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1. Introduction

One of the peaceful uses of nuclear energy is the use of
radioactive isotopes in scientific research. Employed as tracers
in biological work they have become very important tools in
many areas of study [Chapman and Ayrey 1981; Comar 1955].
The fate of a given compound in an organism or biological
process can be traced by following the pathway taken by an
applied radioactive isotope. In the early 1950s biochemists
began to use radioactive amino acids to study the processes
involved in protein synthesis.

Albumin is a protein substance found in many animal
tissues and fluids. It is assumed to be present in animals in
constant amounts, some in the vascular system (the plasma)
and some in the extravascular system (lymph and tissue
fluids). To study the synthesis, transfer and breakdown of
albumin, researchers have intravenously injected a certain
amount of radioactive albumin into rabbits and then made
measurements of the radioactivity in plasma, urine, and feces
over many days.

In the presentation that follows, we will look at the
mathematical modeling used by Reeve and Roberts for the
distribution, transfer, and excretion of radioactivity follow-
ing an injection of I3, albumin in rabbits {Reeve and Roberts
1959a].

2. The Model

Figure 1 shows the four-compartment model. Initially I,
albumin is injected into the vascular compartment. From
there, its behavior is assumed to follow that of unlabelled
albumin. That is, there is a transfer of albumin between the
vascular and extravascular compartments; since albumin is
continually being broken down, there is a breakdown prod-
ucts compartment. It is not certain where the breakdown ac-
tually occurs, whether it is in the vascular system or the ex-
travascular system or in both, thus “the complete model”
shows the transfer of breakdown products from both. Fi-
nally, there is an excretion compartment in which the radio-
activity accumulates.

At any time t after the injection of I,3 albumin into the
animal’s vascular system, let x;, x,, Xy and x, be the fractions

1
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Figure 1. Model C.

of the total administered radioactivity attached to the albu-
min in the vascular, extravascular, breakdown products, and
excretion compartments.

The rate of transfer from one compartment to another is
assumed to be proportional to the amount present in the
former compartment at time ¢. The constants of proportion-
ality k; are shown in Figure 1 and are called the rate con-
stants. The change in the amount in a compartment equals
the difference between the input and the output in that com-
partment. For example, in the vascular compartment, x,
is changing by gaining k,x; and losing k;x, and ksx;, so that
dx, /dt = kyx, — kix; — ksx;. In the extravascular compartment,
x, is changing by gaining k;x, and losing k»x, and kyx., thus
dx,/dt = kixy — koo — kgxs.

In this way, the following system of differential equa-
tions is obtained:

g;x_l - _(k]_ + k3)x1 + k2x2
dt

ax _

1t = kix, — (k; + k)x;
dx,

E = kax; + kyxy — ksxs
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e = k5X3.

The initial values when t = Qare x; = 1, x, = 33 = x4 = 0,
since the I3, albumin is initially injected into the vascular
system.

3. Solution of the System

The solution of the system of differential equations de-
pends on the rate constants k. These constants were deter-
mined by Reeve and Roberts using experimental measure-
ments made from blood samples taken at one or more day
intervals after the I;3;; albumin was injected and from mea-
surements taken from the urine and feces [Reeve and Rob-
erts 1959a].

Reeve and Roberts used plasma data and excretory data
from eleven different rabbits and determined the ks in each
case. In the following we will use the mean experimental
values for these constants, truncated to two decimal places
and solve the system of differential equations obtained above.
Thus, using k; = 1.06, k, = 0.69, ky = 0.19, k, = 0.03, ke =
2.50 [Reeve and Roberts 1959a, 433], the system of differ-
ential equations becomes

dxy
o = —1.25x, + 0.69x, (1)
dxz
— = 1.06x, — 0.72x; 2)
dt
dxs
E = 0.19:(1 + 0,03362 - ZSOX3 (3)
dx,
2 — 2,50, @
dt

This homogeneous linear system can be solved using the
matrix method [Zill 1986], i.e., by finding the eigenvalues
and the corresponding eigenvectors of the matrix

-1.25 069 O 0
1.06 -072 0 0
019 003 -250 0
0 0 250 0
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(Alternatively, since (1) and (2) of the system are indepen-
dent of x, and x,, these can be solved by elimination for x,
and x,; then using these solutions, see Exercise 1.) (3) can
be solved for x; and then equation (4) for x,.

To find the eigenvalues, consider the equation

~1.25-A 0.69 0 0
1.06 —0.72 - A 0 of
0.19 0.03 —250-a 0|

0 0 2.5 —A

from which A = 0, —2.50, —1.88, —0.09 can be obtained.

The corresponding eigenvectors are (0,0,0,1), (0,0,1,-1),
(1,-0.91,0.26,—0.35), and (1,1.68,0.10,—2.78) respectively.
(Details are left to the reader as Exercise 2.) The general so-
lution of the system of differential equations is then

Xy 0 0 1
X 0 0 .osa —0.91 ) i a
=C + C e =+ C e
X 1o A 1 N o026
X4 1 -1 -0.35
1
1.68
+C4 E*O.Ugl.
0.10
-2.78

Using the initial conditions (at { = 0, x; = 1, x; = x3 = x4 =
0) yields the following values for the C's: C, = 1.00, G, =
-0.21, C, = 0.65, C, = 0.35 and hence

x; = 0.65¢ "% + 0.35¢70

x, = —0.59¢ * + 0.59¢ 0%

X, = —0.21e7 2% + 0,177 + 0.04e

xg =14 0.21e73% — 0.23¢7"% — 0.98¢ 7%,

Graphs of these four functions are shown in Figures 2-5.
Note that the sum of the fractions of the total adminis-
tered radioactivity is equal to 1; that, as expected, after a
long period of time, all this radioactivity accumulates in the
excretion compartment. Moreover, from the graphs in
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Figure 2. Radioactivity in vascular compartment over time.

Figures 2-5 we see that the amount of radioactivity in the
vascular system steadily decreases from 1 to 0, whereas in
the extravascular and breakdown products compartments it
first increases from 0 to a certain maximum and then de-
creases towards 0 (see Exercise 3.). In the excretion com-
partment, the radiocactivity increases steadily from its initial
value of 0 towards the value 1.

(o)

23

a2

an

[+]

X2

‘-_\\

——

t

000 300 hOU 900 1700 1500 1800 21.00 2400 17.00 30060 Mhou YH U0 3900

Figure 3. Radioactivity in extravascular compartment over time.
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Figure 4. Radioactivity in breakdown compartment over time.

4. Reality of the Model

Does the model predict quantitatively the experimental
measures that can be made in such experiments: Is the model

physiclogically reasonable?

To discuss these questions, first note that our “‘complete
model,” called model C by Reeve and Roberts, can be re-
duced to two other simpler models, A and B, which were
also discussed by Reeve and Roberts {1959a].

X4

. ———

¢.8 -

a L L

t

T T T y T T " T T
000 300 600 9.00 1200 156G 1800 21.00 2400 2700 3000 1300 Fhoy 3600

Figure 5. Radioactivity in excretion compartment over time,

6
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Models A and B are shown in Figure 6.

In model A it is assumed that breakdown occurs only in
the vascular compartment. Setting up the resulting system
of differential equations constitutes Exercise 4 and solving it
is Exercise 5. Model B, on the other hand, assumes that
breakdown occurs only in the extravascular compartment.
(See Exercise 6.)

Reeve and Roberts show that their experimental data were
reasonably well predicted by models A and C but that model
B was not capable of describing the data obtained from the
experiments. This means that most of the breakdown occurs
in the vascular compartment. Also note, since model A was
found to predict measured values reasonably well, the value
of k; in model C could be expected to be small.

Further, Reeve and Roberts state that picturing the vas-
cular albumin as a single compartment is reasonable phys-
iologically but that it would be better to consider the extra-
vascular albumin as a group of different compartments
between which there is not much transfer. Thus, even models
A and C, which do give satisfactory predictions of the ra-
dioactivity involved, certainly oversimplify the extravascular
behavior of albumin.

Because of this, Reeve and Roberts considered an ex-

vascular extravascular vascular extravascular
ki k|
X; X, X X2
- -
k. ki
k. k,
L
x breakdown breakdown «
a
products products }
ks ks
L 4 L
Xa excretion excretion X
Model A Model B

Figure 6. Models A and B.
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products

Figure 7. Model D).

tended model in which an additional compartment, cailed
breakdown sites, has been added (see Figure 7).

However, Reeve and Roberts only had sufficient experi-
mental data from one rabbit to test model DD and stated that
more experimentation would be required to conclude whether
model D predicts results closer to the observed results than
do models A or C (see Exercise 7).

While we have considered solutions of equations with
specific numerical parameters, Reeve and Roberts solve
models C and D in full generality with literal parameters and
they also show how to identify the values of ks from ob-
servable quantities.

Exercises
1. Solve the system of differential equations consisting of (1)-
{49) by the method of elimination.

2. Carry out the details of the solution of system (1)-(4) us-
ing the matrix method as suggested in Section 3.

3. Use calculus and the expressions for x, and x; to deter-
mine the time for the radioactive material to reach its
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maximum value in each of the extravascular and break-
down compartments.

4. Set up a system of differential equations for model A.

5. Solve the system Exercise 4, for the values of the con-
stants are taken to be k; = 1.03, k, = 0.72, k; = 0.24, k,
= 2.50.

6. Set up a system of differential equations for model B.

7. Write the system of differential equations which describes
model D. Solve this system for k; = 1.01, k, = 0.69, k; =
0.19, ks = 2.5, k, = 2.1 {values truncated from Reeve and
Roberts [1959a, 433, 441]).

5. Solutions to the Exercises

1. Differentiating (1) and substituting from (2) for dx,/dt, we

have
4x, 12554 69(1.06x, — 0.72x,) (5)
— = —1. _— . LU0x, — UL /4x,).

P dt ! :

Solving (1) for x, and substituting that expression in (5),
we obtain

dle dx1

“ =+ 1.97 — + 0.1686x, = 0.

dt dt

Thus x; = Cye *™ + Gy "® (6)

Then, from (1), x, = 1/0.69(dx,/dt + 1.25x,), and using
(6), we find that

x, = 1.68C,e ™ — 0.9]C3871'85’. (7)
Then using (6) and (7), (3) becomes

dx
d_: + 2.50x, = 0.24(:497”'“9' + 0_16(:38—1,88!

Thus x; = Coe # + 0.10C,e "™ + 0.26C,e . 8)
Finally, from (4} and (8), we obtain
Xy = Gy — Ce ™ = 0.35C,e™ ™™ ~ 2.78C,e ™"
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2. We solve the determinant equation

-1.25-1  0.69 0 0
1.06 -0.72 - A 0 0 _ 0
0.19 0.03 -250-x 0 ’

0 0 2.50 A

to get the eigenvalues of the matrix. Expanding the de-
terminant by cofactors about the last column yields

A(A + 2.50)(A% + 1.97x + 0.1686) = 0,
from which we obtain the eigenvalues A = 0, —2.50, —1.88,

-0.09.
To find an eigenvector corresponding to, for example,
A = —2.50, we solve the homogeneous system, whose
augmented matrix is
—-1.25 + 2.50 0.69 0 0 0
1.06 —(0.72 + 2.50 0 Q Q
0.19 0.03 -250+250 0 )
] Q 2.50 25¢ 1 0

obtaining the eigenvector (0,0,1,—1). Similarly, the eigen-
vectors corresponding to A = 0, —1.88, ~0.09 are found
to be (0,0,0,1), (1,~0.91,0.26,-0.35) and (1,1.68,0.10,-2.78),
respectively.

3. From the expression for x,,

dx

s I 1.11e 198 _ 0.05e %™,

dt

Setting this equal to zero and solving for ¢ yields t = 1.73
(the time for the radioactive material to reach its maxi-
mum value in the exiravascular compartment).

dx
Similarly, setting Tit_a = 0 yields f = 0.73.

dx;
4- —_ = _(k] + k3)x1 + k2x2
dt
2 o~k
- = X
it 141 27

10
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dx,

L‘f_t = kyxy ~ ksxs
dX4

Lok
it

5. The system is

djﬁ = —1.27 x, + 0.72x,
dt

dx,

E = 1.03 Xy — 0.723&?2
E& = (0.24x, — 2.50x;,
dt )
s _ 3 501,

dt ’

Solving this system by the matrix method, as in the so-
lution to Exercise 2, we find that the eigenvalues are 0, ~2.50,
—-0.09, —1.90 with corresponding eigenvectors are (0,0,0,1},
(0,0,1,—1), (1,1.64,0.10,—2.74), and (1,—0.87,0.40,-0.53).
Thus, the solution to the system is

X 0 0 1
X 0 0 1.64
21 _ C] + Cz e—z.sur + C3 e-n.mr
X3 0 0.10
X4 1 —l "A2.74
1
N —0.87 o
1 040 ‘
~-{.53
7. et k) +
== x X
ar 1 3 )X 2X2
P x — k
= Jyx, — koX
dt 1%y X2
ax; ko, + k
A SN T
r 5X3 6

11
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% = ks¥y

dt

axs =k, — &,

At 1 65

With the given values of the rate constants the system be-
comes

dx,
— = —1.20x, + 0.69x,
dt

dxz
-—= 1.01x1 - 0.69x!
dt

— = 0.19x, — 2.1xs.

Solving this system we find that the eigenvalues are 0,
—-2.5, ~2.1, —0.07, — 1.82 with corresponding eigenvectors
(0,0,0,1,0), (0,0,1,-1,0), (0,0,1,-1.19,0.19),
(1,1.63,0.08,-2.81,0.09}, and (1,—0.90,2.07,-2.85,0.67).

Thus the solution to the system is

Xy g 0 a
X3 0 0
L]|=Glo|+C 1 725 4 C3 1 8‘2'"
X4 1 -1 -1.19
Xs 0 0 0.19

1 1

1.63 -0.90

+C,| 0.08 e + G| 2.07 e '™
-2.81 —2.85
0.09 0.67

12
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