
The chemostat, also known as the con-
tinuous stirred tank bioreactor, was
independently invented by Jacques
Monod1 and by Aaron Novick and

Leo Szilard,2,3 who also coined the term chemo-
stat. Its inventors conceived that this device pro-
vided a convenient way to study a bacterial popu-
lation in the steady state, letting the experimenter
adjust growth rate and external parameters, such
as temperature or pH level. Novick and Szilard
were mostly interested in the effects of mutations
on a population’s long-range behavior, while
Monod’s interest centered on the regulation
mechanisms operating within the cells under nu-
trient-limited conditions.

Since its invention, the chemostat has become a
ubiquitous tool for studying microbial physiology
and metabolism.4 Over the years, researchers have
come to appreciate that chemostat theory could
apply to studies of microbial ecology and, more
generally, of population dynamics.5 Early formu-
lations used time-invariant differential equations
to model the chemostat. More recently, the mod-

els have expanded to include delayed nutrient re-
cycling, as could occur in a lake where slow sedi-
ment decomposition takes place.6,7

In this article, I wish to give an elementary ac-
count of the chemostat, introduce the model’s
equations, and describe some typical cases of
population dynamics. Although the chemostat
does not enjoy the Lotka–Volterra predator–prey
model’s widespread popularity, this system is
worthy of the interest of science educators. I’ve
used it for several years as a theme for a compu-
tational physics project.

Basic relations

Figure 1 shows the chemostat’s basic princi-
ple—it is a well-stirred, constant-level reactor.
Microorganisms reside in the vessel at a density x
(organisms per unit volume or grams of biomass
per unit volume) in a culture volume v. We as-
sume that these bacteria depend for their contin-
ued existence on a single nutrient, which we call
the substrate. A pump (not shown) delivers ster-
ile growth medium, which contains the substrate
at concentration sR to the chemostat at a constant
flow rate f (volume per unit time). The culture
medium, containing bacteria, unused substrate,
and possible secondary products of metabolism,
is discharged from the constant-volume reactor
at an identical rate f.
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The author describes the chemostat, a device used to study bacterial populations under
nutrient-limited conditions. This article shows that a simple criterion can help predict which
species survive in the long run, an example of the principle of mutual exclusion. 
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We define the dilution rate D = f/v; it is the
number of complete volume renewals per unit
time. Because the tank is well stirred, a culture
particle (nutrient molecule or bacterium) has
probability D of leaving the chemostat during
the unit time. Conversely, such a particle’s aver-
age residence time in the reactor is 1/D, where D
is the system’s main control parameter. There-
fore, the washout rate for organisms is 

. (1)

Bacterial population growth by cell division is
governed by an exponential law or, equivalently,
by the differential equation

(2)

where µ is the specific growth rate (measured in
units of inverse time; usual values fall in the
range 0.1 to 1 h–1). It is related to the popula-
tion-doubling time td by td = ln(2)/µ. We can ob-
tain the complete equation for the number den-
sity of organisms in the chemostat (or the
biomass concentration) by adding the two pre-
vious contributions:

. (3)

The substrate concentration in the reaction vol-
ume s (grams or moles per unit volume) evolves
because of inflow, washout, and consumption by
the organisms. The first two contributions are
described by an equation similar to Equation 2:

. (4)

Monod showed that bacterial growth rate and
substrate utilization are usually proportional to
each other, at least when we use a single nutri-
ent.1 We write this in differential form as

. (5)

The parameter Y is known as the yield constant;
it is dimensionless, and the minus sign accounts
for the fact that the substrate is consumed during
growth. Most microorganisms have Y values be-
tween 0.05 and 0.2. Adding the two contribu-
tions to ds/dt leads to 

. (6)

Equations 3 and 6 would form a simple system
of coupled linear differential equations were it
not for the quantity µ, which depends on the
substrate concentration and introduces a non-
linear coupling. Following Monod,8 we assume
that for a single substrate

(7)

where µm is the maximum possible value of µ
reached at infinite nutrient concentration (µm de-
pends on the medium’s physical parameters such
as temperature and pH). k is what we call a satura-
tion constant, and it is equal to that value of s for
which µ is one-half its maximal value. k is generally
found in the range 10–4 to 10–3 gl–1 (where gl–1

represents grams per liter). Equation 7 is a trans-
position of the well-known Michaelis–Menten law
for enzyme kinetics.9 (In their model of an en-
zyme-catalyzed reaction, Leonor Michaelis and
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Figure 1. The chemostat in schematic outline. R
stands for reservoir; S for stirrer; C for chemostat
or reactor, and O for overflow. The flow rate in
and out of C is constant.



50 COMPUTING IN SCIENCE & ENGINEERING

Maude Menten proposed that when a substrate
(or reagent) molecule S encounters an enzyme
molecule E, a complex ES is formed; both forma-
tion and dissociation of ES back to E + S are fast
processes. However, the complex sometimes dis-

sociates by a different route to
enzyme + product P; this reac-
tion is slow. Simple kinetic the-
ory then shows that in the
steady state, the overall rate of
formation of P depends on the
substrate concentration, just as
it does in Equation 7.) There is
little direct experimental justi-
fication for Equation 7, but the
precise form of the growth
rate–substrate concentration
relationship is not important,
provided µ is a monotonous in-
creasing function of s, with a
limiting value.

Equations 1 through 7 com-
pletely describe the behavior of a single-species,
single-substrate chemostat, where µm, k, and Y
are constants characteristic of the organism (for
given external parameters); the experimenter can
adjust s0 and D.

The steady state

Setting dx/dt = ds/dt = 0 and denoting with
a tilde steady-state quantities, we derive the
relations (disregarding the trivial case x = 0,
s = sR):

, (8)

, (9)

. (10)

As the dilution rate D increases from zero, the
steady-state nutrient concentration in the
chemostat increases, while the concentration of
organisms falls until D reaches the critical value
Dc, for which the substrate concentration is sR
and the biomass concentration vanishes. We find
from Equation 8

. (11)

At all higher values of D, bacteria are washed

out of the reactor faster than they can multi-
ply, and we can’t establish a steady state with a
nonvanishing bacterial population, whatever
the initial conditions. It might also happen that
we can’t maintain a valid steady state, charac-
terized by s, x, and µ, because the independent
quantity sR is too small. We must therefore also
require that sR > s.

A special limiting case

Let’s investigate the special case of vanishing
inflow and outflow, D = 0. The two governing
equations now read

. (12)

We observe first that s and x are linked by the
simple relation (d/dt)(x + Ys) = 0, or introducing
the initial values of the concentrations in the re-
actor, x0 and s0:

x + Ys = x0 + Ys0 ≡ C0. (13)

This relation expresses a simple conservation
law: the bacteria uses any organic matter that
disappears to make microbes, albeit with the
yield Y.

Assume further that the substrate concentra-
tion is far from saturating or that s is small com-
pared to k. The equation for x is then

(14)

a form of the well-known logistic equation,10

with a growth parameter µmC0/kY and a carry-
ing capacity C0. (Attributed to Pierre Verhulst,
this model of population growth states that at
low density, growth rate is proportional to pop-
ulation, leading to an exponential growth. How-
ever, food will become scarce and the habitat
overcrowded. This effect is conventionally
modeled by the factor C0 – x. Growth stops
when x reaches C0, the carrying capacity of that
particular habitat.) There are again two fixed
points: the trivial case x = 0 and the steady state
x = C0.

The general case

Because we need to examine, without restric-
tions, the properties of the solutions of the
chemostat Equations 1 through 7, it’s more
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convenient to switch to dimensionless variables.
Previous works have proposed various choices
of variables, but we have found Hal Smith and
Paul Waltman’s11 scheme to be especially con-
venient—it also decreases to a minimum the
number of independent parameters. Smith and
Waltman use 1/D as the time unit and sR as the
concentration unit. More precisely, we can de-
fine reduced variables

T = Dt ; S = s/sR ; X = x/YsR (15)

and recast the differential equations as

, (16)

. (17)

This introduces the reduced parameters M =
µm/D and K = k/sR and defines, for further ref-
erence, the right-hand sides of Equations 16 and
17 as F and G.

We first notice that a conservation law, similar
to that used in the previous paragraph, is still
operative in the general case. Adding Equations
16 and 17, we get S′ + X′ = 1 – S – X. We can
write the solution as

S + X = (S0 + X0 – 1)e–t + 1. (18)

This result defines the asymptotic behavior of
the solutions as lim t→∞ (S + X) = 1.

The system in Equations 16 and 17 has two
fixed points: {X1 = 0, S1 = 1} and

(19)

which are the translation, in terms of dimen-
sionless variables, of Equations 8 through 10.
The role of D is now taken up by M. Because
concentrations are positive, M > 1 (or D < µm).
If this condition is violated, no steady state with
a finite bacterial population is possible; this is the
washout I already described. We must also have
K < M – 1. This is the condition on sR I already
mentioned, which we can verify using the defin-
itions of M and K.

Stability of the fixed points

To investigate the stability of the fixed points,
we form the Jacobian matrix

(20)

and for the steady state, we find

.
(21)

The eigenvalues and eigenvectors are λ1 = –1, v1
= [1,–α]T and λ2 = –α, v2 = [1,–1]T. According to
the previous paragraph, M > 1 and M – 1 > K ;
thus, α is a positive quantity, and both eigenval-
ues are negative. This fixed point is therefore a
stable node.

Numerical simulations of the simple
chemostat

It is straightforward to numerically solve the
system in Equations 16 and 17 of two coupled,
first-order differential equations, given a set of
initial values. We used the free software Scilab
(see www-rocq.inria.fr/scilab), which incorpo-
rates sophisticated subroutines from the Netlib
collection (lsoda, a predictor–corrector Adams
method from the Odepack package, is the de-
fault choice, but many others are available). Fig-
ure 2 shows a typical time course corresponding
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Figure 2. Concentrations versus time computed according to Equa-
tions 16 and 17 (full line) or Equations 22 and 23 (dashed line). S
denotes substrate and X microbes.
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to the parameter values in a previous study (Y =
0.53, µm= 0.85 h–1, k = 0.0123 gl–1, sR = 2.5 gl–1).4

It is also convenient to use a phase plane (X ver-
sus S) display, as in Figure 3. 

We observe similar patterns for all realistic
parameter choices. The cell density increases
almost exponentially and then rather suddenly
levels off, while the substrate concentration
goes through a maximum and falls to a small
value. This characteristic behavior suggests that

we can derive a simple approximation that
could simulate the early stages of biomass 
development. 

Assuming that S >> K, we find that Equations
16 and 17 become almost uncoupled:

S′ = 1 – S – MX (22)

X′ = MX – X. (23)

Solutions for these simplified equations are plot-
ted as dashed lines in Figures 2 and 3. They pro-
vide rather good approximations while S is large
compared to K.

We can also check the steady state’s stability
numerically. We integrate Equations 16 and 17
for a time span sufficient for the system to be
close to the steady state, and then we suddenly
apply a perturbation—for instance, a 20% de-
crease of sR (due to our choice of sR as the con-
centration unit, this is equivalent to a 20% in-
crease of X, S, and K). Figure 4 shows that the
system exponentially returns to its previous
state. We observe a similar behavior after a
jump of D.

Comparison with experiment

The model I presented earlier in Equations 1
through 7 describes the Monod–Novick–Szilard
experiment’s gross features.4 However, more de-
tailed investigations have shown that for some
operating conditions, the chemostat can display
phenomena typical of nonlinear systems: oscilla-
tions and hysteresis. It would take us too far afield
to describe the numerous and complex mecha-
nisms that we could invoke to explain these ob-
servations. However, I will mention two simple
modifications of the basic Equations 16 and 17
that might lead to oscillations for some values of
the parameters.

The concept of maintenance energy was in-
troduced12 to take into account the fact that,
quite apart from growth, cells will consume en-
ergy and thus substrate to maintain ion gradi-
ents across the membrane, to move, and so forth.
Formally, we write

.

(24)

Generally accepted values of the maintenance
coefficient n are in the range 0.01 to 0.05 h–1.
Equation 23 is replaced with

ds

dt

ds

dt

ds

dt

ds

dt
D s s

x

Y
nx

flow g m
R= + + ≡ − − −( )

µ

.

X

0.0 0.2 0.4 0.6
0.00

0.25

0.50

0.75

1.00

S 

Figure 3. A phase plane display of Figure 2’s data. The dashed line
refers to the approximate Equations 22 and 23.
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tration. The full line represents bacterial concentration, and the
dashed line represents substrate.
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(25)

where N = nY/D. The Jacobian matrix’s eigenval-
ues become complicated expressions in N, M, and
K—it would be tedious to give an analytical dis-
cussion of the maintenance energy’s effect on
population dynamics. On the other hand, it is a
simple matter to numerically solve the modified
equations. The result (not shown) for all reason-
able values of N is the appearance of a slight over-
shoot in S and X just before reaching the steady
state, indicating that the eigenvalues λ1 and λ2
now have a small imaginary part.

As another simple modification of the model,
it has been suggested13,14 that the yield Y should
depend on the substrate concentration s in the
reactor. A simple linear law, Y = a + bs, is usually
assumed. For some ranges of values of a and b,
oscillations about the steady state can occur.
Figure 5 shows the result of a numerical simu-
lation. The dimensionless variable X = x/sRY de-
fined in the previous section is inconvenient
here; better choices are X* = x/xR or the use of
dimensioned variables. Figure 5 shows that sub-
strate and microbe concentrations undergo os-
cillations reminiscent of the nonlinear van der
Pol oscillator.

Competition in the chemostat

Although in practice the chemostat is rarely
seeded with several microbial species, chemo-
stat theory that is generalized to account for
more than one population has received much
attention as a convenient model with which to
study competition among species that feed on
renewable resources. For the case of closed
ecosystems, Vito Volterra and many others15 es-
tablished the principle of competitive exclusion:
the number of species cannot exceed the num-
ber of resources (substrates). This principle is
also valid for the chemostat.11 Let’s examine the
rather simple case of two species competing for
a single limited substrate. 

We consider a constant-level, continuously
stirred reactor harboring two distinct microbial
species, at concentrations x1(t) and x2(t) that
both feed on the same substrate whose concen-
tration is s(t). A pump delivers substrate to the
reactor at concentration sR at a constant rate.
We assume a simple additive model for micro-
bial growth and substrate utilization, as the 
following equations show:

; (26a)

; (26b)

. (26c)

Each growth constant µi (i = 1,2) depends on s
and on two specific parameters µm,i and ki
through the Monod relationship

. (27)

We proceed as in the previous simulation to
dedimensionalize Equation 26. We set Xi =
xi/sRYi, S = s/sR, T = Dt, Mi = µm,i/D, and Ki =
ki/sR so that the governing equations are

(28)
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Figure 5. Oscillating concentrations when the yield depends on the
substrate concentration: Y = 0.01 +0.03s. Other parameters are D =
0.14 h–1; µm = 0.3 h–1; k = 1.75 gl–1; and sR = 35 gl–1. The full line
refers to the substrate and the dashed line to bacteria. 
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to T, and we define functions F, G, and H for
later reference.

The steady state is defined by setting the
three time derivatives equal to zero. We see that

no steady state exists with both populations dif-
ferent from zero, because S would have to sat-
isfy two incompatible equations, G = 0 and H =
0. There are nonetheless three different steady
states. Introducing the quantities Ri = Ki/(Mi –
1), i = 1,2 (with 0 < Ri < 1), we find that one of
the following three sets of conditions must hold:

X1 = X2 = 0; S = 1, (31a)

, (31b)

. (31c)

We can investigate the stability of these states
by first forming the Jacobian matrix of all par-
tial derivatives of F, G, and H and then comput-
ing the eigenvalues. From the condition in
Equation 31a, we derive the three eigenvalues:

.

(32a)

The last two are positive, implying that the triv-
ial steady state is a saddle point. Starting from
Equation 31b, we get

(32b)

where λ1 and λ3 are negative. The steady state’s
stability depends on the sign of λ2, more precisely
on the sign of its numerator. If the condition

(33)

holds, then all three eigenvalues are negative,
and the steady state defined by Equation 31b is
a stable node. A similar analysis would show
that the condition X2 = 0 corresponds to an un-
stable state. Should the inequality in Equation
33 be reversed, then the previous conclusions
must also be reversed: Equation 31c is the sta-
ble steady state and 31b is unstable. 

We have thus shown that a single species sur-
vives in the long run—that with the smallest
K/(M – 1) ratio. This conclusion is an example
of the competitive-exclusion principle as applied
to a continuous culture. Smith and Waltman of-
fer a much more general and rigorous proof, ex-
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Figure 6. A time course for the concentrations of substrate (full line)—
species 1 is the dashed line, and species 2 is the dot and dashed line.
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tended to any number of competing species.11

According to these authors, coexistence is pos-
sible in the improbable case that R1 = R2.

Numerical simulations of competition
processes

Figure 6 displays the substrate’s time depen-
dence and microorganism concentrations in the
case of species with similar parameters: M1 = 5,
K1 = 0.04, R1 = 0.01, M2 = 5, K2 = 0.045, and R2
= 0.01125. X2 starts very strongly, but goes
through a maximum and finally heads for obliv-
ion. Figure 7 shows the behavior of several sim-
ilar systems plotted in the phase plane (X1, X2).
Parameter R1 is fixed at 0.01 (R1 = 0.0025). The
full line trace on the left corresponds to K2 =
0.01 (R2 = 0.0025) and increases by a factor of
1.4 for each successive curve. Species 2 survives
in the long run as long as R2 < R1 (first five
traces) and then X1 takes over (last three curves).

Ihave described the behavior of microbial
species in a chemostat, under simple hy-
potheses. Such studies offer interesting ex-
amples of nonlinear dynamics, and al-

though the device is 50 years old, it is still the
subject of active research that could also be of
interest to scientists and engineers. 

In further studies, we could modify or gener-
alize the previous simple models in this article
in many ways. We could introduce more com-
plex dependencies of µ or Y on the substrate con-
centration. We could make the supply of limiting
substrate time-dependent, thus simulating sea-
sonal variations. We could consider several
species and/or several limiting substrates. More-
over, other types of interactions between species
are possible. For instance, one strain could be
assumed to produce the substrate for another
(commensalism). Under another hypothesis
(mutualism), the shared compound, although es-
sential for life of the second species, is not re-
sponsible for its growth. Analogous to the Lot-
tka–Volterra model, one or several predator
species can be introduced, and we could model
multistage chemostats in which the overflow of
stage k feeds stage k + 1. Finally, we could aban-
don the well-stirred hypothesis, introducing spa-
tial dependencies in the system. 
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