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1. Introduction
Physiological systems of normal mammals display some easily recognized

and predictable patterns. In a healthy state, for example, respiration is oscilla-
tory, while blood cell counts are nearly constant.

However, in certain diseases, these patterns change. Systems that normally
oscillate may become steady, or may begin to oscillate in a different manner;
systems that were steady may begin to oscillate, perhaps in very complicated
ways. Such disorders have been called dynamical diseases by Glass and Mackey
[1979].

Generally, dynamical diseases are particular to physiological control sys-
tems, causing them to display abnormal dynamics. A variety of dynamical
diseases have been identified in the respiratory system, the blood system, and
other areas. In the blood, for example, a type of anemia and certain forms of
leukemia have been identified as dynamical diseases. Although laboratory and
clinical methods are of primary importance in studying these disorders, it is
now recognized that mathematical modeling too is essential to understanding
the nature of these diseases and to studying their treatment strategies.

In this Module we will consider the modeling of blood cell populations and
show how mathematical modeling is used to explain the behavior and possible
origins of dynamical diseases.

The blood cell system and the control mechanisms involved are very com-
plex, and much is not well understood. The development of mathematical
models of blood cell populations is quite recent. A number of models have
been presented, each depending on the complexities of the blood cell type
under study and using advanced mathematical concepts.

The model we consider is simple; its purpose is to illustrate some basic ideas
and analysis used in the mathematical modeling of blood cell populations, and
to show the interplay between mathematical modeling and the study of dy-
namical diseases of the blood. Even a first approximation to the dynamical
complexity of blood cell populations involves an unexpected wealth of ele-
mentary but nontrivial ideas.

In particular, we will present the notion of chaotic behavior, a distinctive
feature of many severe diseases. The possibility of the very complex dynamics
of chaos was first recognized by Poincaré, but scientists have given it vigorous
attention only in recent years. Indeed, chaotic dynamics have been documented
in many areas including biology, electronics, and fluid mechanics.

2. A Blood Cell Population Model
We begin with a brief description of the process of blood-cell formation and

destruction. We then develop a simple model to describe the dynamics of a
blood cell population.
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2.1 Blood Cell Formation and Destruction
Blood consists of two basic components: plasma and blood cells. Plasma is

the fluid in which the blood cells are suspended. There are three general types
of blood cells: red blood cells, white blood cells, and platelets.

Each type of blood cell has special functions. Red cells carry oxygen from
the lungs to the body tissues, white cells protect the body from infection, and
platelets help in blood clotting. Under normal conditions, the numbers and
type of blood cells produced are controlled by the physiological needs at the
time. For the red blood cells, oxygen deficiency leads to the production of
the hormone erythropoietin, which stimulates development of red blood cells
from among the primitive and committed stem cells. Thus, since red blood cells
participate in oxygen transport, the red blood cell production rate increases as
the number of red blood cells decreases.

With the exception of lymphocytes (a variety of white blood cell produced in
lymphatic tissues), blood cells are formed from primitive stem cells resident in
the bone marrow. The primitive stem cells are said to be pluripotential because
they are capable of producing committed stem cells, that is, stem cells committed
to develop eventually into one of the three cell types (red, white, or platelet).
Once formed, the committed stem cells proliferate (through cell division). After
a maturation phase, they become mature cells of the given type and enter the
blood stream. This formation process takes several days.

For the white-cell line, the processes regulating the number of cells is not
completely understood. It is thought that a decrease in the population leads
to the production and release of granulopoietin, a hormone which stimulates
the proliferative activity of the committed stem cells. However, granulopoietin
has not been isolated, and other stimulating factors are known to exist.

Blood cells eventually die, either by natural aging, infection, or disease. For
granulocytes, a type of white blood cell, death occurs randomly, with a half-life
of about 7 hours. Red blood cells, on the other hand, have a lifetime of about
120 days.

Figure 1 gives a simplified view of the blood cell formation process. The
arrows going from the circulating blood compartment to the committed stem
cell compartment indicate the (feedback) control of the level of circulating blood
cells on the production of new blood cells.

2.2 A General Model
We develop now a general model of the dynamics of a blood cell population.

Later we will apply this model to red and to white blood cell populations, and
also to the pluripotential stem cell population. Our model is necessarily highly
simplified, partly so that we can better study its properties, but also because
detailed models are very complex, depend substantially on the type of cell, and
involve differential-delay equations that require sophisticated qualitative and
numerical methods for analysis. Nevertheless, we shall see that this simple
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Figure 1. Formation and destruction of blood cells.

model still captures the distinctive features of blood cell population dynamics.
In a normal mammal, the concentration of blood cells is relatively constant

or may show small oscillations. However, a blood cell population undergoes
continual production and elimination of elements over time. Thus, to model
the levels of blood cells, we must consider both production and destruction of
cells. Time will be measured in discrete units of length ∆. We will refer to ∆ as
the unit time of the model. Set ti = i∆, for i = 0, 1, 2, . . . ; and denote by xi the
number of blood cells of a certain type, per kilogram of body weight, at time
ti. Then the general model is given by

xi+1 − xi = −d(xi) + p(xi),

where the function dmeasures the number of cells destroyed in the time interval
ti to ti+1, and the function p measures the number of cells produced during
this time interval. Each function is assumed to depend only on the number of
cells at time ti.

A simple but widely accepted model of destruction for a normal mammal
is that during each time interval of length ∆, a constant fraction of cells is
destroyed. That is,

d(xi) = cxi,

where c, a unitless constant independent of i and xi, is called the destruction
coefficient.

Information about the production function is sketchy. The particular form
of the function depends on the type of cell. It is generally agreed that the
production rate is a decreasing function over a wide range of cell levels. In-
deed, we would expect the production rate to increase when the number of
cells decreases. However, there is a critical level of blood cells below which an
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organism cannot recover without treatment. Also, production becomes unnec-
essary at high blood-cell levels. Thus, we assume that p(0) = 0, that initially
the graph of p is increasing, but that after reaching a maximum, the curve de-
creases to zero. There are many functions that fit this description. For example,
in modeling the granulocyte population, Mackey and Glass [1977] have used
the function

p(x) =
bθmx

θm + xm
, (1)

where b (unitless), θ (cells/kg), and m (unitless) are positive constants. Lasota
[1977] has considered the function

p(x) = bxse−sx/r, (2)

where b, s, and r are positive constants. It is probably the case that the particular
algebraic form chosen is not critical, provided a reasonable approximation to
the production function is attained.

Supposing that the production function has been determined, the dynamics
of the model are given by the iteration scheme

xi+1 = f(xi), for i = 0, 1, 2, . . . ,

where
f(x) = (1− c)x+ p(x).

We call f the iteration function of the model.
This model incorporates a number of simplifications. A precise model

would account for cell numbers at the various stages of development, from
stem cells to circulating cells in the blood (see, for instance, Rubinow and
Lebowitz [1975; 1976]). In addition, the production process involves a sig-
nificant time delay. Granulocytes, for example, take about six days from the
start of production to the appearance of mature cells. Thus the model might be
more appropriately written

xi+1 − xi = −d(xi) + p(xi−k),

where k∆ = δ, the delay in production. Including the delay explicitly, although
apparently simple, complicates the analysis substantially. In our model, the
delay is represented by the unit time ∆. In selecting ∆, then, there are two
considerations. We must account for the delay, and also make sure that the
assumed form of the destruction function is reasonable, namely, that a constant
fraction of cells dies during the time interval ∆.

Under normal (healthy) conditions, the blood cells will attain a level in
which the production and destruction of cells occur at equal rates. We will
denote this level by v, and refer to it as the steady-state level. Thus v is a solution
of the equation d(v) = p(v). Equivalently, v = f(v), so that v is a fixed point of f .

The destruction coefficient c, the unit time ∆, and the constants in the pro-
duction function are the parameters of the model. A dynamical disease results
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when parameter values stray away from those of the healthy state, causing
the system to display abnormal dynamics. A mathematical model can help in
identifying the nature of the disorder and in studying the effect of treatments.
Our task now is to investigate the properties of our model.

Exercises

1. For the production function (1), show that on (0,∞) there is a single maxi-
mum at x = rmθ and a single inflection point at x = smθ, where

rm =

(
1

m− 1

)1/m

and sm =

(
m+ 1

m− 1

)1/m

.

Sketch the graph of this production function for x ≥ 0.

2. For the production function (2), show that on (0,∞) there is a single max-
imum at x = r. Also show that for s > 1 there are inflection points at
x = r(1±√1/s) while for 0 ≤ s ≤ 1 there is a single inflection point at the
larger of these two. Sketch the graphs of this production function.

3. For given destruction coefficient c and production function p (either form
(1) or form (2) above), sketch the graphs of y = cx and y = p(x) and locate
the steady state v. For definiteness, take c ∈ (0, 1] and assume the graph of
p intersects the line y = x for some x > 0. Denote the steady state by vc.
Show that vc is decreasing as a function of c, and that vc → ∞ as c → 0+.
Are these properties physically reasonable? Remark: With form (2) and
s > 1, there are two positive solutions of cx = p(x). Later, after introducing
the notion of stability, we will see that only the larger solution is physically
attainable (see Exercise 10).

3. Parameter Estimation and
Model Validation

An important part of model development is verifying that the model rea-
sonably reflects the system it represents. However, validation of models of
dynamical diseases is especially difficult. Experimentation with humans, ei-
ther normal or diseased, is necessarily very limited; and data obtained in clin-
ical settings are approximate and fragmentary, and not designed to aid model
verification. While experimentation with animals is a source of information,
extending numerical results to humans may be uncertain. Even when data are
available, estimating model parameters is doubtful for a system whose output
is chaotic and possesses sensitive dependence on initial conditions and pa-
rameters. In addition, model parameters may vary substantially from person
to person. Thus there are many problems with model verification [Glass and
Mackey 1988, Chapter 9].
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Still, it is possible to obtain some meaningful numerical data. For example,
direct counts of cell concentrations are done routinely. Also, use of tracers to
label cells has led to estimates of cell destruction rates and cell production rates
(see, for example, Anderson [1983] or Rubinow [1975]). The following examples
show how these data can be used to estimate parameters in our model.

Example 1:
For red blood cells, the time from the start of production to the release

of mature cells in the blood is about six days. Thus we take the unit
time ∆ to be 6. Use of tracers indicates that the destruction rate of red
blood cells under normal conditions is 2.3% per day [Mackey 1979b].
With ∆ = 6 days, we can estimate c as 6 × 0.023 = 0.14. In a normal 70-
kg man, the red-cell count is about 3.3 × 1011 cells/kg of body weight.
This amount is our estimate of the steady-state cell count v. Now, under
steady-state conditions, the rate of cell disappearance is cv = 0.14 × 3.3 ×
1011 = 4.62 × 1010 cells/kg; and this amount must equal the steady-state
production rate. Hence, we have located a point (v, 0.14v) on the graph
of the production function p; that is, p(v) = 0.14v.

Next, it is estimated that the maximum production rate is about 10
times the steady state rate, or 4.62 × 1011 cells/kg. This datum locates
another point on the graph of p, although the value at which the maximum
is attained needs to be determined.

Finally, experiments have found that for rabbits, reduction of the cell
population to 75% of the steady-state count results in an increase in pro-
duction of about 5 times the steady-state rate [Orr et al. 1968]. If we
assume this response holds for humans also, then we have a third point
on the graph of p, namely, (0.75v, 5v).

We will assume that the production function has the form

p(x) = vφ(x/v), where φ(u) = buse−su/r.

Using the three points on the graph of p, we can determine b, r, and s.
The production function has been chosen particularly to simplify the

arithmetic. The factor v on the outside of φ is used because all the mea-
sured production rates are given as multiples of v. The argument of φ,
that is, x/v, has been chosen so that cell counts are measured in multiples
of v, the multiple being the variable u. Thus cells counts can be expressed
more simply. Finally, with this form of φ, the maximum occurs at u = r,
allowing us to express the given datum on the maximum production rate
more easily.

We obtain the following equations for the parameters.

Production at steady state: φ(1) = be−s/r = 0.14,

Maximum production: φ(r) = brse−s = 10× 0.14 = 1.4,

Production at 75% of steady state: φ(0.75) = b(.75)se−0.75s/r

= 5× 0.14 = 0.70.
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With some perseverance, these three equations can be solved for the pa-
rameters. For example, one can successively eliminate variables to obtain
one equation in one unknown, which can then be solved by an iterative
method, such as the bisection method or Newton’s method. Approximate
solutions are s = 8, r = 0.5, and b = 1.1 × 106.

Example 2:
As mature cells, granulocytes (a type of white blood cell) are found

in the blood and are also held in reserve in the marrow. As indicated
earlier, the mechanisms regulating the production of these cells are not
fully understood. In this example, however, let us assume that the feed-
back control that stimulates proliferative activity of committed stem cells
is based on total cell count in the blood and the marrow reserve. The time
from inception of cell production to appearance of mature cells is about
six days [Mackey and Glass 1977]. Thus, we take the unit time ∆ = 6. The
cell destruction rate is about 10% per day [Mackey and Glass 1977; Erslev
and Gabuzda 1985]. Hence, c = 6 × 0.1 = 0.6. The steady-state total cell
count v is about 8.2 × 109 cells/kg of body weight [Erslev and Gabuzda
1985]. Therefore, the steady-state rate of cell disappearance is

cv = 0.6× 8.2× 109 = 4.92× 109 cells/kg,

which in turn equals the steady-state production rate. Thus the produc-
tion function satisfies p(v) = 0.6v. Finally, we will estimate the maximum
production rate to be twice the production rate in the steady state. This
factor is approximately that used by Mackey and Glass [1977].

These data locate two points on the graph of the production function.
Assume that the production function has the form

p(x) = vφ(x/v), where φ(u) = bue−u/r.

Then we have

Production at steady state: φ(1) = be−1/r = 0.6,

Maximum production: φ(r) = bre−1 = 2× 0.6 = 1.2.

Solving these equations for the parameters b and r yields the approximate
solutions r = 0.37 and b = 8.7.

These examples illustrate several of the typical difficulties with parameter
estimation in blood-cell population modeling. The available data are few and
approximate. Also, some data are obtained from experiments with animals,
the results of which may have uncertain application to humans. Of particular
concern, however, is that much of the data pertains to the steady state only. But
the model is supposed to describe also the behavior of the cell counts when the
system is not in the steady state. How can we verify that the model reflects
these dynamics?
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An important way to study dynamical behavior of the blood cell popula-
tion in humans is to observe the population when it is diseased. In clinical
settings, however, it is not possible to obtain data from controlled experiments,
as we could in the laboratory. For example, records of leukemia patients upon
entering the City of Hope (a hospital located in the Los Angeles area) show
variations in the white blood cell count by a factor of 750. Conditions among
patients can vary widely, and hence so do the numerical data obtained.

As pointed out by Glass and Mackey [1988], published data on dynamical
behavior are rare. Nevertheless, qualitative features of diseases are well estab-
lished. Such features include steady states that are higher or lower than normal,
or oscillations for which estimates of amplitudes or periods have been made.
As one part of model verification, we need to see that the model is capable of
displaying these patterns. If not, we certainly have reason to reject the model.
It is this aspect of model verification that we will pursue in the next sections.
To do so, we must first present some basic results about discrete dynamical
systems.

Exercises

4. In Example 2, the maximum production rate was taken to be twice the
steady-state rate. This factor is known only approximately and could be
much higher. With the same production function as in Example 2, estimate
the parameters using a factor of five instead.

5. The blood system is able to respond within a few hours to a depletion of
granulocytes in the blood, with increases coming from the marrow reserve.
The number of granulocytes in the marrow reserve is more than ten times
that of the blood. As an approximation, we could model the number of
granulocytes in the blood, independently of the feedback control to the
committed stem cells, at least to study the effect of a small depletion over a
short period of time. Let us assume such a model, so that now xi represents
the number of granulocytes in the blood at time ti. The destruction rate of
granulocytes in the blood is about 10% per hour and the steady-state cell
count is about 7.0 × 108 cells/kg [Wheldon 1975; Rubinow and Lebowitz
1975]. Assume the maximum production rate is 6 times the steady-state rate
[Wheldon 1975]. Taking ∆ = 3 hours and using the production function (2)
with s = 1, estimate the parameters of the model.

4. Discrete Dynamical Systems
We summarize now some results concerning discrete one-dimensional dy-

namical systems which will be needed in the sequel [Devaney 1989; Edelstein-
Keshet 1988; Eisen 1988; Frauenthal 1979; May 1974; May 1975; Perelson 1980].
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4.1 Orbits, Stationary States, and Periodic Orbits
Let I be an interval, and let f : I 7→ I be a continuously differentiable

function. The domain of f may be larger than I , but we are interested only
in what happens on I . Points in I will be viewed as representing states of a
system. Given p ∈ I , consider the sequence of points x0 = p, x1 = f(x0),
x2 = f(x1), and so on. This sequence xi represents successive states of the
system with initial state p. We shall call this sequence an orbit starting from p
and denote it by O(p).

The following notation will be convenient. Let f i denote the composition of
f with itself i times; that is, f i = f ◦f ◦· · ·◦f , i times, where f0 is defined as the
identity: f0(x) = x for all x. Then we can write xi = f i(p), for i = 0, 1, 2, . . . .
If x1 = p, i.e., p = f(p), then p is called a fixed point of f , or a stationary state of
the system, since no changes will take place if the initial state is p. If xn = p
for some n ≥ 2 and xi 6= p for all 0 < i < n, then the point p, and the orbit
O(p), are called periodic with period n. In this case, the system goes repeatedly
through the states of O(p) in an orderly manner, and any one of the states
could be considered an “initial” state. For each point xi of the orbit, we have
fn(xi) = xi. Thus each point in the orbit is a fixed point of fn.

4.2 Stability of Stationary States and
Periodic Orbits

For a system in real life to reside exactly at a stationary state is unlikely,
since there will always be minor disturbances that move the system slightly
away from the stationary state. The question is: Will the system run away from
the stationary state, or will it always tend to come back to the stationary state?
We say the stationary state is unstable in the first case and stable in the second.

Suppose p is a fixed point of f and that |f ′(p)| < 1. Using the mean value
theorem and the continuity of f ′, we can show there is an interval J , centered at
p, such that for any x ∈ J the sequence of points in the orbit O(x) converges to
p (Exercise 6). Thus, when |f ′(p)| < 1, we say p is a local attractor of the system,
or a stable fixed point of f .

On the other hand, suppose that |f ′(p)| > 1. Then, again using the mean
value theorem and the continuity of f ′, we can show there is an open interval J
about p such that for any x ∈ J there is an integer n, depending on x, such that
fn(x) /∈ J . It follows that the orbit O(x) contains an infinite number of points
outside of J (Exercise 7). Thus, when |f ′(p)| > 1, we say p is a local repellor of
the system, or an unstable fixed point of f .

Consider next a periodic orbit of period n: p = x0, x1, . . . , xn−1, xn = p. As
mentioned earlier, each point of the orbit is a fixed point of fn. By the chain
rule, we can show that (Exercise 8)

(fn)′(xi) = (fn)′(p), for each i = 0, 1, 2, . . . , n− 1.
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Thus, as regards stability, all points in the orbit behave in the same manner.
For instance, suppose first that |(fn)′(p)| < 1. By continuity, there is an open
interval J , centered at p, such that for any x ∈ J , fnk(x) → p as k → ∞. For
each i, 0 ≤ i ≤ n− 1, the (i+ 1)st point in the orbit O(x) is f i(x), and every nth

point, starting at f i(x), is given by fnk(f i(x)), for k = 0, 1, 2, . . . . However,

fnk(f i(x)) = f i(fnk(x))→ f i(p) as k →∞.

Thus the orbit O(x) converges to the periodic orbit O(p). We say in this case
that the orbit O(p) is a stable periodic orbit and will refer to the set O(p) as a local
attractor. In the event that p is an unstable fixed point of fn, we can argue in
a similar way, but with somewhat more elaborate reasoning, that O(p) is an
unstable periodic orbit, and refer to the set O(p) as a local repellor.

4.3 Chaotic Orbits
We shall say an orbitO(x) is asymptotically periodic if there is a periodic orbit

O(p) such that

|f i(x)− f i(p)| → 0 as i→∞.
In other words, an orbit is asymptotically periodic if it converges to a periodic
orbit. In the previous subsection we encountered an asymptotically periodic
orbit. If we start at a point that is sufficiently near a stable periodic orbit, then its
orbit converges to the periodic orbit. An asymptotically periodic orbit behaves
with some predictability, but an orbit that is not asymptotically periodic appears
random. We shall refer to a bounded orbit that is not asymptotically periodic
as chaotic.

Further motivation for this definition is found by considering the limit
points of an orbit. A point q is a limit point for a sequence xi if there is a subse-
quence that converges to q. For p ∈ I , let L(p) denote the set of limit points of
the orbit O(p). Then we have the following result:

Theorem 1. A bounded orbit that is not asymptotically periodic has infinitely
many limit points.

A brief proof: The setsO(p) and f(O(p)) differ only by the point p. Thus, they
have the same limit points; and hence, when O(p) is bounded, L(p) = f(L(p));
that is to say, L(p) is invariant under f .

Now, suppose L(p) is finite. Then there is no proper subset of L(p) that
is invariant under f , and therefore L(p) must be a periodic orbit (Exercise 9).
Since O(p) converges to L(p), the orbit O(p) is asymptotically periodic. Thus,
any bounded orbit with finitely many limit points is asymptotically periodic,
and the theorem follows.
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The definition of a chaotic orbit has intuitive appeal, but it does not tell us
how to recognize a chaotic orbit. However, T.Y. Li and J.A. Yorke proved a re-
markable result, which in conjunction with a result obtained by A.N. Sharkovsky,
can be rephrased as follows:

Theorem 2 [Li and Yorke 1975; Sharkovsky 1964]. Let f : I 7→ I be continuous
and have an orbit of period 2n + 1 for some positive integer n. Then f has a
fixed point and orbits of every period m ≥ 2n + 1 and of every even period
k ≤ 2n. Moreover, there is an uncountable subset S of I such that for each
p ∈ S, the orbit O(p) is chaotic.

We will use this result for n = 1. The theorem then states that the existence
of an orbit of period 3 implies there are orbits of all periods and that there are
uncountably many chaotic orbits. Li and Yorke [1975] show further that an
orbit of period 3 exists when there are points a ∈ I , b = f(a), c = f(b), and
d = f(c) such that d ≤ a < b < c or d ≥ a > b > c. An elegant and simple
way to obtain the above results, except for existence of chaotic orbits, has been
discovered by P.D. Straffin, Jr. [1978].

Exercises

6. Let I be an interval and f : I 7→ R be continuous together with its first
derivative. Suppose p ∈ I is a fixed point of f and |f ′(p)| < 1. Show there
is an interval J centered at p such that f i(x)→ p as i→∞, for any x ∈ J .

7. Assume the same conditions as the previous problem, except that |f ′(p)| >
1. Show there is an interval J centered at p such that for each x ∈ J , there is
an n, depending on x, for which fn(x) lies outside J . Hence conclude that
for x ∈ J , the orbit O(x) has an infinite number of points outside J .

8. Let I be an interval and f : I 7→ R be differentiable. AssumeO(p) is periodic
with period n. Prove that for each i = 0, 1, 2, . . . , n−1, (fn)′(xi) = (fn)′(p),
where xi = f i(p) is the (i+ 1)st point in the orbit.

9. For an orbit O(p), suppose L(p) is finite and has no proper subset that is
invariant under f . Show that L(p) is a periodic orbit.

10. Consider the iteration function f(x) = (1−c)x+p(x), where the production
function is (2) with s > 1 (as in Example 1 for the red blood cell population).
For definiteness, take c ∈ (0, 1] and assume the line y = x intersects the
graph of p.
a) Sketch the graph of f and show there are two positive fixed points.

Denote the smaller by uc and the larger by vc.
b) Show that uc is unstable for all c. Show also that any orbit which starts

below uc will converge to 0, while an orbit that starts just above uc will
initially move upward toward vc. Remark: Thus we interpret uc as the
minimal number of blood cells needed by the organism to survive.
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c) Show that vc may be either stable or unstable, but that it is stable when
c is sufficiently small. Remark: We interpret vc as the steady state. If
the destruction coefficient c is too large, the steady state may become
unstable, as we shall see in the next section.

11. Write the production function (2) as in Example 1 and show that the deriva-
tive of the iteration function at the steady state v is

f ′(v) = 1− c+ cs

(
1− 1

r

)
.

Thus show that in Examples 1 and 2 the steady states are stable.

5. Qualitative Analysis and Applications
of the Model

We are prepared now to study the dynamical behavior of our model, and in
particular how well it reflects properties of certain dynamical diseases. Such
studies assist not only with model validation but also in testing hypotheses
concerning origins of the disease.

5.1 Hemolytic Anemia
The red blood cells contain the protein hemoglobin, which combines with

oxygen in the lungs and carries it through the blood to the tissues. Anemia is
a condition in which the amount of hemoglobin or the number of red blood
cells is below normal levels. Anemia may result from insufficient production
of hemoglobin, as in iron-deficiency anemia, or by defective hemoglobin, as
in sickle-cell anemia. It can also occur from the premature destruction of red
blood cells, a disorder called hemolytic anemia. This premature destruction
may happen because the red blood cells are defective or the body produces
antibodies that attack the red blood cells, or it may be caused under certain
conditions by drugs or infection.

Experiments have shown that the induction of hemolytic anemia in rab-
bits can result sometimes in steady depressed levels of hemoglobin, and at
other times in sustained oscillations in hemoglobin concentrations and numbers
of reticulocytes (a type of red blood cell) [Orr et al. 1968]. Can our model ac-
count for this behavior? In particular, is it possible that simply an increased
destruction coefficient explains these observations?

Write the iteration function as

fc(x) = (1− c)x+ p(x),

with the subscript c to indicate dependence on the destruction coefficient. We
will consider values of c in the interval (0, 1]. In Example 1, a production
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function of the form (2) with s > 1 was determined for the red blood cells.
However, in the analysis to follow, only certain properties of this function will
be needed. We will assume the graph of p has the same shape as the production
function in Example 1; in particular, we will require three assumptions (A), (B),
and (C).

(A). p is differentiable, p′(0) = 0, and p has exactly two inflection points, which
lie above the line y = x.

Under this first assumption, fc has two positive fixed points. Denote the
smaller by uc and the larger by vc. Then, recalling Exercise 10, we know that uc
is unstable for any c > 0, but vc is stable for sufficiently small c and represents
the steady state. In Example 1, we saw that c near 0.1 to 0.2 is normal. Over
this range, vc is stable (Exercise 11). For c ∈ (0, 1], v1 ≤ vc < ∞, and vc is
monotonically decreasing as a function of c, with vc → ∞ as c → 0+, and
vc → v1 as c→ 1− (Exercise 3).

We will further require that

(B). p′(v1) < −1.

The production function for red blood cells calculated in Example 1 satisfies
these assumptions (Exercises 12 and 13).

Theorem 3. Let fc(x) = (1 − c)x + p(x), and suppose that the production
function p satisfies (A) and (B), so that fc has positive fixed points uc (the
smaller) and vc (the larger). Then there exists a unique value of c in (0, 1), say
cα, which satisfies f ′c(vc) = −1. For c ∈ (0, cα), the point vc is stable; and for
c ∈ (cα, 1], vc is unstable.

Proof: Observe first that f ′c(vc) = −1 if and only if p′(vc) = −2 + c. Consider
now the graph of p′ in Figure 2. For small c > 0, the point labeled A lies to the
left of the point labeled B. As c increases toward 1, A moves to the right and
B moves to the left. There will be exactly one value c = cα at which A and B
coincide, and at this value of c we have f ′c(vc) = −1.

Suppose now that c ∈ (0, cα). Then vc > vcα , and −2 + c < −2 + cα. Thus,

−2 + c < −2 + cα = p′(vcα) < p′(vc),

so that −1 < (1 − c) + p′(vc) = f ′c(vc). But since p′(vc) < 0, we have also
f ′c(vc) < 1 − c < 1. Thus |f ′c(vc)| < 1, so that vc is stable. An analogous
argument shows that vc is unstable when c > cα.

Thus, provided the destruction coefficient is not too large (less than cα), the
model shows that the steady state is stable. However, whenever c is greater
than this threshold value cα, the steady state is unstable.

Theorem 4. Let f and p be as in Theorem 3, and let cα be the unique value of
c such that f ′c(vc) = −1. Then, for any c > cα, there exist points of period two.
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Figure 2. Graph of p′.

Proof: Let c > cα. The graph of f2
c intersects the line y = x at uc and at vc. But

if x is either uc or vc, then
d

dx
f2
c (x) > 1.

Thus, just to the right of uc, the graph of f2
c lies above the line y = x; but just to

the left of vc, it lies below the line y = x. Therefore, by continuity, there exists
a point between uc and vc which has period two.

We now see that when the destruction coefficient is too large (bigger than
cα), periodic solutions arise. In fact, with the production function for the red
blood cells determined in Example 1, we find numerically that as c increases,
“period doubling” occurs; that is, as c increases, orbits of periods 2, 4, 8, . . .
arise, until an orbit of period 3 appears. The occurrence of periodic solutions
may explain the observed oscillations in the experiments of Orr et al. [1968].
However, further analysis of the model indicates that cell counts could have
followed a chaotic orbit. To see this, we make one more technical assumption
concerning the production function. For c ∈ (0, 1], let yc denote the point at
which fc attains its local maximum. Then we assume

(C). p2(y1) < u1, where for c ∈ (0, 1], uc is the smaller positive fixed point of f .

This assumption might be expected. When c = 1, the system will try to
compensate for the high destruction rate with greatly increased production.
Initially, a very large number of cells enters the blood stream. The system
senses this excessive accumulation; and during the next time interval, only a
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small number of cells is released. Consequently the cell count falls below the
critical level u1.

Theorem 5. Let f and p be as in Theorem 3. Suppose the production function
satisfies also assumption (C). Then there exists cβ ∈ (0, 1) such that for any
c ∈ (cβ , 1], fc has a point of period three, and hence there are uncountably
many chaotic orbits.

Proof: For c ∈ (0, 1], there is a point ac between uc and yc such that fc(ac) = yc
(a sketch of the graph of fc shows this result). Assumption (C) implies there is
cβ ∈ (0, 1) such that for any c ∈ (cβ , 1], we have f2

c (yc) < uc, since uc → u1, and
yc → y1, as c → 1−. For c ∈ (cβ , 1], define dc = fc(yc) and ec = fc(dc). Then
we have ec < ac < yc < dc, and therefore the conditions of the Li and Yorke
theorem are satisfied.

Under the conditions of Theorem 5, the iteration function fc, for sufficiently
large c, has an uncountable number of chaotic orbits. A direct calculation shows
that the production function for red blood cells of Example 1 satisfies (C). The
model thus indicates that for large destruction rates, the cell counts are likely
to follow chaotic orbits.

Exercises

12. Show that the production function determined in Example 1 satisfies as-
sumption (A). Suggestion: Show that x is an inflection point of p if and only
if x/v is an inflection point of φ, and hence that p satisfies assumption (A) if
φ does. Check assumption (A) for φ directly, using the results of Exercise 2.

13. Show that the production function of Example 1 satisfies assumption (B).
Suggestion: Set w1 = v1/v, and using the fact that w1 = φ(w1), show that
p′(v1) = 8(1− 2w1). Then show that w1 > 9/16.

14. The proof of Theorem 4 rests on the fact that when c > cα, the derivative of
f2
c is greater than 1 at at uc and at vc. Verify this result.

5.2 Chronic Myelogenous Leukemia
Chronic myelogenous leukemia (CML) is a cancer of the white blood cells, char-

acterized by an excessive increase in granulocytes in the marrow and blood.
The cells produced are abnormal, and counts in the marrow may be 150 times
the normal. Further, the overaccumulation disrupts production of the other
blood cells and interferes with various organs. There is evidence that the dis-
order resides in the primitive stem cells [Erslev and Gabuzda 1985]. In recent
years, some clinical reports have indicated a periodic variant in which cell
counts oscillate around elevated levels, with a period of 30–70 days depending
on the patient [Glass and Mackey 1979].
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To investigate whether the model can explain these observations, we apply
it to the primitive stem cell population. This population is self-maintaining.
When primitive stem cells differentiate to form committed stem cells, the num-
ber of primitive stem cells decreases. This decrease causes new cells to be
produced through mitosis (cell division) of remaining cells. Cells that are not
in the proliferative phase are said to be resting. Committed stem cells can come
only from resting cells.

The mechanisms and feedback control processes in CML are not fully under-
stood. However, it is believed that in CML the primitive stem cell compartment
consists of two populations, the normal cells and the leukemic cells. Each is
thought to be governed by the same dynamics, but with different parameters.

We will apply the model to the leukemic population. Now xi denotes the
number of resting primitive stem cells (leukemic) at time ti. Recall that our
model specifies f(x) = (1 − c)x + p(x). The destruction coefficient c is now
the fraction of primitive stem cells that leave to become committed cells during
a time interval of length ∆. For the production function, we follow Mackey
[1979a] and use (1):

p(x) =
bθmx

θm + xm
,

with positive parameters b, θ, and m. Thus we are assuming that during the
time interval from ti to ti+1, the number of cells that leave the proliferative
phase to enter the resting state is p(xi). For the normal human, it has been
estimated that

c = γ∆, with γ = 0.16 per day,
b = β∆, with β = 1.43 per day,
θ = 3.22× 108 cells/kg,
m = 3,

with a delay time in production of ∆ = 0.68 days [Mackey 1979a].
Our goal is to study possible explanations for the observed increases and

oscillations in the cell count. We need first to express the steady-state cell count
as a function of the parameters. Letting v denote the steady state level, we have
cv = p(v). Solving for v yields

v = θ

(
β

γ
− 1

)1/m

.

At first thought, the logical explanation for increased cell counts would be
an increase in the magnitudes of the production function, which means an
increase in the parameter β. However, assuming that all other variables remain
unchanged, we see from the expression for v that to achieve a 50-fold increase in
v would require, in view of the cube root (m = 3), an increase in β by a factor of
approximately 503 = 125,000. Although leukemic cells are known to proliferate
much faster than normal cells, such an enormous increase in β seems unlikely.
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Examination of the expression for v, however, suggests that a simpler pos-
sibility is an increase in θ. A 50-fold increase in v would require only a 50-fold
increase in θ. In the expression for the production function, increasing θ leads
to an elongation of the graph of p and an increase in the maximum. This means
there are higher production levels that extend over a wider range of the popu-
lation cell counts. Thus, CML may involve an alteration in the feedback control
process of primitive stem cell replacement.

Increase in the parameter θ seems the likely reason for increased cell levels.
However, does this increase also explain the 30- to 70-day oscillations in cell
counts observed in some patients? This question requires that we examine the
stability of the steady state v. To begin, we need an expression for f ′(v), the
slope of the iteration function at the steady state. Using the result of Exercise
1 for the derivative of f and substituting the expression for v yields

f ′(v) = 1− cm+
c2m

b
.

But this expression does not depend on the parameter θ. Moreover, for the
given parameter values, f ′(v) = 0.71, showing that the steady state is stable
for any value of θ. Thus an increase in θ does not help us understand the
oscillations that have been observed.

However, there is another possibility. In CML, evidence indicates that for
myeloblasts, a committed (white) stem cell, the time spent in the proliferative
phase is longer than for normal cells. This evidence suggests that the unit time
∆ in the model may be greater than usual. Consider, then, an arbitrary delay
time ∆. With c = γ∆ and b = β∆, we can express f ′ in terms of ∆ as

f ′(v) = 1− γm∆ +
γ2m∆

β
.

Substituting the estimated values of γ, β, and m, we get f ′(v) = 1 − 0.43∆.
Thus, for ∆ greater that 2/0.43 = 4.7 days, the steady state would be unstable.
As ∆ increases beyond this value, an orbit of period two arises. In this case,
a period of two is 2 × 4.7 ≈ 9 days, which agrees with the 12 days calculated
by Mackey using a more detailed model [Mackey 1979a]. It appears that the
increased delay time of the leukemic cells is the likely source of oscillations in
cell counts.

We see now that the model is able to reflect the dynamics of CML, giving
further support for the assumptions that comprise the model. In addition, the
analysis offers insights into the possible malfunctions that occur in the disorder.

Exercises

15. Verify the stated effect of increasing θ on the shape of the production func-
tion. The results of Exercise 1 help.
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16. Show that when ∆ exceeds 4.7 days, orbits of period two arise. Suggestion:
Use the same proof as in Theorem 4, with the two fixed points of the iteration
function here being 0 and v.

6. Conclusion
We have given an introduction to the mathematical modeling of blood cell

populations. The model is simple, and more-precise and detailed models are
under study. Certainly, a better understanding of the mechanisms, especially
in quantitative terms, of blood-cell formation and destruction is needed. The
problems of parameter estimation and model verification are formidable.

To some extent, of course, confidence in a model comes with a knowledge of
the cellular and biochemical processes involved. However, hard data are also
needed; and for our situation, little data have been obtained to serve model ver-
ification. But it is not premature to proceed with model development. Good
models are available now; new laboratory and clinical results can help refine
them. At the same time, analysis of the models tells us what dynamical phe-
nomena to look for and how to design experiments and studies. Moreover,
models can be used to test hypotheses regarding possible mechanisms, and are
thus tools for investigation. Ultimately, models will help us study treatment
strategies for diseases.

A major step forward would be the development of closer ties between
those on the laboratory and clinical sides of research and those interested in
mathematical modeling. Glass and Mackey [1979] noted:

The existence of classifiable dynamical diseases in humans suggests a cor-
responding rich theory of bifurcations in nonlinear ordinary, partial, and
functional differential equations which model physiological control sys-
tems. At this point, a sufficient body of data is not yet available for actual
testing of theories of dynamical diseases. In our view, close collaboration
between theorists and clinicians is needed to clarify the bases of these
dynamical diseases.

We can only echo this plea, and hope that this Module will help stimulate
interest in the modeling of blood cell populations.

7. Sample Exam

1. Let f : I 7→ I be continuous. Suppose that for some p ∈ I , the orbit O(p)
converges. Show that the limit is a fixed point of f .
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2. Let f : [a, b] 7→ R be continuous. Assume that [a, b] is contained in the
image of f . Prove that f has a fixed point in [a, b]. Suggestion: Consider
the function g(x) = x− f(x).

3. Let I be an interval and let f : I 7→ I be continuous. Assume there is a
point a ∈ I such that: a < f(a) < f3(a), f4(a) = a, and f is increasing on
[a, f(a)]. Prove that there is an orbit of period three. Suggestion: Consider
the image of the interval [a, f(a)] under f3 and use the result of the previous
problem.

4. Consider the model of Exercise 5 for the granulocytes in the blood. The
destruction rate is 10% per hour, and the steady-state cell count is 7.0 × 108

cells/kg. Let the unit time be ∆ = 3 hours, and the maximum production
be 10 times the steady-state rate.
a) Use the production function (2) with s = 1 and estimate the parameters

of the model.
b) Is the steady state stable?
c) As mentioned in Exercise 5, the blood system can respond to a depletion

of granulocytes in the blood within a few hours, with cells coming from
the marrow reserve. In fact, within two or three hours, the number of
blood granulocytes becomes somewhat larger than normal, and then re-
turns shortly to the normal steady state (with perhaps some oscillation
in the process). Is the above model consistent with this behavior? Sug-
gestion: Consider the graph of the iteration function. Show how points
in an orbit will behave when the initial point lies just below the steady
state.

5. Consider the model of Example 2 for the regulation of granulocytes. For a
unit time ∆ (days), the destruction coefficient is c = γ∆, with γ = 0.1, and
the production function has the form

p(x) = bxe−x/q, where b = β∆.

The calculations in Example 2 indicated that β ≈ 1.5 for a normal system.

a) Show that the steady-state cell count is v = q ln

(
β
γ

)
.

b) Show that the slope of the iteration function f at the steady-state is

f ′(v) = 1− γ∆ ln

(
β

γ

)
.

.
c) Suppose hypothetically that in chronic or acute myelogenous leukemia,

the regulation of leukemic cells in the marrow reserve and blood were
to follow the same model as in Example 2 but with different parameters
than those of the normal cells. Perform an analysis with this model, as
was done in Section 5.2 for the primitive stem cells, in order to explain
the excessive cell numbers and the oscillations in cell counts.
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8. Solutions to the Exercises

1. The first and second derivatives of the function (1) are

p′(x) =
bθm[θm − (m− 1)xm]

(θm + xm)2
,

p′′(x) =
bmθmxm−1[(m− 1)xm − (m+ 1)θm]

(θm + xm)3
,

from which the results follow.

2. The first and second derivatives of the function (2) are

p′(x) = bsxs−1

(
1− x

r

)
e−sx/r,

p′′(x) = bsxs−2

(
−1 + s

(
1− x

r

)2 )
e−sx/r,

from which the results follow.

3. The slope of the line y = cxdecreases as cdecreases. Thus, since p is positive
and asymptotic to zero, vc must increase as c decreases, and vc → ∞ as
c → 0+. These results are reasonable physically: As the destruction rate
decreases, with a fixed production function, the steady-state number of cells
would be expected to increase. Of course, the body has only a finite capacity
and could not survive a small cell destruction rate.

4. Following Example 2, the equations for the parameters are now be−1/r =
0.6 and bre−1 = 5 × 0.6 = 3.0. Approximate solutions are r = 0.25, b = 33.

5. With ∆ = 3 hours, c = 3 × 0.1 = 0.3, and the production function p(x) =
vφ(x/v), where φ(u) = bue−u/r, the two equations for the parameters r and
b are be−1/r = 0.3 and bre−1 = 1.8. Approximate solutions are r = 0.24, b =
21.

6. Select d > 0 so that |f ′(x)| ≤ m < 1 for all x ∈ J = [p − d, p + d]. Fix
x0 ∈ J and consider the orbit O(x0). For i = 0, 1, 2, . . . , let xi = f i(x0) be
the (i + 1)st point in the orbit. Suppose that xi ∈ J for some i ≥ 0. By the
mean value theorem, we have

xi+1 − p = f(xi)− f(p) = f ′(t)(xi − p), for some t ∈ J.
Therefore, |xi+1 − p| ≤ m|xi − p|, so that xi+1 ∈ J . Thus, by induction, the
orbit lies in J , and moreover we have

|xi − p| ≤ mi|x0 − p|, for each i ≥ 0.

Thus, the orbit converges to p.
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7. Proceed exactly as in Exercise 6 as far as the first displayed equation. Then,
using the hypothesis, we have

|xi+1 − p| ≥ mk+1|x0 − p|.

Thus, there must be a point in the orbit that lies outside J . Further, if some
future point in the orbit should return to J , then by the above argument,
in a finite number of steps the orbit will again leave J . Thus, an infinite
number of points of the orbit are outside J .

8. By repeated application of the chain rule (or induction, to be rigorous),
we get

(fn)′(xi) = f ′(xi)f
′(xi+1) . . . f ′(xi+n−1),

and
(fn)′(p) = f ′(p)f ′(x1) . . . f ′(xn−1).

Since the orbit is periodic with periodn, it follows that these two expressions
are the same.

9. Suppose L(p) has n points. Select any x0 ∈ L(p) and form the points xi by
xi+1 = f(xi) for i = 0, 1, 2, . . . , n − 1. Each of these points is in L(p) since
L(p) is invariant under f . But the points x0, x1, . . . , xn−1 must be distinct,
otherwise there would be a proper subset of L(p) which is invariant under
f . Hence xn = p, so that L(p) is a periodic orbit.

10. a) The graph of f lies above the line y = (1 − c)x, is tangent to this line at
x = 0 since p′(0) = 0, and approaches this line asymptotically as x→∞
since p is asymptotic to zero. Thus the graph of f lies below the line
y = x in a neighborhood of the origin, and also for sufficiently large x.
However, the graph of f lies above the line y = x for some x. Hence f
must have two positive fixed points.

b) The slope of f at uc must be greater than 1 since the graph of f is passing
across the line y = x from below. Hence the smaller fixed point is un-
stable. Any orbit that starts below uc must form a decreasing sequence,
since f(x) < x for all x ∈ (0, uc). Hence the orbit converges to a point
q ∈ [0, uc). By continuity of f , q = f(q). But the only point in [0, uc)
which satisfies this equation is q = 0. Finally, any orbit that starts just to
the right of uc will initially move away from uc toward vc, since f(x) > x
when x lies just to the right of uc.

c) The point vc may or may not be stable, depending on steepness of the
production function. However, for a given production function, it will
be stable when c is sufficiently small, since the graph of p approaches
the x-axis asymptotically.
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11. As in Example 1, set p(x) = vφ(x/v). Then

f ′(x) = 1− c+ p′(x) = 1− c+ φ′(x/v).

But

φ(u) = buse−su/r, so that φ′(u) = bsus−1

(
1− u

r

)
e−su/r.

Now

f ′(v) = 1− c+ φ′(1) = 1− c+ bs

(
1− 1

r

)
e−s/r.

However, at the steady state, cv = p(v), or c = φ(1) = be−s/r. Thus

f ′(v) = 1− c+ cs

(
1− 1

r

)
.

Finally, substituting the parameter values, as calculated in the examples,
we find that for Example 1, f ′(v) =−0.26, and for Example 2, f ′(v) =−0.62.

12. Since p′′(x) = φ′′(x/v)/v, the statement in the suggestion is valid. Thus, it
suffices to check that φ(u) > u at each inflection point of φ. Using the result
of Exercise 2, the inflection points of φ are 0.323 and 0.677. Substituting, we
get φ(0.677) = 0.96 and φ(0.323) = 0.74. Hence, assumption (A) is satisfied.

13. We have p′(x) = φ′(x/v), and from the solution of Exercise 2,

φ′(u) = bsus−1

(
1− u

r

)
e−su/r.

Hence

p′(v) = φ′(w1) = bsws−1
1

(
1− w1

r

)
e−sw1/r.

But w1 = φ(w1) gives

w1 = bws1e
−sw1/r, or 1 = bws−1

1 e−sw1/r.

Hence

p′(v) = s

(
1− w1

r

)
.

Since s = 8 and r = 0.5, we get p′(v) = 8(1 − 2w1). Finally, to show that
w1 > 9/16, it suffices to check by direct calculation that φ(9/16) > 9/16.

14. By the chain rule,
(f2
c )′(x) = f ′c(fc(x))f ′c(x).

Let x be either uc or vc. Then x = fc(x), so that

(f2
c )′(x) = f ′c(x)f ′c(x) = (f ′c(x))2.

Further, when c > cα, |f ′c(x)| > 1. Hence the conclusion follows.
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15. Using the results of Exercise 1, we see that the maximum point, the inflection
point, and the distance between them are proportional to θ. Thus, the graph
becomes elongated as θ increases. Also, the value of the function at the
maximum point is proportional to θ, so the maximum value increases as
well.

16. When ∆ exceeds 4.7, then the derivative of the iteration function f at the
steady state is greater than 1 (by construction). But f also has a fixed point
at x = 0. The derivative of f is

f ′(x) = (1− γ∆) +
β∆θm[θm − (m− 1)xm]

(θm + xm)2
,

so that f ′(0) = 1 + (β − γ)∆ > 1. The proof of Theorem 4 now applies
directly.

9. Solutions to the Sample Exam

1. Let xi = f i(p) be the (i + 1)st point of the orbit and suppose xi → q as
i → ∞. Then xi+1 = f(xi) for each i ≥ 0. Taking limits of both sides as
i→∞ in this last equation, and using the continuity of f , gives q = f(q).

2. Set g(x) = x− f(x). Since [a, b] is contained in its image under f , it follows
there are x1 and x2 in [a, b] such that g(x1) ≤ 0 and g(x2) ≥ 0. By the
intermediate value theorem, g has a root in [a, b], which is the same as
saying that f has a fixed point in [a, b].

3. The interval [a, f(a)] is contained in its image under f3. Therefore, by the
previous problem, there is a point y ∈ (a, f(a)] that is a fixed point of
f3. Since f is increasing on [a, f(a)], for each point x ∈ (a, f(a)], f(x) >
f(a) ≥ x, and therefore y could not be a fixed point of f . Further, y could
not be a point of period two; that is, f2(y) = y, for then we would have
f3(y) = f(y) 6= y. Thus y is a point of period 3.

4. a) Following Example 2, the production function is written

p(x) = vφ(x/v), where φ(u) = bue−x/r.

The two equations for the parameters are φ(1) = be−1/r = 0.3 and φ(r) =
bre−1 = 10 × 0.3 = 3. The solutions are r = 0.20, b = 45.

b) The derivative of the iteration function at the steady state v is f ′(v) =
1− c/r = 1 - 0.3/0.2 = -0.5, so that the steady state is stable.

c) The model is consistent with this behavior. The steady state is stable,
and the slope of the iteration function at the steady state is negative.
If an orbit starts at a point just below the steady state, then the second



24 UMAP Module 709

point in the orbit will be larger than the steady state, and the remaining
iterates will then oscillate around the steady state as they converge to it.
Remark: If the slope at the steady state had turned out to be positive,
the observation about granulocyte numbers exceeding the steady state
after depletion would have given us grounds to reject the model.

5. a) At the steady state, cv = p(v) = bve−v/q . Dividing by v and taking the
natural logarithm of both sides yield the given expression.

b) The iteration function is f(x) = (1− c)x+ bxe−x/q, so that

f ′(x) = 1− c+ b

(
1− x

q

)
e−x/q.

From part (a), c = be−v/q , which gives

f ′(v) = 1− c+ c

(
1− v

q

)
= 1− c ln

(
β

γ

)
,

as required.
c) Although an increase in the production parameter β is the logical choice

for explaining the increased cell numbers, the slow increase of the nat-
ural logarithm function indicates that cell numbers are insensitive to
increases in β. However, from the expression for v, the simplest expla-
nation for increased cell levels is an increase in the parameter q. Nev-
ertheless, the expression in part (b) shows that q does not effect the
stability of the steady state. However, an increase in ∆ could explain
the oscillations in the number of leukemic cells. For the given values
β = 1.5 and γ = 0.1, we get f ′(v) = 1 − 0.27∆. Setting this expression
equal to−1 shows that the steady state becomes unstable when ∆ passes
through 2/0.27 = 7.4 (days). At this point, periodic orbits of period two
arise, and the length of the period would be 2 × 7.4 = 15 days. Interest-
ingly, this period, which was obtained from data for the circulating and
marrow reserve granulocytes, is about the same as obtained from using
independent data for the primitive stem cells.
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