CHARACTERISTIC PROPERTIES OF THE GURARIY SPACE.

V. P. Fonf Ben-Gurion University of the Negev, Isreal An infinite-dimensional Banach space X is called a Lindenstrauss space if X^* is isometric to $L_1(\mu)$.

A separable Banach space G is called a Gurariy space if given $\varepsilon > 0$ and an isometric embedding $T: L \to G$ of a finite-dimensional normed space L into G, for any finite-dimensional space $M \supset L$ there is an extension $\tilde{T}: M \to G$ with $||\tilde{T}||||\tilde{T}^{-1}|| \leq 1 + \varepsilon$.

The first example of a space G with the property above was given by *Gurariy*.

Also it was proved by *Gurariy* that G has the following property: if $L, M \subset G$ are isometric finite-dimensional subspaces of G and $I : L \to M$ is an isometry then for any $\varepsilon > 0$ there is an extension $\tilde{I} : G \to G$ with $||\tilde{I}||||\tilde{I}^{-1}|| < 1 + \varepsilon$.

It was proved by *Lazar-Lindenstrauss* that a Gurariy space is a Lindenstrauss space and *Lusky* proved that a Gurariy space is isometrically unique. The following 2 properties of the Gurariy space will be important for us:

(M) Let $(a_{in})_{i \leq n}$ be a triangular matrix with vectors $(a_{1n}, a_{2n}, ..., a_{nn}, 0, 0, ...), n = 1, 2, ...,$ dense in the unit ball of l_1 . Then the Lindenstrauss space with representing matrix $(a_{in})_{i < n}$ is the Gurariy space.

(D) A separable Lindenstrauss space X is the Gurariy space iff w^* -cl ext $B_{X^*} = B_{X^*}$.

The initial point of our investigation was the following question: for which pairs $L \subset M$ in the definition of the Gurariy space an extension \tilde{T} may be chosen to be an isometry?

Definition 0.1. We say that the pair $L \subset M$ of normed spaces has the unique Hahn-Banach extension property (UHB in short) if for any functional $f \in L^*$ there is a unique extension $\hat{f} \in M^*$ with $||\hat{f}|| = ||f||$.

Note that $x \in S_M$ is a smooth point of S_M iff the pair $L = [x] \subset M$ has UHB.

Theorem 0.2. Let X be a separable Banach space. TFAE (a) X = G. (b) Let $L \subset M$, $\operatorname{codim}_M L = 1$, be a pair with property (UHB) and let $T : L \to X$ be an isometric embedding of L into X. Then there is an isometric extension $\tilde{T} : M \to X$ of T.

Remark. The condition UHB in Theorem 0.2 is important. Indeed, let e_1, e_2 be a natural basis of the space $l_1^{(2)}$. Take $L = [e_1]$ and $M = l_1^{(2)}$. Next pick $u_1 \in \text{sm}S_G$ and define $T : L \to G$ by $Te_1 = u_1$. Clearly, T does not have an isometric extension on M.

Proof of (b) \Rightarrow **(a).**

We will prove (b) \Rightarrow

- (i) X is a Lindenstrauss space
- $(ii) w^* \operatorname{cl} \operatorname{ext} B_{X^*} = B_{X^*}$

X is a Lindenstrauss space:

It is enough to show that

for any finite-dimensional subspace $M \subset X$ and any $\varepsilon > 0$, there is a subspace $N \subset X$ isometric l_{∞}^n with

$$\min\{d(x,N): x \in M\} < \varepsilon \tag{0.1}$$

We will need the Proposition here:

Proposition 0.3. Let M be an n-dimensional normed space and $\varepsilon > 0$. Then there is a 2n-dimensional normed space Z such that (i) $M \subset Z$. (ii) There is a polyhedral subspace $E \subset Z$ with $\theta(M, E) < \varepsilon$. (iii) There is a chain $M = Y_0 \subset Y_1 \subset Y_2 \subset ... \subset Y_{n-1} \subset Y_n = Z$, such that each pair $Y_{k-1} \subset Y_k$ has UHB and $\operatorname{codim}_{Y_k} Y_{k-1} = 1$, k = 1, ..., n,

By using Proposition 0.3 and (b) find a finite-dimensional polyhedral space $Y \subset X$ with $\theta(M, Y) < \varepsilon/2$.

Next:

Definition 0.4. Let *E* be a polyhedral finite-dimensional space and $\operatorname{ext} B_{E^*} = \{\pm h_i\}_{i=1}^n$. Define $\psi_E : E \to l_\infty^n$ as follows

$$\psi_E x = (h_i(x))_{i=1}^n, \quad x \in E.$$

We call ψ_E a canonical embedding of E.

We say that E is a fine space and B_E is a fine polytope if the pair $\psi_E(E) \subset l_{\infty}^n$ has UHB.

Proposition 0.5. Let *E* be a finite-dimensional polyhedral space and $\varepsilon > 0$. Then there are a finite-dimensional polyhedral space $M, M \supset E$, such that the pair $E \subset M$ has UHB, and a fine subspace $L \subset M$ with $\theta(E, L) < \varepsilon$.

Proposition 0.6. Let $L \subset M$ be a pair of finite-dimensional polyhedral spaces with UHB. Then there is a chain

$$L = L_0 \subset L_1 \subset L_2 \subset \dots \subset L_{m-1} \subset L_m = M \tag{0.2}$$

such that for any k = 0, 1, ..., m - 1, the pair $L_k \subset L_{k+1}$ has UHB and $\operatorname{codim}_{L_{k+1}} L_k = 1$.

By using Propositions 0.5, 0.6, and (b) we find a fine subspace $L \subset X$ with $\theta(L, Y) < \varepsilon/2$.

Clearly, $\theta(L, M) < \varepsilon$. Finally, by using the definition of a fine space, Proposition 0.6, and (b) we find a subspace $N \subset X$ isometric l_{∞}^{n} with (0.1). So we proved that X is a Lindenstrauss space. Next we check that $w^* - \operatorname{cl} \operatorname{ext} B_{X^*} = B_{X^*}$.

Since X is a separable Lindenstrauss space we have $X = cl \cup_n X_n, X_n = l_{\infty}^n, n = 1, 2,$

Clearly, the w^* -topology on B_{X^*} is defined by X_n 's.

It is enough to prove that

cl $(ext B_{X^*}|_{X_n}) = B_{X_n^*}$, for any n = 1, 2, ...

Denote $L = X_n = l_{\infty}^n$.

Let $\{e_i\}_{i=1}^n$ be a natural basis of $l_1^n = L^*$ and $f = \sum_{i=1}^n a_i e_i \in \text{int} B_{L^*}, \ \sum_{i=1}^n |a_i| < 1.$

Let $M \supset L$ be l_{∞}^{n+1} containing L in such a way that if $\{e_i\}_{i=1}^{n+1}$ is a natural basis of $M^* = l_1^{n+1}$ then $e_{n+1}|_L = \sum_{i=1}^n a_i e_i|_L$.

The pair $L \subset M$ has property (UHB).

Let $T: L \to X$ be a natural (isometric) embedding L into X.

By the condition (b) of the theorem there is an isometric extension \tilde{T} : $M \to X$.

By the Krein-Milman theorem there is $e \in \text{ext}B_{X^*}$ with $\tilde{T}^*e = e_{n+1}$.

It is easily seen that $e|_L = f$ which proves that $(\operatorname{ext} B_{X^*})_L = B_{L^*}$.

This completes the $(b) \Rightarrow (a)$.

Corollary 0.7. Let $L \subset M$ be a pair of finite-dimensional polyhedral spaces (i.e. B_M is a polytope) with UHB. Assume that $T : L \to G$ is an isometry. Then there is an isometric extension $\tilde{T} : M \to G$ of T.

Proof. Apply Proposition 0.6 and Theorem 0.2, (a) \Rightarrow (b) which finish the proof.

Corollary 0.8. $\operatorname{ext} B_G = \emptyset$

Proof. Let $u \in S_G$ and u_1, u_2 be a standard basis of the space $M = l_{\infty}^2$. If $L = [u_1]$ then the pair $L \subset M$ has (UHB). If $T : L \to G$ is defined by $Tu_1 = u$, then by Theorem 0.2 there is an isometric extension $\tilde{T} : M \to G$. In particular, $||\tilde{T}(u_1 \pm u_2)|| = 1$, which proves that u is not an extreme point of B_G .

Corollary 0.9. Let Y be a separable smooth Banach space (say $Y = l_2$) and $E \subset Y$ be a finite-dimensional subspace of Y. Assume that $E \subset G$. Then there is a subspace $Z \subset G$ isometric Y with $Z \supset E$.

Proof. Apply Theorem 0.2 infinitely many times.

8

Rotations of the Gurariy space:

Theorem 0.10. For a separable Lindenstrauss space X TFAE: (a) Let L_1 and L_2 be 2 isometric polyhedral finite-dimensional subspaces of X such that the pairs $L_1 \subset X$ and $L_2 \subset X$ has UHB, and let $I : L_1 \to L_2$ be an isometry. Then there is a rotation (isometry onto) $\psi : X \to X$ such that $\psi|_{L_1} = I$. (b) X = G.

We only prove $(a) \Rightarrow (b)$.

Proof of Theorem 0.10. (a) \Rightarrow (b).

It is enough to prove that $w^* - \operatorname{cl} \operatorname{ext} B_{X^*} = B_{X^*}$. or equivalently:

(d) If $X = cl \cup_n X_n$, $X_n = l_{\infty}^n$, $n = 1, 2, ..., then cl ext B_{X^*|_{X_n}} = B_{X_n^*}$, n = 1, 2, ...

We state a Proposition:

Proposition 0.11. Let X be a Lindenstrauss space,

 $X = \operatorname{cl}_{n} X_{n}, \ X_{n} = l_{\infty}^{n}, \ \{e_{i}\}_{i} \subset \operatorname{ext} B_{X^{*}}, \ e_{n+1|_{X_{n}}} = \sum_{i=1}^{n} a_{in} e_{i|_{X_{n}}}, \ n = 1, 2, \dots, .$ Let $\{\varepsilon_{n}\}$ be a sequence of positive numbers with $\sum \varepsilon_{n} < \infty$. Then there is an increasing sequence $\{E_{n}\}$ of subspaces of X such that (1) E_{n} is isometric l_{∞}^{n} and $e_{n+1|_{E_{n}}} = (1 - \varepsilon_{n}) \sum_{i=1}^{n} a_{in} e_{i|_{E_{n}}}, \ n = 1, 2, \dots$ (2) $\theta(E_{p}, X_{p}) < \sum_{i=p+1}^{\infty} \varepsilon_{i}, \ p = 1, 2, \dots$ In particular $\operatorname{cl} \cup_{n} E_{n} = X$. (3) Each pair $E_{p} \subset X$ has UHB.

By Proposition 0.11 we can assume that each pair $X_n \subset X$ has UHB.

A Lemma:

Lemma 0.12. Let X be a separable Lindenstrauss space. Assume that $X = cl \cup_{n=1}^{\infty} X_n$, where X_n is an increasing sequence of subspaces such that each X_n is isometric to l_{∞}^n . Then there is a sequence $\{e_i\}_{i=1}^{\infty} \subset extB_{X^*}$ with $w^* - cl\{\pm e_i\}_{i=1}^{\infty} \supset extB_{X^*}$, and such that $extB_{X_n^*} = \{\pm e_i|_{X_n}\}_{i=1}^n$, n = 1, 2, ...

By Lemma 0.12 there is a sequence $\{e_i\}_{i=1}^{\infty} \subset \operatorname{ext} B_{X^*}$ such that $\{\pm e_i|_{X_n}\}_{i=1}^n = \operatorname{ext} B_{X_n^*}$, for any n.

Fix an integer p and $\varepsilon > 0$.

Let $\{f_i\}_{i=1}^q$ be a finite ε -net in $(1 - \varepsilon)B_{X_n^*}$.

Clearly, $f_i = \sum_{j=1}^p a_j^i e_i$, $\sum_{j=1}^p |a_j^i| \le 1 - \varepsilon$.

Choose a subspace $Y \subset X_{p+q}$, Y isometric to l_{∞}^p , such that $e_{p+i}|_Y = \sum_{j=1}^p a_j^i e_i, i = 1, ..., q$.

Another Proposition:

Proposition 0.13. Let $L \subset M$ be a pair of normed spaces with $L = l_{\infty}^p$ and $M = l_{\infty}^q$, p < q. Assume that $\{\pm e_i\}_{i=1}^q = \operatorname{ext} B_{M^*}$ and $\{\pm e_i\}_{i=1}^p = \operatorname{ext} B_{L^*}$. Then

 $L \subset M$ has UHB iff for any $i, p+1 \leq i \leq q$, we have $||e_{i|_L}|| < 1$.

10

From Proposition 0.13 it follows that $Y \subset X_{p+q}$ has UHB. Since $X_{p+q} \subset X$ has UHB, it follows that $Y \subset X$ has UHB.

Let $I: X_p \to Y$ be a natural isometry of X_p onto Y, i.e.,

$$e_i(Ix) = e_i(x), x \in X_p, i = 1, ..., p; e_i(Ix) = f_i(x), i = p+1, ..., p+q.$$

By the condition (a) of the theorem there is a rotation $T: X \to X$ such that $T|_{X_p} = I$.

Since T^* is a rotation of X^* it follows that $T^*(\text{ext}B_{X^*}) = \text{ext}B_{X^*}$. In particular, $\{T^*e_{p+i}\}_{i=1}^q \subset \text{ext}B_{X^*}$.

However, $(T^*e_{p+i})|_{X_p} = f_i, \ i = 1, ..., q.$

It follows that $\operatorname{ext} B_{X^*}|_{X_p}$ is an ε -net in $(1-\varepsilon)B_{X_n^*}$.

Since $\varepsilon > 0$ is arbitrary, it follows that $\operatorname{ext} B_{X^*}|_{X_p}$ is dense in $B_{X_p^*}$.

This finishes the proof of (a) \Rightarrow (b).

Extension of finite-dimensional smooth subspaces:

Theorem 0.14. Let $N \subset G$ be a finite-dimensional smooth subspace of the Gurariy space G. Then there is a smooth subspace $L \subset G$ with $L \supset N$ and $L \neq N$.

Proof. Put $M = N \oplus \mathbb{R}$ and define in M the norm as follows

 $||(x,t)|| = (||x||^2 + t^2)^{1/2}, x \in N, t \in \mathbb{R}.$

Apply Theorem 0.2 and finish the proof.

Theorem 0.15. Let X be a separable polyhedral Lindenstrauss space. Then the (Lindenstrauss) space $Y = X \oplus_{\infty} G$ has the smooth extension property, i.e. for any finite-dimensional smooth subspace $E \subset Y$ there is a finitedimensional smooth subspace $M \subset Y$ with $M \supset E$, $M \neq E$.

Theorem 0.16. Let E be a finite dimensional smooth normed space. Then for every C(K) space with nonseparable dual, there exists an embedding of E in C(K) such that no bigger subspace is smooth.

Density of smooth subspaces of the Gurariy space.

Theorem 0.17. For a separable Lindenstrauss space X TFAE: (SM) The family SF(X) of all smooth finite-dimensional subspaces of X is θ -dense in the family F(X) of all finite-dimensional subspaces of X. (G) The space X is the Gurariy space G.