c.l. Fisica Analisi Matematica 2 proff. Molteni/Zanco 13 febbraio 2020 Sesto appello a.a. 2019/20

Cognome:	Nome:		'
Autorizzo la pubblicazione	e dell'esito della mia pro	ova tramite il numero d	di matricola sulla pagina
web dei docenti.			
Firma:			

Opzione non vincolante per la prova orale: \square 10/03/'20 $\,\square$ fine Marzo / inizio Aprile

$$\mathbf{1}](6~p.ti)$$
 Sia $f:\mathbb{R}^2 \to \mathbb{R}$ definita da

$$f(x,y) = ((x-1)^2 + 4y^2 - 1)((x+1)^2 + 9y^2 - 1).$$

Se ne determinino gli eventuali punti estremanti, specificando per ciascuno se sia un estremante globale o solo locale.

 $\mathbf{2}](6~p.ti)$ Al variare del parametro reale $\alpha,$ si consideri il problema di Cauchy

(
$$P_{\alpha}$$
)
$$\begin{cases} y' = \frac{4x+2}{x^2+x+1}(y^2-4y+4) \\ y(0) = \alpha \end{cases}$$

Mostrare che, per ogni valore di α , (P_{α}) ammette soluzione massimale unica. Determinare quindi la soluzione massimale del caso $\alpha=2$ e di quello $\alpha=\frac{1}{2\log 3}+2$, specificando per ciascuna il dominio.

 $\mathbf{3}] (7 \ p.ti)$ Per ogni $n \in \mathbb{N}$ sia $f_n \colon \mathbb{R} \to \mathbb{R}$ la funzione

$$f_n(x) := \frac{\arctan(n+x)}{1+x^2} \ .$$

- (1) Determinarne l'insieme ${\cal D}$ di convergenza puntuale.
- (2) Stabilire su quali intervalli contenuti in D la convergenza è uniforme.
- (3) Determinare il valore di

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx \qquad \text{e di} \qquad \lim_{n \to \infty} \int_0^{+\infty} f_n(x) dx.$$

 $\mathbf{4}](5~p.ti)$ Per quali valori del parametro reale $a\in\mathbb{R}$ l'equazione

$$ay'' + 16y' + 3y = 0$$

ha una qualche soluzione $\varphi(x)$ non identicamente nulla e tale per cui anche $\varphi(3x)$ è soluzione?

5] $(6 \ p.ti)$ Della successione di funzioni $f_n \colon E \to \mathbb{R}$ si sa che essa converge uniformemente in E ad una funzione $f \colon E \to \mathbb{R}$. Sia poi $g \colon \mathbb{R} \to \mathbb{R}$ una mappa continua. Mostrare che, se g è uniformemente continua (su \mathbb{R}), la convergenza di $g \circ f_n$ a $g \circ f$ è sicuramente uniforme in E. Mostrare con un esempio che questo non è detto accada quando g non è uniformemente continua. Che cosa si può affermare in proposito se g è solo continua, ma f è limitata?

 $\mathbf{6}](6~p.ti)$ Per ogni valore del parametro reale a, sia F_a la funzione reale definita da

$$F_a(x) = \int_1^x \frac{\sqrt{1+t^2}}{\sqrt{4+t^2}} \frac{dt}{\sqrt{t}} - a\sqrt{x} .$$

Determinare l'unico valore di a in corrispondenza del quale F_a è limitata, giustificando la risposta. Detto \tilde{a} questo numero, si tracci poi un diagramma plausibile di $F_{\tilde{a}}$ specificandone i dati essenziali; non è richiesto l'esame del verso della concavità.