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Abstract: In this talk we give a new geometric generalization of the

notion of a unitary of a C*-algebra and give examples of classes of

Banach spaces where such objects can be found.

1



2

Let A be a C∗-algebra with identity e and let S = {f ∈ A∗
1 : f(e) =

1}. This is called the state space and it is well-known that spanS = A∗.

Now let u ∈ A be any unitary. Since x → ux is a surjective isometry of

A mapping e to u,clearly, if Su = {f ∈ A∗
1 : f(u) = 1}, then spanSu =

A∗. Let x ∈ A be any unit vector and let Sx = {f ∈ A∗
1 : f(x) = 1}.

An interesting result in C∗-algebra theory says that if spanSx = A∗

then x is a unitary.

As the condition spanSx = A∗ is purely a Banach space theoretic

one, an abstract notion of unitary in a Banach space X, as a unit

vector x such that spanSx = X∗ was introduced and studied in a joint

work with P. Bandyopadhyay and K. Jarosz. It turned out that these

abstract unitaries share several important properties of unitaries of a

C∗-algebra. In particular unitaries are preserved under the canonical
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embedding of X in its bidual X∗∗. One of the limitations in the general

theory is that an exact analogue of the Russo-Dye theorem (the unit

ball of a complex C∗-algebra is the norm closed convex hull of unitaries)

is very rarely true.

1. Multismoothness

Let X be a Banach space and x ∈ X a unit vector. It is well-known

that when Sx = {x∗}, x is called a smooth point of X. Motivated by

the above considerations, we call x a k-smooth point if spanSx is a

vector space of dimension k and a ω-smooth point if spanSx is a closed

subspace. We say that X is k-smooth if every unit vector is n-smooth

for n ≤ k.

We recall that Sx is a weak∗-compact convex and extreme (face) set.

Let A(Sx) denote the space of affine continuous functions, equipped
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with the supremum norm (when the scalar field is real, we denote this

space by AR(Sx)). Let δ : Sx → A(Sx)
∗
1 denote the evaluation map. It

is easy to see that it is an affine, one-to-one and continuous map. Let Γ

denote the unit circle. For any extreme point τ ∈ ∂eA(Sx)
∗
1, since τ has

an extension to an extreme point of C(Sx)
∗
1, we have that τ = δ(k) for

some k ∈ ∂eSx. Therefore A(Sx)
∗
1 = CO(Γδ(Sx)), where the closure is

taken w. r. t weak∗-topology. In particular in the case of real scalars,

AR(Sx)
∗
1 = CO(δ(Sx) ∪ −δ(Sx)).

Now let τ ∈ A(Sx)
∗
1 and τ(1) = 1. Since the norm-preserving ex-

tension of τ to C(Sx) is a probability measure, τ ∈ AR(Sx)
∗
1. Suppose

τ = λδ(x∗1) − (1 − λ)δ(x∗2) for some x∗1, x
∗
2 ∈ Sx and λ ∈ [0, 1]. Evalu-

ating this equation at 1, we get λ = 1 and thus τ = δ(x∗) for x∗ ∈ Sx
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on AR(Sx) and hence on A(Sx). Thus S1 = δ(Sx). Also by using the

Jordan decomposition of measures, we see that A(Sx)
∗ = spanδ(Sx).

Let Φ : X → A(Sx0) be defined by Φ(x)(x∗) = x∗(x) for x∗ ∈ Sx0 . Φ

is clearly a linear contraction and Φ(x0) = 1. Therefore Φ∗(δ(Sx0)) =

Sx0 so that Φ∗(A(Sx0)) = spanSx0 .

Now our assumption spanSx0 is closed implies by the closed range

theorem, spanSx0 is weak∗-closed and also range of Φ is closed.

Now let M be the preannihilator of spanSx0 . Then (X|M)∗ = M⊥ =

spanSx0 . In particular π(x0) is a unitary of X|M where π : X → X|M

is the quotient map.

Question: Suppose for some x0 ∈ X1, π(x0) is a unitary. When can

one get a multismooth or ω-smooth point x ∈ X1 such that π(x0) =

π(x)?
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Suppose x0 is a multismooth point. Let n = dim(spanSx0). By a

theorem of Carathoedary, ∂eSx0 is a spanning set for spanSx0 . As Sx0

is an extreme set, there are exactly n independent extreme points of

X∗ in Sx0 . This we shall call the exact independent set of extreme

points.

For example in a C(K) space (K is a compact set), if f is a n-smooth

point, then since there are exactly n point masses in spanSf , we have

that f attains its norm at exactly n points of K. Since this finite subset

of K is a Gδ, we see that if C(K) has a n-smooth point then it has a

k smooth poiny for all k ≤ n.

Question: In general it is not clear if the existence of n smooth point

implies the existence of a k smooth point for some k < n? This question

is of particular interest in the case of non-commutative C∗-algebras.
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Analogous to the duality of smoothness and strict convexity (rotun-

dity), in this context we have the notion of k-rotundity.

A Banach space X with dim(X) ≥ k + 1 is said to be k-rotund, if

for any k + 1 independent unit vectors {xi}1≤i≤k+1, ‖
Pk+1

1 xi

k+1
‖ < 1.

Since state spaces consist of unit vectors, it is easy to see that if X∗

is k-rotund then X is k-smooth.
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2. Higher duals

Let X be a non-reflexive Banach space. Consider the canonical

embedding J0 : X → X∗∗. Let us denote by J2 the canonical em-

bedding of X∗∗ in its bidual X(4). It is easy to see that X(4) =

J2(X
∗∗) ⊕ J1((X

∗))⊥. Similarly since X∗∗∗ = J1(X
∗) ⊕ (J0(X))⊥, we

also have, X(4) = J0(X)⊥⊥ ⊕ J1((X
∗))⊥. Also J2(X

∗∗) is canonically

isometric to (J0(X))⊥⊥ = J∗∗0 (X∗∗). Now let x∗∗ ∈ X∗∗ \ J0(X). Then

0 < d(x∗∗, J0(X)) = d(J2(x
∗∗), J0(X))⊥⊥) ≤ ‖J2(x

∗∗)−J∗∗0 (x∗∗)‖. Thus

for a non-reflexive X and x∗∗ ∈ X∗∗ \ J0(X), J2(x
∗∗) and J∗∗0 (x∗∗) are

two distinct vectors. These are well-known observation of Dixmier.

Theorem 1. Suppose X(4) is k-rotund. Then every k-smooth point of

X∗ attains its norm.
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Proof. By our earlier observation, X∗∗∗ is k-smooth. Let x∗ be a unit

vector that is k-smooth in X∗ and suppose it does not attain its norm.

Let x∗∗(x∗) = 1 = ‖x∗∗‖. By our assumption x∗∗ ∈ X∗∗ \ J0(X). Thus

by Dixmier’ observation, J2(x
∗∗) and J∗∗0 (x∗∗) are two distinct vectors.

Therefore every vector in the state space of x∗ generates two distinct

vectors in the state space of J1(x
∗). This contradicts the k-smoothness

of J1(x
∗).

¤

We recall that a closed subspace Y ⊂ X is said to be a U -subspace

if every y∗ ∈ Y ∗ has a unique norm-preserving extension in X∗. In

particular a Banach space X is said to be Hahn-Banach smooth if

X is a U -subspace of X∗∗ under the canonical embedding (see [10]
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Chapter III). It is well-known that c0 ⊂ `∞ and for 1 < p < ∞,

K(Lp(µ)) ⊂ L(ÃLp(µ)) are examples of this phenomenon.

Remark 2. If X is a Hahn-Banach smooth subspace then since the

state space of an x ∈ S(X) remains the same in X∗∗, it is easy to see

that x is k-smooth in X∗∗ if and only if it is k-smooth point in X. We

do not know a general local geometric condition to ensure that the state

of a unit vector in X and its bidual remain the same.

Example 3. Let X be a smooth, non-reflexive Banach space such that

X is an L-summand in its bidual under the canonical embedding (i.e.,

X∗∗ = X ⊕1 M , for a closed subspace M , see Chapter IV of [10]). The

Hardy space H1
0 is one such example (see page 167 of [10]) . Since X is

non-reflexive, it is easy to see that when X∗∗ = X⊕1 M , M is infinite
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dimensional. Now every unit vector x of X is a smooth point of X but

for no k, x is a k-smooth point in X∗∗.

We next use the notion of an intersection property of balls, from [15]

to establish a relation between k-smooth points in the subspace and

the whole space in the case of U -subspaces. In the next two results we

assume that X is a real Banach space.

Definition 4. Let n ≥ 3. A closed subspace M ⊂ X is said to have the

n.X.-intersection property (n.X.I.P ) if when ever {B(ai, ri)}1≤i≤n are

n closed balls in M with ∩n
1B(ai, ri) 6= ∅ in X (when they are considered

as closed balls in X) then M ∩ ∩n
1B(ai, ri + ε) 6= ∅ for all ε > 0.

We note that if X is an L1-predual space, then for n ≥ 4, X has

the n.Y.I.P in any Y that isometrically contains X. To see this, let
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{B(ai, ri)}1≤i≤n be n closed balls in X with ∩n
1B(ai, ri) 6= ∅ in Y .

Let ε > 0. These balls thus pair-wise intersect in X. As X is an

L1-predual space, it follows from Theorem 6 in section 21 of [14] that

X ∩ ∩n
1B(ai, ri + ε) 6= ∅.

Proposition 5. Suppose M ⊂ X has the k.X.I.P and M is a U-

subspace. If x ∈ M is a k-smooth point in X then it is a k-smooth

point in M .

Proof. Let {x∗i }1≤i≤k ⊂ Sx be a linearly independent set. Let fi =

x∗i |M . Note that ‖x∗i ‖ = 1 = ‖fi‖. We claim that the fi’s are linearly

independent. Suppose
∑k

1 αifi = 0 for some scalars αi. By Theorem

3.1 in [15] it follows that there exists norm preserving extensions f ′i ∈

X∗ of αifi such that
∑k

1 f ′i = 0. But by the uniqueness of the extensions

this implies
∑k

1 αix
∗
i = 0 and hence αi = 0 for 1 ≤ i ≤ k. On the other
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hand if {gi}1≤i≤l is any linearly independent set in the state space of x

in M , the corresponding Hahn-Banach extensions are clearly linearly

independent in Sx. Thus l ≤ k. ¤
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