.
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From Proposition 0.13 it follows that Y ⊂ Xp+q has UHB. SinceXp+q ⊂
X has UHB, it follows that Y ⊂ X has UHB.

Let I : Xp → Y be a natural isometry of Xp onto Y, i.e.,

ei(Ix) = ei(x), x ∈ Xp, i = 1, ..., p; ei(Ix) = fi(x), i = p+1, ..., p+q.

By the condition (a) of the theorem there is a rotation T : X → X such
that T |Xp = I.

Since T ∗ is a rotation of X∗ it follows that T ∗(extBX∗) = extBX∗ . In
particular, {T ∗ep+i}q

i=1 ⊂ extBX∗ .

However, (T ∗ep+i)|Xp = fi, i = 1, ..., q.

It follows that extBX∗|Xp is an ε-net in (1− ε)BX∗
n
.

Since ε > 0 is arbitrary, it follows that extBX∗|Xp is dense in BX∗
p
.

This finishes the proof of (a)⇒(b).
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Extension of finite-dimensional smooth subspaces:

Theorem 0.14. Let N ⊂ G be a finite-dimensional smooth subspace of the
Gurariy space G. Then there is a smooth subspace L ⊂ G with L ⊃ N and
L 6= N.

Proof. Put M = N ⊕ R and define in M the norm as follows

||(x, t)|| = (||x||2 + t2)1/2, x ∈ N, t ∈ R.
Apply Theorem 0.2 and finish the proof.

Theorem 0.15. LetX be a separable polyhedral Lindenstrauss space. Then
the (Lindenstrauss) space Y = X⊕∞G has the smooth extension property,
i.e. for any finite-dimensional smooth subspace E ⊂ Y there is a finite-
dimensional smooth subspace M ⊂ Y with M ⊃ E, M 6= E.

Theorem 0.16. Let E be a finite dimensional smooth normed space. Then
for every C(K) space with nonseparable dual, there exists an embedding
of E in C(K) such that no bigger subspace is smooth.

Density of smooth subspaces of the Gurariy space.

Theorem 0.17. For a separable Lindenstrauss space X TFAE:
(SM) The family SF (X) of all smooth finite-dimensional subspaces of X is
θ-dense in the family F (X) of all finite-dimensional subspaces of X.
(G) The space X is the Gurariy space G.


