A generalization of unitaries

T. S. S. R. K. Rao

Stat-Math Unit

Indian Statistical Institute

R. V. College P.O.

Bangalore 560059, India, E-mail: tss@isibang.ac.in

Abstract: In this talk we give a new geometric generalization of the notion of a unitary of a C*-algebra and give examples of classes of Banach spaces where such objects can be found.

Let A be a C^* -algebra with identity e and let $S = \{f \in A_1^* : f(e) = 1\}$. This is called the state space and it is well-known that $spanS = A^*$. Now let $u \in A$ be any unitary. Since $x \to ux$ is a surjective isometry of A mapping e to u, clearly, if $S_u = \{f \in A_1^* : f(u) = 1\}$, then $spanS_u = A^*$. Let $x \in A$ be any unit vector and let $S_x = \{f \in A_1^* : f(x) = 1\}$. An interesting result in C^* -algebra theory says that if $spanS_x = A^*$ then x is a unitary.

As the condition $spanS_x = A^*$ is purely a Banach space theoretic one, an abstract notion of unitary in a Banach space X, as a unit vector x such that $spanS_x = X^*$ was introduced and studied in a joint work with P. Bandyopadhyay and K. Jarosz. It turned out that these abstract unitaries share several important properties of unitaries of a C^* -algebra. In particular unitaries are preserved under the canonical

embedding of X in its bidual X^{**} . One of the limitations in the general theory is that an exact analogue of the Russo-Dye theorem (the unit ball of a complex C^* -algebra is the norm closed convex hull of unitaries) is very rarely true.

1. Multismoothness

Let X be a Banach space and $x \in X$ a unit vector. It is well-known that when $S_x = \{x^*\}$, x is called a smooth point of X. Motivated by the above considerations, we call x a k-smooth point if $spanS_x$ is a vector space of dimension k and a ω -smooth point if $spanS_x$ is a closed subspace. We say that X is k-smooth if every unit vector is n-smooth for $n \leq k$.

We recall that S_x is a weak*-compact convex and extreme (face) set. Let $A(S_x)$ denote the space of affine continuous functions, equipped with the supremum norm (when the scalar field is real, we denote this space by $A_R(S_x)$). Let $\delta: S_x \to A(S_x)_1^*$ denote the evaluation map. It is easy to see that it is an affine, one-to-one and continuous map. Let Γ denote the unit circle. For any extreme point $\tau \in \partial_e A(S_x)_1^*$, since τ has an extension to an extreme point of $C(S_x)_1^*$, we have that $\tau = \delta(k)$ for some $k \in \partial_e S_x$. Therefore $A(S_x)_1^* = \overline{CO}(\Gamma\delta(S_x))$, where the closure is taken w. r. t weak*-topology. In particular in the case of real scalars, $A_R(S_x)_1^* = CO(\delta(S_x) \cup -\delta(S_x))$.

Now let $\tau \in A(S_x)_1^*$ and $\tau(1) = 1$. Since the norm-preserving extension of τ to $C(S_x)$ is a probability measure, $\tau \in A_R(S_x)_1^*$. Suppose $\tau = \lambda \delta(x_1^*) - (1 - \lambda)\delta(x_2^*)$ for some $x_1^*, x_2^* \in S_x$ and $\lambda \in [0, 1]$. Evaluating this equation at 1, we get $\lambda = 1$ and thus $\tau = \delta(x^*)$ for $x^* \in S_x$

on $A_R(S_x)$ and hence on $A(S_x)$. Thus $S_1 = \delta(S_x)$. Also by using the Jordan decomposition of measures, we see that $A(S_x)^* = span\delta(S_x)$.

Let $\Phi: X \to A(S_{x_0})$ be defined by $\Phi(x)(x^*) = x^*(x)$ for $x^* \in S_{x_0}$. Φ is clearly a linear contraction and $\Phi(x_0) = 1$. Therefore $\Phi^*(\delta(S_{x_0})) = S_{x_0}$ so that $\Phi^*(A(S_{x_0})) = spanS_{x_0}$.

Now our assumption $spanS_{x_0}$ is closed implies by the closed range theorem, $spanS_{x_0}$ is weak*-closed and also range of Φ is closed.

Now let M be the preannihilator of $spanS_{x_0}$. Then $(X|M)^* = M^{\perp} = spanS_{x_0}$. In particular $\pi(x_0)$ is a unitary of X|M where $\pi: X \to X|M$ is the quotient map.

Question: Suppose for some $x_0 \in X_1$, $\pi(x_0)$ is a unitary. When can one get a multismooth or ω -smooth point $x \in X_1$ such that $\pi(x_0) = \pi(x)$?

Suppose x_0 is a multismooth point. Let $n = dim(span S_{x_0})$. By a theorem of Carathoedary, $\partial_e S_{x_0}$ is a spanning set for $span S_{x_0}$. As S_{x_0} is an extreme set, there are exactly n independent extreme points of X^* in S_{x_0} . This we shall call the exact independent set of extreme points.

For example in a C(K) space (K is a compact set), if f is a n-smooth point, then since there are exactly n point masses in $spanS_f$, we have that f attains its norm at exactly n points of K. Since this finite subset of K is a G_{δ} , we see that if C(K) has a n-smooth point then it has a k smooth poiny for all $k \leq n$.

Question: In general it is not clear if the existence of n smooth point implies the existence of a k smooth point for some k < n? This question is of particular interest in the case of non-commutative C^* -algebras.

Analogous to the duality of smoothness and strict convexity (rotundity), in this context we have the notion of k-rotundity.

A Banach space X with $dim(X) \ge k+1$ is said to be k-rotund, if for any k+1 independent unit vectors $\{x_i\}_{1 \le i \le k+1}, \|\frac{\sum_{1}^{k+1} x_i}{k+1}\| < 1$.

Since state spaces consist of unit vectors, it is easy to see that if X^* is k-rotund then X is k-smooth.

2. Higher duals

Let X be a non-reflexive Banach space. Consider the canonical embedding $J_0: X \to X^{**}$. Let us denote by J_2 the canonical embedding of X^{**} in its bidual $X^{(4)}$. It is easy to see that $X^{(4)} = J_2(X^{**}) \oplus J_1((X^*))^{\perp}$. Similarly since $X^{***} = J_1(X^*) \oplus (J_0(X))^{\perp}$, we also have, $X^{(4)} = J_0(X)^{\perp \perp} \oplus J_1((X^*))^{\perp}$. Also $J_2(X^{**})$ is canonically isometric to $(J_0(X))^{\perp \perp} = J_0^{**}(X^{**})$. Now let $X^{**} \in X^{**} \setminus J_0(X)$. Then $0 < d(x^{**}, J_0(X)) = d(J_2(x^{**}), J_0(X))^{\perp \perp}) \le ||J_2(x^{**}) - J_0^{**}(x^{**})||$. Thus for a non-reflexive X and $X^{**} \in X^{**} \setminus J_0(X)$, $J_2(X^{**})$ and $J_0^{**}(X^{**})$ are two distinct vectors. These are well-known observation of Dixmier.

Theorem 1. Suppose $X^{(4)}$ is k-rotund. Then every k-smooth point of X^* attains its norm.

Proof. By our earlier observation, X^{***} is k-smooth. Let x^* be a unit vector that is k-smooth in X^* and suppose it does not attain its norm. Let $x^{**}(x^*) = 1 = ||x^{**}||$. By our assumption $x^{**} \in X^{**} \setminus J_0(X)$. Thus by Dixmier' observation, $J_2(x^{**})$ and $J_0^{**}(x^{**})$ are two distinct vectors. Therefore every vector in the state space of x^* generates two distinct vectors in the state space of $J_1(x^*)$. This contradicts the k-smoothness of $J_1(x^*)$.

We recall that a closed subspace $Y\subset X$ is said to be a U-subspace

if every $y^* \in Y^*$ has a unique norm-preserving extension in X^* . In

particular a Banach space X is said to be Hahn-Banach smooth if

X is a U-subspace of X^{**} under the canonical embedding (see [10]

Chapter III). It is well-known that $c_0 \subset \ell^{\infty}$ and for $1 , <math display="block">\mathcal{K}(L^p(\mu)) \subset \mathcal{L}(L^p(\mu)) \text{ are examples of this phenomenon.}$

Remark 2. If X is a Hahn-Banach smooth subspace then since the state space of an $x \in S(X)$ remains the same in X^{**} , it is easy to see that x is k-smooth in X^{**} if and only if it is k-smooth point in X. We do not know a general local geometric condition to ensure that the state of a unit vector in X and its bidual remain the same.

Example 3. Let X be a smooth, non-reflexive Banach space such that X is an L-summand in its bidual under the canonical embedding (i.e., $X^{**} = X \oplus_1 M$, for a closed subspace M, see Chapter IV of [10]). The Hardy space H_0^1 is one such example (see page 167 of [10]). Since X is non-reflexive, it is easy to see that when $X^{**} = X \oplus_1 M$, M is infinite

dimensional. Now every unit vector x of X is a smooth point of X but for no k, x is a k-smooth point in X^{**} .

We next use the notion of an intersection property of balls, from [15] to establish a relation between k-smooth points in the subspace and the whole space in the case of U-subspaces. In the next two results we assume that X is a real Banach space.

Definition 4. Let $n \geq 3$. A closed subspace $M \subset X$ is said to have the n.X.-intersection property (n.X.I.P) if when ever $\{B(a_i, r_i)\}_{1 \leq i \leq n}$ are n closed balls in M with $\bigcap_{i=1}^{n} B(a_i, r_i) \neq \emptyset$ in X (when they are considered as closed balls in X) then $M \cap \bigcap_{i=1}^{n} B(a_i, r_i + \epsilon) \neq \emptyset$ for all $\epsilon > 0$.

We note that if X is an L^1 -predual space, then for $n \geq 4$, X has the n.Y.I.P in any Y that isometrically contains X. To see this, let $\{B(a_i,r_i)\}_{1\leq i\leq n}$ be n closed balls in X with $\cap_1^n B(a_i,r_i)\neq\emptyset$ in Y.

Let $\epsilon > 0$. These balls thus pair-wise intersect in X. As X is an L^1 -predual space, it follows from Theorem 6 in section 21 of [14] that $X \cap \bigcap_{i=1}^{n} B(a_i, r_i + \epsilon) \neq \emptyset$.

Proposition 5. Suppose $M \subset X$ has the k.X.I.P and M is a U-subspace. If $x \in M$ is a k-smooth point in X then it is a k-smooth point in M.

Proof. Let $\{x_i^*\}_{1 \leq i \leq k} \subset S_x$ be a linearly independent set. Let $f_i = x_i^*|M$. Note that $\|x_i^*\| = 1 = \|f_i\|$. We claim that the f_i 's are linearly independent. Suppose $\sum_1^k \alpha_i f_i = 0$ for some scalars α_i . By Theorem 3.1 in [15] it follows that there exists norm preserving extensions $f_i' \in X^*$ of $\alpha_i f_i$ such that $\sum_1^k f_i' = 0$. But by the uniqueness of the extensions this implies $\sum_1^k \alpha_i x_i^* = 0$ and hence $\alpha_i = 0$ for $1 \leq i \leq k$. On the other

hand if $\{g_i\}_{1\leq i\leq l}$ is any linearly independent set in the state space of x in M, the corresponding Hahn-Banach extensions are clearly linearly independent in S_x . Thus $l\leq k$.

References

- [1] E. M. Alfsen, Compact convex sets and boundary integrals, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 57. Springer-Verlag, New York-Heidelberg, 1971.
- [2] P. Bandyopadhyay, K. Jarosz and T. S. S. R. K. Rao, Unitaries in Banach spaces, Illinois J. Math., 48 (2004) 339-351.
- [3] P. Bandyopadhyay, V. P. Fonf, B. L. Lin and M. Martin, Structure of nested sequences of balls in Banach spaces, Houston J. Math. 29 (2003) 173–193.
- [4] B. Beauzamy and B. Maurey, Points minimaux et ensembles optimaux dans les espaces de Banach, J. Functional Analysis 24 (1977)107–139.

- [5] Darapaneni Narayana and T. S. S. R. K. Rao, Transitivity of proximinality and norm attaining functionals, Colloq. Math. 104 (2006) 1-19.
- [6] W. Deeb and R. Khalil, Smooth points of vector valued function spaces, Rocky Mountain J. Math. 24 (1994) 505–512.
- [7] W. Deeb and R. Khalil, Exposed and smooth points of some classes of operation in $L(l^p)$, J. Funct. Anal. 103 (1992) 217–228.
- [8] A. J. Ellis, T. S. S. R. K. Rao, A. K. Roy and U. Uttersrud, Facial characterizations of complex Lindenstrauss spaces, Trans. Amer. Math. Soc. 268 (1981) 173–186.
- [9] G. Godefroy and T. S. S. R. K. Rao, Renormings and extremal structures, Illinois J. Math., 48 (2004)1021-1029.
- [10] P. Harmand, D. Werner and W. Werner, M-ideals in Banach spaces and Banach algebras, Lecture Notes in Math., 1547, Springer, Berlin, 1993.
- [11] S. Heinrich, The differentiability of the norm in spaces of operators, (Russian)
 Funkcional. Anal. i Priložen. 9 (1975) 93–94.

- [12] R. Khalil and A. Saleh, Multi-smooth points of finite order, Missouri Journal of Mathematical Sciences, 17 (2005) 76-87.
- [13] F. Kittaneh and R. Younis, Smooth points of certain operator spaces, Integral Equations Operator Theory 13 (1990) 849–855.
- [14] H. E. Lacey The isometric theory of classical Banach spaces, Die Grundlehren der mathematischen Wissenschaften, Band 208. Springer-Verlag, New York-Heidelberg, 1974.
- [15] Å. Lima, Uniqueness of Hahn-Banach extensions and liftings of linear dependences, Math. Scand. 53 (1983) 97–113.
- [16] Liu Zheng and Zhuang Ya Dong K-rotund complex normed linear spaces, J.
 Math. Anal. Appl. 146 (1990) 540–545.
- [17] W. Ruess, Duality and geometry of spaces of compact operators, Functional analysis: surveys and recent results, III (Paderborn, 1983), 59–78, North-Holland Math. Stud., 90, North-Holland, Amsterdam, 1984.

- [18] F. Sullivan, Geometrical peoperties determined by the higher duals of a Banach space, Illinois J. Math. 21 (1977) 315–331.
- [19] W. Werner, Smooth points in some spaces of bounded operators, Integral Equations Operator Theory 15 (1992) 496–502.