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Abstract: In this talk we give a new geometric generalization of the
notion of a unitary of a C*-algebra and give examples of classes of

Banach spaces where such objects can be found.



Let A be a C*-algebra with identity e and let S = {f € A} : f(e) =

1}. This is called the state space and it is well-known that spanS = A*.

Now let u € A be any unitary. Since  — uz is a surjective isometry of

A mapping e to u,clearly, if S, = {f € A} : f(u) = 1}, then spanS, =

A*. Let x € A be any unit vector and let S, = {f € A} : f(z) = 1}.

An interesting result in C*-algebra theory says that if spanS, = A*

then x is a unitary.

*

As the condition spanS, = A* is purely a Banach space theoretic
one, an abstract notion of unitary in a Banach space X, as a unit
vector z such that spanS, = X* was introduced and studied in a joint
work with P. Bandyopadhyay and K. Jarosz. It turned out that these

abstract unitaries share several important properties of unitaries of a

C*-algebra. In particular unitaries are preserved under the canonical
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embedding of X in its bidual X**. One of the limitations in the general

theory is that an exact analogue of the Russo-Dye theorem (the unit

ball of a complex C*-algebra is the norm closed convex hull of unitaries)

is very rarely true.

1. MULTISMOOTHNESS

Let X be a Banach space and x € X a unit vector. It is well-known

that when S, = {z*}, x is called a smooth point of X. Motivated by

the above considerations, we call x a k-smooth point if spanS, is a

vector space of dimension k and a w-smooth point if spansS, is a closed

subspace. We say that X is k-smooth if every unit vector is n-smooth

for n < k.

We recall that S, is a weak*-compact convex and extreme (face) set.

Let A(S,) denote the space of affine continuous functions, equipped
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with the supremum norm (when the scalar field is real, we denote this

space by Agr(S;)). Let § : S, — A(S,); denote the evaluation map. It

is easy to see that it is an affine, one-to-one and continuous map. Let I'

denote the unit circle. For any extreme point 7 € 9, A(S,)7, since 7 has

an extension to an extreme point of C'(S,)}, we have that 7 = d(k) for

some k € 0,5,. Therefore A(S,): = CO(T'4(S,)), where the closure is

taken w. r. t weak*-topology. In particular in the case of real scalars,

Now let 7 € A(S,)] and 7(1) = 1. Since the norm-preserving ex-

tension of 7 to C'(S;) is a probability measure, 7 € Ar(S,);. Suppose

T = Ao(x}) — (1 — A\)d(x3) for some 7,25 € S, and A € [0,1]. Evalu-

ating this equation at 1, we get A = 1 and thus 7 = §(z*) for z* € S,
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on Agr(S;) and hence on A(S;). Thus S; = §(S;). Also by using the

Jordan decomposition of measures, we see that A(S,)* = spand(S,).

Let @ : X — A(S,,) be defined by ®(z)(z*) = a*(z) for a* € S,,.

is clearly a linear contraction and ®(zg) = 1. Therefore ®*(6(S,,)) =

Sy S0 that ®*(A(S,,)) = spanSy,.

Now our assumption spansS,, is closed implies by the closed range

theorem, spansS,, is weak*-closed and also range of ® is closed.

Now let M be the preannihilator of spanS,,. Then (X|M)* = M+ =

spanSy,. In particular 7(xz¢) is a unitary of X|M where 7 : X — X|M

is the quotient map.

Question: Suppose for some xy € X, 7(zp) is a unitary. When can

one get a multismooth or w-smooth point x € X; such that 7(z¢) =

m(x)?



Suppose xg is a multismooth point. Let n = dim(spanS,,). By a

theorem of Carathoedary, 0,.5,, is a spanning set for spanS,,. As Sy,

is an extreme set, there are exactly n independent extreme points of

X* in S;,. This we shall call the exact independent set of extreme

points.

For example in a C(K) space (K is a compact set), if f is a n-smooth

point, then since there are exactly n point masses in spanSy, we have

that f attains its norm at exactly n points of K. Since this finite subset

of K is a G, we see that if C'(K) has a n-smooth point then it has a

k smooth poiny for all £ < n.

Question: In general it is not clear if the existence of n smooth point

implies the existence of a k smooth point for some k& < n? This question

is of particular interest in the case of non-commutative C*-algebras.
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Analogous to the duality of smoothness and strict convexity (rotun-
dity), in this context we have the notion of k-rotundity.
A Banach space X with dim(X) > k + 1 is said to be k-rotund, if
. . Skt g,
for any k + 1 independent unit vectors {z;}1<i<ry1, =1 < 1.
Since state spaces consist of unit vectors, it is easy to see that if X*

is k-rotund then X is k-smooth.



2. HIGHER DUALS

Let X be a non-reflexive Banach space. Consider the canonical

embedding Jy : X — X*. Let us denote by J, the canonical em-

bedding of X** in its bidual X®. It is easy to see that X® =

Jo(X*) @ J1((X*))*. Similarly since X** = J;(X*) @ (Jo(X))*, we

also have, X = Jo(X)** @ Ji((X*)*. Also Jo(X**) is canonically

isometric to (Jo(X))*t = J*(X**). Now let 2** € X**\ Jo(X). Then

0 < d(z™, Jo(X)) = d(Jo(z™), Jo(X)) ") < [[Jo(2™) = J5*(2™)]||. Thus

for a non-reflexive X and z** € X** \ Jy(X), Jo(2**) and J3*(2**) are

two distinct vectors. These are well-known observation of Dixmier.

Theorem 1. Suppose X is k-rotund. Then every k-smooth point of

X* attains its norm.
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Proof. By our earlier observation, X*** is k-smooth. Let x* be a unit

vector that is k-smooth in X™* and suppose it does not attain its norm.

Let z**(z*) = 1 = ||z**||. By our assumption z** € X**\ Jo(X). Thus

by Dixmier’ observation, Jo(x**) and J§*(x**) are two distinct vectors.

Therefore every vector in the state space of x* generates two distinct

vectors in the state space of Jy(2*). This contradicts the k-smoothness

of Jy(z*).

We recall that a closed subspace Y C X is said to be a U-subspace

if every y* € Y™ has a unique norm-preserving extension in X*. In

particular a Banach space X is said to be Hahn-Banach smooth if

X is a U-subspace of X** under the canonical embedding (see [10]
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Chapter III). It is well-known that ¢y C ¢> and for 1 < p < oo,

KC(LP(1)) C L(EP(p)) are examples of this phenomenon.

Remark 2. If X is a Hahn-Banach smooth subspace then since the

state space of an x € S(X) remains the same in X**, it is easy to see

that x is k-smooth in X** if and only if it is k-smooth point in X. We

do not know a general local geometric condition to ensure that the state

of a unit vector in X and its bidual remain the same.

Example 3. Let X be a smooth, non-reflexive Banach space such that

X is an L-summand in its bidual under the canonical embedding (i.e.,

X =X @, M, for a closed subspace M, see Chapter IV of [10]). The

Hardy space Hy is one such example (see page 167 of [10]) . Since X is

non-reflexive, it is easy to see that when X** = X &y M , M is infinite
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dimensional. Now every unit vector x of X 1s a smooth point of X but

for no k, x is a k-smooth point in X**.

We next use the notion of an intersection property of balls, from [15]

to establish a relation between k-smooth points in the subspace and

the whole space in the case of U-subspaces. In the next two results we

assume that X is a real Banach space.

Definition 4. Letn > 3. A closed subspace M C X is said to have the

n.X.-intersection property (n.X.I.P) if when ever {B(ai,1;)}1<i<n are

n closed balls in M with N} B(a;, ;) # 0 in X (when they are considered

as closed balls in X ) then M NNEB(a;,r; +€) # O for all e > 0.

We note that if X is an L!-predual space, then for n > 4, X has

the n.Y.I.P in any Y that isometrically contains X. To see this, let
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{B(a;,r;) }1<i<n be n closed balls in X with N} B(a;,r;) # 0 in Y.

Let ¢ > 0. These balls thus pair-wise intersect in X. As X is an

L'-predual space, it follows from Theorem 6 in section 21 of [14] that

X NNyB(ai,ri +€) # 0.

Proposition 5. Suppose M C X has the k.X.I.P and M is a U-

subspace. If x € M is a k-smooth point in X then it is a k-smooth

point i M.

Proof. Let {x}}i1<i<x C Sp be a linearly independent set. Let f; =

xf|M. Note that ||z =1 = ||f;||. We claim that the f;’s are linearly

independent. Suppose Zlf a; f; = 0 for some scalars «;. By Theorem

3.1 in [15] it follows that there exists norm preserving extensions f/ €

X* of oy f; such that Zlf fI'= 0. But by the uniqueness of the extensions

this implies Zlf a;z7 = 0 and hence o; = 0 for 1 < ¢ < k. On the other
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hand if {g;}1<;< is any linearly independent set in the state space of

in M, the corresponding Hahn-Banach extensions are clearly linearly

independent in S,. Thus [ < k. O
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