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1. Introduction
This Module, based on the work ofWollkind et al. [1988], analyzes a simple

differential equations-basedmodel for a predator-prey interaction between two
speciesofmites. Mites areminutearthropods related to spiders and ticks. There
aremany species ofmites, andmites are found in avariety of habitats, including
plants, animals, stored food, and house dust. While most mite species are
relatively benign, a number of species are agricultural pests, some are disease
vectors, and dust mites are a common cause of allergies.
The population interaction that we consider below is between the preda-

cious miteMetaseiulus occidentalis Nesbitt and its spider mite prey Tetranychus
mcdanieliMcGregor, an interaction that is common on apple trees in the state of
Washington. The spider mite feeds on the leaves of the apple tree; and when
population densities reach moderate levels (approximately 50 mites per leaf),
there can be economically signiÞcant damage to the apple crop. Extended pe-
riods of high spider mite densities can harm the trees. Spider mites are known
to rapidly develop resistance to pesticides, so maintaining their population
densities at low levels using natural methods such as predators (an example of
biological control) is of interest. The predatorM. occidentalis can be an effective
control of T. mcdanieli, and hence the interaction between these two mites is of
some interest.
Understanding how populations change over time is an important problem

in population biology, and much work has been done on formulating and
analyzing models of population dynamics. The extensive literature on this
subject includesdescriptionsofmodels ranging fromvery simple single-species
models to very complicated models of entire ecosystems. The dynamics of
a population of organisms are inßuenced by a variety of factors, including
climate, habitat, ages of the organisms, and the species present. Some of these
factors are deterministic and some are stochastic, andmodels that include even
a few of these diverse factors can be very difÞcult to analyze. It is common,
at least as a starting point, to consider simpliÞed models that sacriÞce some of
the details but still provide insight (it is hoped) into the qualitative behavior of
the population dynamics. In the formulation of the model analyzed below, we
adopt such a parsimonious point of view.
We start with a system of ordinary differential equations that is easy to

analyze. This system possesses a single Þxed point in the Þrst quadrant of the
phase plane; when this Þxed point is unstable, the system exhibits a stable limit
cycle.
Acriticismthathasbeenoffered for suchsimpledifferential-equationsbased

models of predatorÐprey interactions is the lack of biological relevance in the
parameter values used to illustrate themathematical behavior of themodel sys-
tem. In an effort to at least partly address this concern, we incorporate param-
eter values deduced speciÞcally for theM. occidentalisÐT. mcdanieli interaction
into the system. The resulting model exhibits, depending on the parameter
values, a stable Þxed point, a stable limit cycle, or both. The simultaneous
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existence of two attractors is an example of bistability. The model shows good
qualitative agreement with Þeld observations for the mite interaction and with
laboratory data for related interactions. In order to keep the analysis reason-
able, the model does not include spatial dependencies, stochastic inßuences,
or age-related features of the populations.
The Þrst part of the project analyzes the qualitative behavior of the systemof

differential equations on which the model is based. This includes locating and
classifying Þxed points and determining a sufÞcient condition for the presence
of a periodic solution. The second part introduces the parameter deÞnitions
speciÞc to the M. occidentalisÐT. mcdanieli interaction. Numerical methods are
then used to deduce model behavior for these parameter values.
Several of the model parameters are functions of environmental tempera-

ture, and solutions of the model system will be shown to vary with respect to
type, value, and stability as temperature varies. Temperature thus serves as
a bifurcation parameter, and temperature values at which solutions undergo a
qualitative change are bifurcation points.
The next section provides some background on the development of pop-

ulation models. For readers interested in learning more about the modeling
of populations, there are a number of books that can provide a more thor-
ough introduction to the subject. A recent book that is accessible to any-
one with a year of calculus is Hastings [1997]. Two other books that may
be of interest (and that require even less mathematics) are Kingsland [1985],
which discusses the history of population modeling, and Cohen [1995], which
discusses the modeling of human populations. Another source of informa-
tion for readers with network access is the Population Ecology Home Page at
http://viner.ento.vt.edu/~sharov/popechome/welcome.html . This net-
work site, maintained at Virginia Tech by Alexei Sharov, provides access to a
varietyof resourcespertaining topopulationecologyandpopulationmodeling.

2. Development of the Model
Simple models for the growth of a single species are often based on the

logistic equation,
dh

dt
= r1h

(
1− h

K

)
,

where t denotes time and h = h(t) denotes the population density (number per
unit area). The per capita growth rate is

1

h

dh

dt
= r1

(
1− h

K

)
,

and the parameter r1 > 0 denotes the maximum per capita growth rate. The
parameter K > 0 is the population carrying capacity, which is the maximum
population density that the environment can support over some reasonably

2
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long period of time. The logistic equation is simplistic (for example, growth
rates and carrying capacities for real populations are generally not constant),
but it is easy to analyze (it is a separable equation, discussed in many in-
troductory differential equations texts, such as Borrelli and Coleman [1996]).
When the population density is low, growth is almost exponential; but as h(t)
increases, the growth rate slows and h(t) approaches the carrying capacity K
asymptotically. The constant solution h(t) = K is a stable equilibrium solution.
If the population being modeled experiences some form of harvesting, a

harvesting term ψ ≥ 0 can be incorporated into the logistic equation to get

dh

dt
= r1h

(
1− h

K

)
− ψ.

A number of factors can inßuence the rate of harvesting, such as the number
of harvesters, the efÞciency of the harvesters, and the impact of weather on
harvesting; so ψ will generally be a function of one or more variables and
parameters.
When h(t) denotes the density of a prey species that is being harvested by

a predator species, the harvesting term ψ is commonly assumed to be propor-
tional to the density of predators. Denoting the predator density by p = p(t),
this assumption gives

ψ = p · f(h, p)

where f(h, p) denotes the predator per capita rate of predation, called the func-
tional response.
A number of functional responses have been proposed in the literature of

population biology, many of which assume this per capita predation rate to be
independent of the predator density. A simple example is f(h) = ah with a
constant. This functional response implies that the rate of predation increases
linearly with the prey density, and it does not take into account the fact that
there are only so many prey a predator can locate, kill, and consume in any
Þnite interval of time.
A more realistic functional response that accounts for the time necessary to

locate and handle prey is

f(h) =
ah

h+ b
.

This functional response shows the per capita predation rate increasing with
prey density to a maximal predation rate given by the parameter a > 0. The
parameter b > 0 is related to searching efÞciency and prey handling time and
corresponds to the prey density necessary for the predator to achieve one-half
themaximal rate of predation. This functional response is often used inmodels
of arthropod predation, and it is the one that we will use. Incorporating this
functional response into the equation for the prey dynamics yields

dh

dt
= r1h

(
1− h

K

)
− p ah

h+ b
. (1)

3
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In the interaction that that we are modeling, the lifetime of the predator is
similar to that of the prey, so the predator population dynamics must also be
considered. We start with a logistic equation for p(t),

dp

dt
= r2p

(
1− p

Γ

)
,

where r2 > 0 represents the maximal per capita growth rate of the predator
and Γ > 0 represents the carrying capacity of the predator species.

In an interaction in which the predator is totally dependent on a single prey
species (i.e., one in which predators have no other source of sustenance and
will starve to death if deprived of the prey), it is reasonable to assume that Γ
depends on the density of the prey species. The simplest relationship is to let

Γ = γh,

where the proportionality constant γ represents a measure of the food quality
of the prey for conversion into predator births. The predator dynamics are then
determined by the equation

dp

dt
= r2p

(
1− p

γh

)
. (2)

Equations (1) and (2) together deÞne the system of differential equations

dh

dt
= r1h

(
1− h

K

)
− p ah

h+ b
, (3a)

dp

dt
= r2p

(
1− p

γh

)
, (3b)

which provides the framework for our predatorÐprey model. This simple sys-
tem was Þrst proposed as a model of predatorÐprey dynamics by May [1973],
and it was used shortly thereafter by Caughley [1976] tomodel successfully the
population interaction between the moth Cactoblastis cactorum and the prickly-
pear cactus in Australia. The Þrst part of the project examines the qualitative
behavior of system (3). A discussion of the qualitative behavior of this model
system can also be found in several books (Arrowsmith and Place [1982], Bel-
trami [1987], and Renshaw [1991]), but none of these applies the model to a
speciÞc interaction or discusses the possibility of bistability.

3. Analysis of the Model, Part I
The analysis of system (3) can be simpliÞed by introducing dimensionless

variables and parameters, whichwill replace the sixmodel parameters by three
parameter groups and also scale the dependent variables so that their magni-
tudes are smaller than 1. This process of scaling is common in mathematical
modeling and is based on changing the dependent and independent variables
(e.g., see Borrelli and Coleman [1996]).

4
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Exercises

1. Show that introducing the variables and parameters

τ = r1t, H =
h

K
, P =

p

γK
, D =

b

K
, θ =

r2

r1
, φ =

aγ

r1

transforms system (3) into the nondimensional system

dH

dτ
= H(1−H)− P φH

H +D
, (4a)

dP

dτ
= θP

(
1− P

H

)
. (4b)

2. Sketch the prey nullcline in that portion of theHP plane onwhich system (4)
is deÞned. (Also called a 0−isocline, this is the curve on which dH/dτ = 0.)
On the same graph, sketch the predator nullclines. Show that system (4) has
exactlyone community equilibriumpoint (i.e., Þxedpoint in theÞrst quadrant),
and that this point is given by (He, Pe)where Pe = He and

He =
1

2
(∆ + 1− φ−D), for ∆ =

√
(1− φ−D)2 + 4D. (5)

The process of scaling used to obtain system (4) from system (3) does not
affect the existence or stability of solutions, so we know that system (3) also
has a single community equilibrium point. We denote this point by (he, pe)
and note that he = KHe and pe = γKHe. From the nullclines sketched in
Exercise 2, it is clear that He < 1, and so he = KHe < K. This means that the
prey equilibrium density is less than the prey carrying capacity. In the absence
of predators, the prey density approaches carrying capacity, and so we can
conclude that predation acts to lower the prey density.

Exercises

3. Show that the only other Þxed point with nonnegative population densities
is (1, 0), and show that this point is always a saddle point. Find the principal
directions associatedwith the stable and unstable manifolds of the linearization
of system (4) about the Þxed point (0, 1). These principal directions are
deÞned by the eigenvectors of the linearized system.

4. Show that at (1, 0), the slope of the unstable manifold is less than the slope
of the prey nullcline. This implies that in a sufÞciently small neighborhood
of (1, 0) in the Þrst quadrant, the unstable manifold of the saddle point lies
above the prey nullcline, as illustrated in Figure 1. This unstable manifold
is useful in determining a sufÞcient condition for the existence of a periodic
solution (see Exercise 8).

5
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0.8 1.0

H

0.00

0.30

P

Figure 1. A plot of the prey nullcline (solid line) and the unstable manifold (broken line) near the
saddle point (1, 0).The slope of the unstablemanifold at this point is determinedby the eigenvector
associated with the positive eigenvalue.

5. Linearize system (4) at the equilibrium point (He, Pe), and show that the
Jacobian for system (4) evaluated at this Þxed point is

Je =


1− 2He − φDHe

(He +D)2

−φHe

He +D

θ −θ

 . (6)

6. The Þxed point (He, Pe) is locally stable if and only if det(Je) > 0 and
tr(Je) < 0. Show that the condition det(Je) > 0 is always satisÞed, and so
deduce that (He, Pe) is locally stable if and only if θ > θc, where

θc =
He(1−D − 2He)

He +D
. (7)

Hint: A community equilibrium point lies on the prey nullcline, so

1−He =
φHe

He +D
. (8)

A simpler expression for θc can be derived as follows. It can be shown that
at equilibrium,

He

He +D
=

1

He +D + φ
, (9)

6
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and (7) and (9) imply that

θc =
1−D − 2He

He +D + φ
. (10)

From (5) and (10)we then get, after simplifying,

θc =
2(φ−∆)

1 + φ+D + ∆
. (11)

Exercises

7. Use (11) and (5) to show that if D < 1, then values of φ > 0 exist for which
θc > 0. For such values of D and φ, the community equilibrium point can
be made stable or unstable by ÒtuningÓ θ. Conversely, if D > 1, then the
community equilibrium point is always stable since θc < 0while θ > 0.

8. Use the Poincar«e-Bendixson Theorem to show that when (He, Pe) is un-
stable, the system exhibits a closed trajectory corresponding to a periodic
solution. Hint: Use part of a trajectory following the unstable manifold
of the saddle point at (1, 0) and a portion of the prey nullcline to bound a
closed region containing the unstable equilibrium point, and show that this
region is positively invariant.

At this point, you have established that system (4) possesses a single com-
munity equilibrium point, and that the instability of this point is a sufÞcient
condition for the existence of a periodic solution. The process of scaling used
to obtain system (4) from system (3) does not affect the existence or stability of
solutions, and so the same conclusions apply to system (3).
The next section uses numericalmethods to examine the behavior of system

(3)withparameter values deÞned speciÞcally for theM. occidentalisÐT.mcdanieli
predatorÐprey interaction. While much of the behavior can be deduced from
the analysis in the present section, the numerical analysis reveals the presence
of two stable solutions for some values of the model parameters. This example
of bistability involves both a Þxed point and a periodic solution, and it is a
situation that is not easy to show using only analytical methods.

4. Analysis of the Model, Part II
System (3) can be used to model the interaction between the predacious

mite M. occidentalis and its spider mite prey T. mcdanieli by assigning to the
model parameters values appropriate for this interaction. We Þrst note that
time t > 0 is measured in days and prey and predator densities (h > 0 and
p ≥ 0 respectively) are measured in mites per leaf. Temperature has been iden-
tiÞed as the most important environmental variable affecting this interaction,

7
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so temperature is incorporated explicitly into the parameters r1, r2, and a. In
particular, Wollkind et al. [1988] adopt for the per capita growth rates per day
of T. mcdanieli andM. occidentalis, respectively, the functions

r1(T ) = 0.048
[
exp
(
0.103(T − 10)

)− exp
(
0.369(T − 10)− 7.457

)]
,

r2(T ) = 0.089
[
exp
(
0.055(T − 10)

)− exp
(
0.483(T − 10)− 11.648

)]
,

for T ∈ [10, TM ), where T represents environmental temperature measured in
degrees Celsius and TM = 37.2◦ C is the predator lethal maximum temperature
above which life processes cannot be maintained for an extended period of
time. (These growth rate expressions were determined by using simulation
models of mite development that incorporated life history data for the species
under consideration.) Wollkind et al. [1988] deÞne the maximal predator per
capita predation rate a by the function

a(T ) =
16 r2

2(T )

r1(T )
.

The remaining parameters are given values typical for such a mite interaction,
with γ = 0.15, K = 300mites per leaf, and b = 0.04mites per leaf (or one mite
per 25 leaves; Þeld observations often Þndmite densities much less than 1mite
per leaf).

Exercises

9. Differentiate equation (8) implicitly with respect to T, to show that

dHe

dT
=

[ −He(He +D)

(He +D)2 + φD

]
dφ

dT
. (12)

Use the fact that dφ/dT < 0 to conclude that the equilibrium prey densities
increase with temperature (recall that he = KHe). In the Þeld, an increase
in temperature often leads to an increase in the density of the spider mite
population.

10. From Exercise 6, we know that the community equilibrium point is stable if
and only if θ > θc. Plot θ and θc as functions of T for T ∈ (10, TM ) and note
that these two curves intersect twice, at values of T that we will denote by
T1 and T2 (with T1 < T2). Conclude that the community equilibrium point
is stable for T ∈ (10, T1) and T ∈ (T2, TM ), and unstable for T ∈ (T1, T2).

By using numerical methods to solve the equation θ(T ) = θc(T ), we Þnd
that T1 ≈ 30.89 and T2 ≈ 35.56. From Exercise 8, we know that T ∈ (T1, T2)
is a sufÞcient condition for the existence of a periodic solution; and it can be
shown that T1 and T2 are Hopf bifurcation points. (In general, if µc denotes a
Hopf bifurcation point for a parameter µ, when |µ − µc| is sufÞciently small,

8
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a periodic solution exists either for µ < µc or for µ > µc, and as µ → µc the
amplitude of the periodic solution approaches zero; see, e.g., Beltrami [1987].)
The following two exercises produce a diagram that illustrates how so-

lutions change with respect to type, value and stability as the value of the
parameter T changes. Such a diagram is called a bifurcation diagram, and T is
the bifurcation parameter.

Exercise

11. Plot he as a function of T for T ∈ (28, 37) (recall that he = KHe). Indicate
on this plot the location of the Hopf bifurcation points. Also indicate for
which values of T the Þxed point (he, pe) is stable and for which values
it is unstable. (A common method is to use a solid line to represent the
Þxed point when it is stable and a broken line when it is unstable. A Hopf
bifurcation point is indicated by a solid square.)

Similar information for theperiodic solutions canbeadded to thebifurcation
diagram by plotting a measure (such as a norm) of such solutions for different
values of T. A useful measure in this case is the maximum prey level attained
during one period of such an oscillation. That is, for each Þxed value of T a
periodic solution h(t;T ) can be represented by the value

max
t∈[0,Ω]

h(t;T ),

where Ω is the period of oscillation.

Exercise

12. Numerically estimate themaximumprey value associatedwith the periodic
solutionwhenT = 35.5andplot this valueon thebifurcationdiagram. (This
value can be estimated from the graph of the periodic solution in the phase
plane, or from a plot of h(t), after transients have decayed.) Repeat, for
T = 34.5, 33.5, 32.5, 31.5.What happens at T = 30.5? T = 30? (Recall that
the Þxed point is locally stable for T < 30.89.)

It can be shown that the lowest temperature value at which the system
exhibits a periodic solution is T0 ≈ 29.95. At T0, there is a saddle node bifurcation
of periodic solutions. For T < T0, there are no periodic solutions; but as T
increases through T0, both stable and unstable periodic solutions come into
existence. For T ∈ (T0, T1), the system exhibits both a stable limit cycle and a
stable Þxed point, an example of bistability.

9
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Exercise

13. Plot the phase portrait for the system at T = 30 and show that an unstable
limit cycle acts as the separatrix between the basins of attraction of the stable
Þxed point and stable limit cycle. Initial conditions in the region bounded
by the unstable limit cycle give rise to trajectories that approach the stable
community equilibrium point, while initial conditions outside this region
yield trajectories that approach the stable limit cycle. (A plot of the unstable
limit cycle can be obtained by letting t→ −∞.)
There are unstable limit cycles for all T ∈ (T0, T1). A curve representing

these solutions can be added to the bifurcation diagram, as illustrated in Fig-
ure 2 by the curve of unÞlled circles.

28 30 32 34 36 38

T

10
 

-2

10
 

-1

10
 

0

10
 

1

10
 

2

h

Figure 2. The complete bifurcation diagram for system (3) for T ∈ (28, 37). The vertical axis uses
a logarithmic scale to better show the details. (The bifurcation diagram produced in Exercises 11
and 12will contain a subset of the information shown in this Þgure.)

The bifurcation diagram in Figure 2 gives a graphical representation of how
the system behavior depends on the temperature parameter.

• For each T ∈ (10, T0), the system has a globally stable community equilib-
rium point with a very low prey density.

• For each T ∈ (T2, TM ), there is a globally stable community equilibrium
point with a relatively high prey density.

• For each T ∈ (T1, T2), the system exhibits a globally stable limit cycle with a
signiÞcant prey maximum.

If we interpret T as mean daily temperature, this model behavior is in qualita-
tive agreement with Þeld observations, which generally Þnd that spider mite

10
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densities are higher and population oscillations are more likely later in the
growing season when temperatures are higher. The interval (T0, T1) is charac-
terized by bistability, which we discuss below. Before doing so, we mention
that the process of determining the bifurcation diagram for a system of differ-
ential equations can be automated through the use of numerical methods for
continuing solution curves as a parameter varies, and in fact several computer
packages produce these diagrams (Figure 2 was produced using the program
AUTO; see the Software Notes).

Exercise

14. Let T = 30, and plot the prey equilibrium density h(t) = he(T ) for 0 ≤
t ≤ 100. Use a differential equation solver to plot, for 0 ≤ t ≤ 100, the
prey density h(t) obtained by using initial conditions that are 10% of the
equilibrium values, i.e., set(

h(0), p(0)
)

= 0.1
(
he(T ), pe(T )

)
.

Compare these two solutions, and in particular note the difference in max-
imum densities.

From Exercise 14, we can deduce that if populations at equilibrium are
subjected to some external force that kills a sufÞcient portion of the populations,
then population densities will rebound dramatically as the stable equilibrium
densities are replaced by stable oscillations, as illustrated in Figure 3.

10
 

-3

10
 

-2

10
 

-1

10
 

0

10
 

1

10
 

2

h

0 25 50 75 100

t

Figure 3. Aplot ofh(t) illustrating an outbreak. The equilibriumdensity atT = 30, h(t) = he(30),
is shown for 0 < t < 20, at which time both prey and predator densities are reduced to 10% of their
equilibrium levels. This is followed by a dramatic increase in the prey density, i.e., an outbreak. A
logarithmic scale is used on the vertical axis to better show the details.
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From a population dynamics point of view, this is an example of a population
outbreak, wherein the population density of a species undergoes an increase of
several orders of magnitude over a short period of time. Such behavior has
been observed in the Þeld, associated with the use of pesticides. A typical
pesticide-induced outbreak scenario starts with the application of a pesticide
that causes an immediate reduction in the population densities of both predator
and prey (pesticides often kill more than just the intended pest species). This is
followed by a quick resurgence of the spidermite population, often to densities
much higher than those prior to the application. The predator population may
then increase, but rather than controlling the prey the predatormay overexploit
its prey (i.e., the predators kill too many prey to be able to sustain their own
numbers), leading to a population crash. Population outbreaks and crashes can
occur in a cyclic fashion. Pesticide-induced outbreaks have been documented
in a variety of agricultural interactions (e.g., see DeBach and Rosen [1991]).
Another mechanism for causing an outbreak involves increasing the tem-

perature parameter. In particular, when T < T0 the system exhibits a globally
stable community equilibrium point. As T increases through T1 this equilib-
rium solution becomes unstable, and trajectories spiral out to a stable limit
cycle with a maximum prey density much larger than the equilibrium den-
sities found for T < T0, as illustrated in Figure 4. Note that a subsequent
decrease in T through T1 does not lead to a collapse to the stable Þxed point
unless T is actually decreased below T0. This is an example of hysteresis, a lack
of reversibility as T is varied near T1. This hysteresis, as well as the potential
to model outbreaks, is a direct consequence of the interval of bistability for
T ∈ (T0, T1).
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Figure 4. A plot of h(t) illustrating an outbreak as T is increased from 25 to 35 over the course
of 10 days, beginning at t = 10. The populations were started at the equilibrium densities
(he(25), pe(25)). A logarithmic scale is used on the vertical axis to show the details better.
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5. Software Notes
The project requires the use of numerical methods to obtain periodic solu-

tions of the systemof differential equations. Due to the nature of the system,we
recommendusing adifferential equations solverwith an adaptive step size, and
some experimentation with tolerance values and maximum step size may be
necessary. We have had good results using the Runge-Kutta-Fehlberg method
providedwith theMidshipmanDifferential EquationsProgram(MDEP) (a free-
ware program for DOS machines available from J.L. Buchanan, Mathematics
Dept., United States Naval Academy, 572 Holloway Road, Annapolis, Mary-
land, 21402Ð5002).
Two commercially available programs that we have also used successfully

on the model system are Mathematica (available fromWolfram Research, Inc.,
100 Trade Center Drive, Champaign, IL, 61820Ð7237) and PSI-Plot (available
from Poly Software International, P.O. Box 526368, Salt Lake City, UT 84152).
PSI-Plot is a software package for technical plotting (it was used to produce the
Þgures in this paper), but it also provides a number of ODE solvers.
AUTO is a FORTRAN software package for solving continuation and bi-

furcation problems for systems of autonomous differential equations, writ-
ten by Eusebius Doedel (now at Concordia University in Montreal) (avail-
able from Applied Mathematics 217Ð50, California Institute of Technology,
Pasadena, CA, 91125). AUTO is also available as part of a larger software
package, XPPAUT (available from G. Bard Ermentrout at the University of
Pittsburgh). XPPAUT, designed for UNIX machines, is available over the In-
ternet at http://www.pitt.edu/~phase/ . In addition to AUTO, it provides
solvers for systemsofdifferential equations, includingadaptive-step-sizemeth-
ods. (XPPAUT is now available for Windows 95/NT from the same Internet
location.)

6. Solutions to the Exercises

1. The chain rule gives:

dH

dτ
=
dH

dt

dt

dτ
=
dH

dh

dh

dt

dt

dτ
=

1

r1

1

K

dh

dt
.

2. The predator nullclines are theH-axis and the lineP1(H) = H , and the prey
nullcline is the parabola P2(H) = (1−H)(H +D)/φ. (For the graphs of the
nullclines, see Figure 5.) The community equilibrium point is the point in
the Þrst quadrant at which P1(H) intersects P2(H), and the value of H at
this intersection is then given by the positive root of the equation

D + (1−D − φ)H −H2 = 0.
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P

Figure 5. A plot of the prey and predator nullclines (thin lines), and the boundary (thick line) of
an invariant region containing the community equilibrium point.

3. If P 6= H , the only other value of P for which dP/dτ = 0 is P = 0. In this
case, dH/dτ = 0 implies that H = 1, and so the only other feasible Þxed
point is (1, 0). The Jacobian matrix for system (4) is

J =


1− 2H − φDP

(H +D)2

−φH
H +D

θ
P 2

H2
θ − 2θ

P

H

 . (13)

Evaluation of J at the point (1, 0) gives

J|(1,0)
=


−1

−φ
1 +D

0 θ

 .

The eigenvalues of J|(1,0)
are −1 and θ, and so (1, 0) is a saddle point. The

eigenvectors associated with these eigenvalues are(
1
0

)
and

(
1

−(1 + θ)(1 +D)/φ

)
,

respectively.
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4. The slope of the prey nullcline is

P ′2(H) = (1− 2H −D)/φ,

andat the saddlepoint (1, 0) the slope isP ′2(1) = −(1+D)/φ.The slopeof the
unstable manifold at this point is the slope S of the eigenvector associated
with the eigenvalue θ > 0, and S = −(1 + θ)(1 +D)/φ < P ′2(1).

5. Je given by (6) is obtained by evaluating (13) at the point (He, Pe).

6. Je can be rewritten by using the hint (8) to get

Je =


1− 2He − D(1−He)

(He +D)
−(1−He)

θ −θ

 .

Then

det(Je) = θ

(
He +

D(1−He)

He +D

)
> 0,

since 0 < He < 1. The requirement tr(Je) < 0 then gives the local stability
criterion θ > θc, where

θc = 1− 2He − D(1−He)

(He +D)
,

which simpliÞes to (7).

7. We have θc > 0 when φ > ∆; and since φ > 0 and ∆ > 0, an equivalent
requirement is that φ2 > ∆2. From this, we Þnd that θc > 0when

2(1−D)φ > (1 +D)2. (14)

If D < 1, then θc > 0when

φ >
(1 +D)2

2(1−D)
.

If D ≥ 1, then (14) cannot be satisÞed for any φ > 0, and so in this case
θc < 0.

8. In Figure 5, the thick solid line is the boundary of an invariant region con-
taining the (unstable) community equilibrium point, and consists of a por-
tion of the trajectory following the unstable manifold of (1, 0) and part of
the prey nullcline. If the community equilibrium point is unstable, then
trajectories in this region must approach a periodic solution.
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9. He and φ are both functions of T. Equation (12) can be obtained by differ-
entiating

1−He(T ) =
φ(T )He(T )

He(T ) +D

with respect to T.

10. See Figure 6.

10 20 30 40

Τ

0.0

1.0

2.0

θ

Figure 6. A plot of θ (solid line) and θc (broken line) as functions of T .

11. and 12. Figure 2 shows the bifurcation diagramobtained using the software
package AUTO, and with a logarithmic scale used on the vertical axis to
better show the details. Figure 7 shows that part of the bifurcation diagram
corresponding to the directions in the exercises (and without logarithmic
scaling). As in Figure 2, the Þxed point values he are represented by a line,
solidwhere stable and brokenwhere unstable, and themaximal prey values
of the periodic solutions are represented by lines of circles.

12. See Figure 8.

13. See Figure 3.
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Figure 7. A (partial) bifurcation diagram for system (3), from Exercises 11 and 12.
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Figure 8. The phase plane at T = 30. Plot a) uses linear scaling on the axes, while plot b) uses
logarithmic scaling. In each, the solid line represents the stable limit cycle, thebroken line represents
the unstable limit cycle (almost invisible in plot a)), and the dot represents the stable Þxed point.
The location of the dot in a) is only approximate so that it can be distinguished from the limit cycle
curve.

17



32 The UMAP Journal 19.1 (1998)

References
Arrowsmith, D.K., and C.M. Place. 1982. Ordinary Differential Equations. Lon-

don: Chapman and Hall.

Beltrami, E. 1987. Mathematics for DynamicModeling. SanDiego, CA: Academic
Press.

Borrelli, Robert L., and Courtney S. Coleman, 1996. Differential Equations: A
Modeling Perspective. New York: John Wiley and Sons.

Caughley, G. 1976. PlantÐherbivore systems. In Theoretical Ecology: Princi-
ples and Applications, edited by R.M. May, 94Ð113. Philadelphia, PA: W.B.
Saunders.

Cohen, J.E. 1995. How Many People Can The Earth Support?. New York: W.W.
Norton and Company.

DeBach, P., and D. Rosen. 1991. Biological Control by Natural Enemies. Cam-
bridge, UK: Cambridge University Press.

Hastings,A. 1997. PopulationBiology: Concepts andModels. NewYork: Springer-
Verlag.

Kingsland, S.E. 1985. Modeling Nature. Chicago: University of Chicago Press.

May, R.M. 1973. Stability and Complexity in Model Ecosystems. Princeton, NJ:
Princeton University Press.

Renshaw, E. 1991. ModellingBiological Populations in Space andTime. Cambridge,
UK: Cambridge University Press.

Wollkind, D.J., J.B. Collings, and J.A. Logan. 1988. Metastability in a tempera-
ture-dependentmodel system for predatorÐpreymite outbreak interactions
on fruit trees. Bulletin of Mathematical Biology 50: 379Ð409.

About the Authors
JohnCollings received his B.A. inmathematics and B.S. in computer science

from the University of California at Irvine, his M.S. in computer science from
the University of California at San Diego, and his Ph.D. in mathematics from
Washington State University. His interests include population dynamics and
numerical methods.
David Wollkind received his B.S., M.S., and Ph.D. degrees in mathematics

from Rensselaer Polytechnic Institute. His interests include weakly nonlinear
solidiÞcation phenomenon, ßuid convection, chemical Turing pattern forma-
tion, and geophysical and astrophysical ßuid dynamics.

18


