From semi-classical to quantum many body
through normal forms

Milano, December 17-20, 2019

In recent years there has been a growing activity on the problem of justification of mean field equations for many body quantum systems, with particular attention to the semiclassical limit. The methods used are often reminescent of averaging and normal form methods typically used in the theory of dynamical systems.
Furthermore, semiclassical methods have shown that there are deep connections between dynamical properties of a Hamiltonian system and the spectral properties of the corresponding quantum operator. The purpuse of this workshop is to discuss the relationships between normal form methods, spectral theory and effective equations in order to try to export the corresponding techniques from one field to the others.


Gianfausto Dell'Antonio (SISSA) Fabricio Macià (Madrid) Antonio Ponno (Padova) Gueorgui Popov (Nantes) Marcello Porta (Tuebingen) Michela Procesi (Roma 3) Didier Robert (Nantes) Chiara Saffirio (Zurich) Benjamin Schlein (Zurich) San Vũ Ngọc (Rennes)

Scientific and organizing committee

Dario Bambusi (Università di Milano, Istituto Lombardo) Vieri Mastropietro (Università di Milano) Riccardo Montalto (Università di Milano) Simone Paleari (Università di Milano)

We acknowledge:
PRIN 2017 PRIN201719VMAST_01 "Mathematical Quantum Matter”, MIUR
Dipartimento di Matematica, Università degli Studi di Milano
PSR Grant 2018 “Classical and quantum dynamical systems, statistical mechanics”, Università degli Studi di Milano,
PSR Grant 2018 “Analisi, Geometria e Fisica Matematica dei sistemi variazionali non-lineari”, Università degli Studi di Milano,


CSS by Valeria Montesi
Background image courtesy of Paul Nylander