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1. Introduction
Beavers (Castor canadensis) are the largest rodents in North America.1 Adults

are between three to four feet in length and weigh 30 to 60 pounds. Beavers
possess a specialized digestive system that permits them to digest tree bark.
They prefer the tender bark at the top of hardwood trees (i.e., maple, linden,
birch, and poplar) and gain access to it by systematically gnawing at a tree’s
trunk until it falls over. Beavers also use felled trees to dam up slow moving
streams and small rivers, thereby creating ponds that are an essential part of
their habitat.

Beaver ponds create a wide range of potential environmental and agricul-
tural benefits, including [Stuebner 1992]:

• habitat for a large number of wildlife species,

• improved water quality as sediment is allowed to settle out of turbid waters,

• improved productivity of adjacent land for livestock grazing, and

• fertile soils for agricultural production when drained.

Unfortunately, these potential benefits may come at what economists term an
“opportunity cost.” The opportunity cost of beaver ponds includes any envi-
ronmental, aesthetic, or future commercial benefits trees were generating before
being felled by beavers. Beavers may be deemed a public nuisance when the
opportunity cost of their activities is thought to outweigh the benefits. In such
case, the public might attempt to minimize beaver damage by controlling the
population. For example, the North Carolina Legislature authorizes landown-
ers to use any lawful method at any time to remove beavers destroying their
property.

Trapping is generally the most effective means of controlling a beaver pop-
ulation whose primary damage in a given land area is felling trees. There have
been many myopic attempts on a limited scale to trap and remove all beavers
from a damaged area [Hill 1982]. However, experience from these attempted
eradication efforts demonstrates that beavers from neighboring uncontrolled
or lesser controlled areas tend to immigrate continually into the controlled area
to fill the resulting population vacuum [Houston 1987].

Population ecologists have formulated the social fence hypothesis to explain
how migration of small mammals between adjacent land areas might occur
in general [Hestbeck 1982, 1988]. According to the hypothesis, individuals
within a given area compete for vital resources, and when competition reaches
a critical level, there is social pressure exerted on some individuals to depart
(within-group aggression). For example, young beavers generally remain with
the colony for only two years before departing to establish their own colonies.

1The information in this introduction was gleaned from the Web sites http://ngp.ngpc.

state.ne.us/wildlife/beaver.html, http://www.educ.wsu.edu/enviroed/beavers.html,
and http://www.ces.ncsu.edu/nreos/wild/beavers.html .
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However, as individuals attempt to depart, there is territorial pressure exerted
against their departure by neighboring populations (between-group aggression).
When within-group aggression exerted in area A is stronger than between-
group aggression exerted in neighboring area B, the social fence is said to be
open for individuals to migrate from A to B.

A single-shot eradication effort has the unintended consequence of opening
the social fence to migration from uncontrolled to controlled areas by remov-
ing beavers in the controlled area who otherwise would exert between-group
aggression against potential immigrants. Consequently, sustained trapping ef-
forts are required to offset this continual migration so that the controlled pop-
ulation can be maintained at a desired fixed level through time. The exercises
below investigate the long-term impacts of a range of multi-period sustained
trapping strategies on the population densities of beavers in neighboring con-
trolled and uncontrolled areas. The exercises are based on the following math-
ematical formulation of the social fence hypothesis.

2. Mathematical Formulation of the Social
Fence Hypothesis

Consider first the mathematical formulation of the social fence hypothesis in
the absence of trapping. Let X and Y represent nonnegative beaver population
densities (in beavers/square mile) in neighboring areas, and let Ẋ and Ẏ rep-
resent the associated annual net rates of change (in beavers/square mile/year)
according to:

Ẋ = F0(X)X − F1(X, Y ) (1)

Ẏ = F2(Y ) + F1(X, Y ). (2)

The net rate of change in annual population in each area is equal to the differ-
ence between the rates of net growth (i.e., birth rate minus the death rate) and
dispersion. Functions F0(X) and F2(Y ) are net proportional annual growth
rates for X and Y , respectively, with units 1/year and are given by:

F0(X) = RX

(
1 − X

KX

)
(3)

F2(X) = RY

(
1 − Y

KY

)
, (4)

where the quantities RX (1/year), KX (beavers/square mile), RY (1/year), and
KY (beavers/square mile) are nonnegative constants. As the population den-
sity X approaches zero in its area, the net proportional growth rate approaches
RX (i.e., F0 → RX as X → 0), which is called the intrinsic growth rate (1/year).
Alternatively, as X approaches KX , the net proportional growth rate decreases
toward zero (i.e., F0 → 0 as X → KX ) due to the negative impacts of crowding.

2
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Thus, KX is the environmental carrying capacity for beavers in X’s area. The
parameters RY and KY are interpreted analogously in Y ’s area.

Exercise

1. Assume that F1(X, Y ) is zero in (1), so that the population X changes only
in response to net growth, that is, Ẋ = F0(X)X . Graph this differential
equation and indicate with directional arrows how X changes over time,
for the two cases when 0 < X < KX and when X > KX (e.g., an arrow
pointing rightward indicates that X increases over time). Next, solve the
differential equation and graph the solution. Explain how the solution
satisfies the limits on F0(X) as X approaches zero and the carrying capacity,
respectively.

The total dispersion flux term, F1(X, Y ) (beavers/square mile/year), is a
mathematical representation of the social fence hypothesis found in the math-
ematical ecology literature [Stenseth 1988]. This literature assumes that when-
ever X > Y , the within-group aggression exerted by X is greater than between-
group aggression exerted by Y , and the net proportional annual migration rate,
F1(X, Y ), acts as a dispersive valve allowing beavers to migrate from X to Y ,
that is, F1 > 0. Alternatively, whenever Y > X , the dispersive valve opens in
the opposite direction (F1 < 0) for beavers to migrate from Y to X . In short,
operation of the social fence is tied to the population differential in the two
areas. A functional form for F1(X, Y ) satisfying these assumptions is

F1(X, Y ) = B(X − Y )X, (5)

whereB > 0 is a constant parameter with units (year)−1(beaver/square mile)−1.

Exercise

2. Assume that the population density of Y is much greater than that of X , that
is, let Y = 100 and X = 1. Calculate the total dispersion flux B(X − Y )X
in terms of B. Now assume that Y is only marginally larger than X , that
is, let Y = 100 and X = 99, and recalculate F1(X, Y )X . Compare the total
dispersion fluxes for both cases and discuss. Does the operation of the social
fence as formulated by (5) make ecological sense?

Another problem with the formulation of the social fence hypothesis in (5)
is that it unreasonably triggers migration in the situation where X > Y but X
exerts much less pressure on its carrying capacity than Y because KX � KY .
Competition for vital resources is less keen for X than for Y , implying that
within-group aggression pressuring emigration from X’s area should be less
than between-group aggression exerted against immigration into Y ’s area. Un-
der these circumstances, the dispersive value should be closed to migration

3
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from X to Y . An alternative formulation of the social fence hypothesis rectify-
ing the above problems is:

F1(X, Y ) = M

(
X

KX
− Y

KY

)
, (6)

where M is a constant rate with units (beavers/square mile/year). Whenever
X constitutes a larger fraction of its carrying capacity than Y (i.e., X/KX >
Y/KY ), within-group aggression of X is assumed to be greater than between-
group aggression, and F1(X, Y ) acts as a dispersive valve allowing beavers to
migrate from X to Y , that is, F1 > 0.

3. The Social Fence Formulation
with Trapping

Now assume that trapping occurs in X’s area (i.e., the controlled area) but
not in neighboring Y ’s area (i.e., the uncontrolled area). The modified rate
equations are:

Ẋ = F0(X)X − F1(X, Y ) − PX (7)

Ẏ = F2(Y ) + F1(X, Y ), (8)

where F1(X, Y ) is given by (6), P (1/year) represents the per capita annual
trapping rate of X , and PX represents the total beavers trapped each year.
As trapping reduces the population pressure on carrying capacity in X’s area,
between-group aggression exerted by X against migration from Y decreases
(all other things being equal), and the dispersive valve may open for individuals
to migrate from uncontrolled population Y to controlled population X .

4. Dimensionless Rate Equations
The system of differential equations given by (7)–(8) can be simplified by

making all variables and parameters dimensionless. Define dimensionless vari-
ables

x = X/KX (fraction of carrying capacity in the controlled area),

y = Y/KY (fraction of carrying capacity in the uncontrolled area), and

τ = RXt (dimensionless time variable).

Dimensionless parameters are

m = M/RXKX (dimensionless dispersion parameter),

4
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p = P/RX (dimensionless trapping parameter),

r = RY /RX (comparison of intrinsic growth rates in both areas), and

k = KX/KY (comparison of carrying capacities in both areas).

Exercise

3. Substitute these dimensionless quantities into (7)–(8) to show that the di-
mensionless model is:

x′ =
dx

dt
= x(1 − x) − m(x − y) − px (9)

y′ =
dy

dt
= ry(1 − y) + km(x − y). (10)

Note that the number of system parameters is reduced from six (RX , RY ,
KX , KY , M , P ) to four (m, p, r, k).

We now analyze the solutions to the system (9)–(10) as the per capita trap-
ping rate is increased from zero.

5. Zero-Trapping Dynamics
Consider first the population dynamics of X and Y when no trapping occurs

in the tree-damaged area where X resides (i.e., p = 0 in (9)).
Setting (9) equal to zero yields the following implicit expression for the

x′ = 0 nullcline, which we will call Nx(y):

x2 − (1 − m)x − my = 0. (11)

The lack of an interaction term between x and y implies that Nx(y) is a parabola
in yx-space [Korn and Liberi 1978, 387] whose vertex occurs at a positive (neg-
ative) value of x when (1−m) is positive (negative). The downward (upward)
sloping branch of the parabola intersects the origin when (1 − m) is positive
(negative).

Exercises

4. Set (10) equal to zero and solve for x in terms of y to derive the y′ = 0
nullcline balancing net growth with diffusion each year in Y . Denote this
nullcline by Ny(y) and describe its graph.

5. Use the following baseline parameter values from a recent study [Huffaker
et al. 1992] to plot the nullclines Nx(y) and Ny(y): RX = 0.335, RY =
0.3015 (r = 0.9), KX = 1.107, KY = 0.9963 (k = 1.11), and M = 0.3473
(m = 0.937).

5
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6. The nullclines plotted in Exercise 5 generate a dual steady-state configura-
tion. One steady state occurs at the carrying capacities of X and Y (i.e., at
(x, y) = (1, 1)) and the other occurs at the origin. Nullclines plotted with
other parameter values can be shown to maintain these two steady states.
The nullclines divide the phase plane into four regions called isosectors.
Supply arrows indicating the directions of motion of x and y over time in
each isosector.

7. Calculate the relevant eigenvalues to show that the equilibrium at the ori-
gin is a saddle point. Calculate the relevant eigenvalues to show that the
equilibrium at the carrying capacities is a stable node. Draw in solution
trajectories consistent with this information.

8. Use a computer program to generate numerically the phase diagram for the
baseline parameters. One such program that you can download from the
World Wide Web is DynaSys athttp://www.sci.wsu.edu/idea/software.
html .

Figure 1 is helpful in understanding the dynamics associated with various
isosectors of the phase plane. The figure denotes the net proportional growth
rate for x from (9) as f0 = (1 − x) and the net proportional growth rate for
y from (10) as f2 = r(1 − y). Three dashed lines are superimposed on the
nullclines from Exercise 6 to divide phase space further into six regions. The
regions bounded by the lines x = 1 and y = 1 (II and III) are characterized
by positive net proportional growth rates for both populations, since each is
below carrying capacity. Regions above x = 1 (I, IV, and V) produce negative
net proportional growth rates for x, since the population is above carrying
capacity. Regions to the right of y = 1 (IV, V, and VI) produce negative growth
rates for y, since the population is above carrying capacity. The dashed line
running from the origin through the nullclines at carrying capacity is the zero-
dispersion line (zdl), which sets the dispersion flux term f1 = m(x − y) equal
to zero since x = y. Population levels above the zdl (Regions I, II, and VI) open
the social fence for migration from x to y, while levels below (Regions III, IV,
and V) reverse the migratory flux.

Consider, for example, the dynamics in region II, which is bounded above
by x = 1 and below by the zdl. Growth rates are positive for both populations,
since each is below carrying capacity. The social fence is open for migration
from x to y, since population levels are above the zdl. Thus, x enjoys a positive
net proportional growth rate but suffers emigration losses. Initial levels of x
above Nx(y) initially decrease over time, because emigration losses are greater
than growth each period. However, once x falls below Nx(y), the growth rate
overwhelms the emigration rate and the population begins to increase. Con-
versely, positive net proportional growth rates work together with immigration
gains to increase y.

6
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Figure 1. The zero-trapping plane (p = 0) with directions of motion from various isosectors. The
plot is divided into regions by the dotted lines. Each region is labeled using roman numerals:

I. f0 < 0, f2 > 0, beavers migrate from x to y;
II. f0 > 0, f2 > 0, beavers migrate from x to y;

III. f0 > 0, f2 > 0, beavers migrate from y to x;
IV. f0 > 0, f2 < 0, beavers migrate from y to x;
V. f0 < 0, f2 < 0, beavers migrate from y to x;

VI. f0 < 0, f2 < 0, beavers migrate from x to y.

6. Positive Trapping Dynamics
Consider now the impact of trapping some portion of x each year. The

system of differential equations governing the evolution of neighboring beaver
populations under these circumstances is (9)–(10), with p set at fixed rate pf .
Assume that pf represents a 100% annual trapping rate (i.e., P = 1 and p =
P/RX = 2.985) and that all other parameters are held at the baseline values
given in Exercise 5. The nullcline for the uncontrolled population y remains
the same as in the zero-trapping case.

Setting (9) equal to zero with p = pf yields the following implicit expression
for the x′ = 0 nullcline Nx(y):

x2 − (1 − m − pf )x − my = 0. (12)

The nullcline Nx(y) is a parabola whose vertex occurs at a positive (negative)
value of x when (1 − m − pf ) is positive (negative). The downward (upward)
sloping branch of the parabola intersects the origin when (1−m−pf ) is positive
(negative). Increasing the fixed trapping rate from zero shifts Nx(y) downward.
The nullcline Ny(y) remains the same as in the zero-trapping case.

7
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Exercises

9. Plot Nx(y) and Ny(y) for the baseline parameters and describe the resulting
steady-state configuration. How does this configuration differ from that in
the zero-trapping case? Does trapping open the social fence for sustained
migration from y to x given the baseline parameter values?

10. Do the necessary eigenvalue analysis to determine the stability of all non-
negative steady states, and draw in solution trajectories.

11. Use a computer program to generate the phase diagram for the baseline
trapping scenario.

Table 1 shows the impact, on the positive steady-state levels of the controlled
and uncontrolled populations, of the per capita trapping rate, P . In the table,

• X and Y are the dimensional controlled and uncontrolled population vari-
ables,

• x and y are their respective dimensionless counterparts measuring popula-
tion pressure exerted on carrying capacity,

• F0(X)X and F2(Y )Y are their respective total sustained annual growth rates,

• F1(X, Y ) < 0 is sustained annual migration from Y to X , and

• PX is the total sustained annual trapping rate of X .

The annual growth functions are defined in (3)–(4) and the annual migration
function is defined in (5).

Table 1.

Effect of the per capita trapping rate P on population levels.

P

0 0.25 0.5 0.75 1.0

X 0.072 0.610 0.295 0.141 0.072

Y 0.205 0.720 0.480 0.313 0.205

x

y

F0(X)X

F2(Y )Y

F1(X, Y )

PX

8
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Exercise

12. Do the required calculations to complete the table and generate the follow-
ing plots using this information: First, plot x and y against P . Next, plot
the total sustained annual trapping and migration rates against P . Finally,
plot the total sustained annual growth rates of X and Y against P . Use
these plots to explain why the total sustained annual trapping rate, PX ,
first increases and then decreases in response to increasing sustained per
capita trapping rates, P .

7. Discussion
Landowners suffering beaver-related tree damage have several options.

One extreme is to take no control action, which allows beavers to approach
their environmental carrying capacity in the tree-damaged area. A landowner
might be willing to forego control action if tree damage is outweighed by the
many benefits provided by beaver ponds.

The other extreme is to attempt to eradicate beavers in the tree-damaged
area with a single-shot trapping effort. This option may be futile because of the
migratory behavior of neighboring beaver populations. The recently formu-
lated social fence hypothesis explains the migratory behavior of small mammal
populations as the ecological analogue of osmosis: Animals from a superior
habitat are posited to diffuse through a social fence to a less densely populated
habitat until the pressure to depart (“within-group aggression”) is equalized
with the pressure exerted against invasion (“between-group aggression”). Ac-
cording to this hypothesis, a landowner succeeding in removing the entire
beaver population from an area in the short term unintentionally creates a pop-
ulation vacuum that is filled by migrating beavers from surrounding areas in
the longer term. The specter of continual immigration into the controlled area
justifies a sustained trapping strategy that offsets this sustained migration, so
that the controlled population can be maintained at some fixed level through
time.

We investigated the impact of sustaining various fixed per capita annual
trapping rates. We applied those to steady-state beaver populations, in neigh-
boring controlled and uncontrolled areas, by solving a mathematical model
of the social fence hypothesis, using baseline parameters taken from a recent
study. We found that:

• In the absence of trapping, both populations tend toward their respective
carrying capacities.

• As the sustained per capita trapping rate increases from zero to relatively low
levels, the steady-state population in the controlled area is driven to smaller
fractions of its carrying capacity. This opens the social fence to increasing
sustained migration from the uncontrolled to the controlled area and also—
due to less crowding—increases the sustained net proportional growth rate

9
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in the controlled area. These additions to the population must be offset by
trapping an increasing total number of beavers so that controlled population
is sustainable at lower steady states. The steady-state population in the
uncontrolled area is also driven to smaller fractions of its carrying capacity,
due to emigration losses.

• As the sustained per capita trapping rate increases to relatively high levels,
the steady-state populations in both areas continue to exert decreasing pres-
sure on their respective carrying capacities. The total number of beavers that
need to be trapped annually to sustain these decreasing steady-state levels
declines, due to decreased migratory and growth pressures in the controlled
area. Migratory pressure drops, because the social fence begins to close a bit,
due to decreasing gaps between the pressures exerted on carrying capacity
in the controlled and uncontrolled areas. Growth pressures drop, because
the steady-state populations in the two areas decrease to the extent that their
net proportional growth rates begin to decline.

In light of these results:

Should a landowner adopt a relatively low or high sustained per capita trapping
rate?

The answer depends on the underlying biological and economic circumstances.
Economists would expect a rational landowner to adopt a trapping rate that
results a steady-state controlled population defined by the following charac-
teristic:

Marginally decreasing the steady-state population by annually trapping
one more beaver would generate sustained trapping costs outweighing
sustained benefits measured as avoided tree damage.

All other things being equal, the economically optimal steady-state controlled
population is expected to be relatively low (reflecting a relatively high sustained
per capita trapping rate) when beavers cause significantly more tree damage
than they cost to trap, even at low population levels. See Huffaker et al. [1992]
for an extended discussion of this question.

10
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8. Solutions to the Exercises

1. See Figure 2. The solution of the differential equation is

X(t) =
1

1 + ce−rt
,

where c is a constant depending on the initial conditions; this function is
graphed in Figure 3.

Figure 2. Graph of (1) when F1(X) = 0. Figure 3. Graph of solutions to (1) for
various initial conditions.

2. For Y = 100, X = 1: F1(X, Y ) = B(1 − 100)(1) = −99B.
For Y = 100, X = 99: F1(X, Y ) = B(99 − 100)(99) = −99B.

The problem with the formulation of the social fence in (5) is that it
can generate the above result, where the same number of beavers migrate
annually from Y to X regardless of whether the population differential
between the two is large or small.

3. Ny(y) =
1

km

[
ry2 − (r − km)y

]
.

See Figure 4 for graphs for the two cases r − km > 0 and r − km < 0.

6. See Figure 5.

7. See Figure 6. The eigenvalues are:
for (x, y) = (0, 0): 0.953864, −1.03093;
for (x, y) = (1, 1): −0.951343, −2.92573.

9. The origin remains a steady-state solution, but trapping drives the interior
steady state below carrying capacity for both populations. Trapping opens
the door to sustained migration from Y to X , given the baseline parameters.

11
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Figure 4. Graph of Ny(y) for a) r − km > 0. b) r − km < 0.

Figure 5. Solution to Exercise 6.

Figure 6. Solution to Exercise 7.

12
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10. See Figure 7. The eigenvalues are:
for (x, y) = (0, 0): 0.174641, −3.22671;
for (x, y) = (0.21, 0.061): −0.177817, −3.38225.

12. See Table 2 and Figure 8. See the Discussion section of the Module for
explanation of why the total sustained annual trapping rate, PX , first in-
creases and then decreases in response to increasing sustained per capita
trapping rate, P .

Figure 7. Solution to Exercise 10.

Table 2.

Effect of P on population levels.

P 0 0.25 0.5 0.75 1.0

X 0.072 0.610 0.295 0.141 0.072
Y 0.205 0.720 0.480 0.313 0.205
x 1 0.550 0.270 0.128 0.065
y 1 0.720 0.480 0.310 0.210

F0(X)X 0 0.092 0.072 0.041 0.022
F2(Y )Y 0 0.060 0.075 0.065 0.049
F1(X, Y ) 0 −0.060 −0.080 −0.060 −0.050

PX 0 0.152 0.147 0.106 0.072

13
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a) Graphs of y (upper) and x (lower) vs. P .
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b) Graphs of PX (upper) and F1(X, Y ) (lower) vs. P .

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.2 0.4 0.6 0.8 1 1.2

P

c) Graphs of F0(X)X (lower at P = 1) and F2(Y )Y (higher at P = 1) vs. P .

Figure 8. Solution to Exercise 12.
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