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Abstract

The mean density of a random closed set Θ in R
d with Hausdorff dimension n is the Radon-

Nikodym derivative of the expected measure E[Hn(Θ ∩ · )] induced by Θ with respect to the
usual d-dimensional Lebesgue measure. We consider here inhomogeneous Boolean models
with lower dimensional typical grain. Under general regularity assumptions on the typical
grain, related to the existence of its Minkowski content, and on the intensity measure of the
underlying Poisson point process, we prove an explicit formula for the mean density. The
proof of such formula provides as by-product estimators for the mean density in terms of the
empirical capacity functional, which turns to be closely related to the well known random
variable density estimation by histograms in the extreme case n = 0. Particular cases and
examples are also discussed.
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1 Introduction

In many real applications it is of interest to study random closed sets at different Hausdorff di-

mensions and their induced random measure; in particular several problems are related to the

estimation of the density, said mean density, of the expected measure

E[µΘ](B) := E[Hn(Θ ∩ B)] ∀B ∈ BRd

induced by a random closed set Θ : (Ω, F, P) → (F, σF) in R
d with Hausdorff dimension n

(Hn, BRd , F and σF denote here the n-dimensional Hausdorff measure, the Borel σ-algebra of

R
d, the class of the closed subsets in R

d and the σ-algebra generated by the so-called hit-or-miss

topology [16], respectively). While the extreme cases n = d and n = 0 are easy to handle with

elementary analytical tools, problems arise when 0 < n < d. Indeed, while the expected mea-

sure induced by a d-dimensional random set is always absolutely continuous with respect to the

d-dimensional Lebesgue measure and its density can be easily obtained by applying Fubini’s theo-

rem (as stated in the early work by Robbins [19]), and the mean density of a random point is given

by its probability density function (and so the problem of its estimation has been largely solved

since long in nowadays standard literature, by means of either histograms, or kernel estimators

(e.g. see [21])), when we deal with a general lower dimensional random closed set it can be more

demanding to check that the induced expected measure is absolutely continuous and to compute

and estimate its density. Even if inhomogeneous random closed sets appear frequently in real
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applications, only the stationary case has been extensively studied so far (e.g., see [7, 22] and ref-

erence therein). Indeed, although some results about the mean densities of certain inhomogeneous

random closed sets are available in current literature (e.g., see [6, 14, 15, 20, 24]), mainly via tools

from integral geometry and stereology, the pointwise estimation of the mean density of nontrivial

lower dimensional inhomogeneous random closed sets is still an open problem, whenever gradient

structures [13] or local stationarity cannot be assumed.

Our goal is to obtain a pointwise result for the mean density of a wide class of inhomogeneous

random sets which might be of interest from a statistical point of view as well. We consider here in-

homogeneous Boolean models with lower dimensional typical grain, being considered basic random

set models in stochastic geometry [4], but we do not exclude that our approach could be applied to

other kinds of inhomogeneous lower dimensional random closed sets in further developments. The

main result of the paper is stated in Theorem 9, where we prove an explicit formula for the mean

density; we point out that, even if such formula could be obtained in a more direct way via the well

known Campbell’s formula (see Remark 11), the proof we propose here provides as a by-product

estimators of the mean density, answering, in the case of Boolean models, to an open problem in

[1]. To this end, the classical Minkowski content notion plays a central role throughout the paper;

as a matter of fact, the regularity assumptions on the typical grain we require are closely related

to the well known general assumptions which guarantee the existence of the Minkowski content of

deterministic closed sets.

The paper is organized as follows. In Section 2 we recall some basic definitions and preliminary

results useful for the sequel. In Section 3 we prove a generalization of the Minkowski content

of closed subsets of R
d (Theorem 6); we will apply such result in the final part of the proof of

Theorem 9. In Section 4 we introduce a wide class of Boolean models in R
d with lower dimensional

typical grain. We prove that the expected measures induced by the Boolean models we consider

are absolutely continuous with respect to the usual Lebesgue measure (Lemma 10) and we provide

an explicit formula for their density. Such formula simplifies in the special cases in which the

Boolean model is assumed to be stationary (Corollary 12), or to have deterministic typical grain

(Corollary 13). A simple example of inhomogeneous segment Boolean model and links with current

literature are also provided. Finally, the problem of the estimation of the mean density is considered

in Section 5; in particular, we define an estimator of the mean density (Proposition 15), which can

be considered as the generalization to the case 0 < n < d of the classical random variable density

estimation by histograms in the extreme case n = 0.

2 Basic notation and preliminaries

We recall that H0 is the usual counting measure, Hn(B) coincides with the classical n-dimensional

measure of B for 1 ≤ n < d integer if B ∈ BRd is contained in a C1 n-dimensional manifold

embedded in R
d, Hd(B) coincides with the usual d-dimensional Lebesgue measure of B for any

Borel set B ⊂ R
d. Throughout the paper dx stands for Hd(dx). A closed subset S of R

d is said to

be countably Hn-rectifiable if there exist countably many n-dimensional Lipschitz graphs Γi ⊂ R
d

such that S \∪iΓi is Hn-negligible. (For definitions and basic properties of Hausdorff measure and

rectifiable sets see, e.g., [3, 10, 11].) We call Radon measure in R
d any nonnegative and σ-additive

set function µ defined on BRd which is finite on bounded sets, and we write µ ≪ Hn to say that

µ is absolutely continuous with respect to Hn. We will say that a random closed set Θ satisfies a

certain property (e.g. Θ has Hausdorff dimension n) if Θ(ω) satisfies that property for P-a.e. ω ∈ Ω.

2



Throughout the paper we will consider countably Hn-rectifiable random closed sets in R
d, with

1 ≤ n ≤ d − 1 integer, such that E[µΘ] is a Radon measure; the particular cases n = 0 and n = d

are trivial. (For a discussion about measurability of Hn(Θ) we refer to [25, 5].)

Whenever E[µΘ] is absolutely continuous with respect to Hd, the following definition is given [8, 23]

Definition 1 (Absolute continuity in mean and mean density) Let Θ be a countably Hn-

rectifiable random closed set in R
d such that E[µΘ] is a Radon measure. We say that Θ is absolutely

continuous in mean if E[µΘ] ≪ Hd. In this case we call mean density of Θ, and denote by λΘ, the

Radon-Nikodym derivative of E[µΘ] with respect to Hd.

Remark 2 In the case n = 0 with Θ = X random point in R
d, we have that Θ is absolutely

continuous in mean if and only if X admits a probability density function fX , and so λΘ = fX .

On the other hand, it is easy to see (as an application of Fubini’s theorem in Ω × R
d with the

product measure P×Hd) that any d-dimensional random closed set Θ in R
d is absolutely continuous

in mean with mean density λΘ(x) = P(x ∈ Θ) for Hd-a.e x ∈ R
d.

The problem of the approximation of the mean densities in the general setting of spatially inho-

mogeneous processes has been recently faced in [1], where an approximation, in weak form, of the

mean density for sufficiently regular random closed sets is given in terms of their d-dimensional en-

largement by Minkowski addition. More precisely, denoting by S⊕r :=
{
x ∈ R

d : ∃y ∈ S with |x − y| ≤ r
}

the closed r-neighborhood of a closed set S ⊂ R
d, and by Br(x) the closed ball centered in x with

radius r, for any compact window W ⊂ R
d let ΓW (Θ) : Ω −→ R be the function so defined:

ΓW (Θ) := sup
{
γ ≥ 0 : ∃ a probability measure η ≪ Hn such that

η(Br(x)) ≥ γrn ∀x ∈ Θ ∩ W⊕1, r ∈ (0, 1)
}
; (1)

then the following theorem holds [1].

Theorem 3 Let Θ be a countably Hn-rectifiable random closed set in R
d such that E[µΘ] is a

Radon measure. Assume that for any compact window W ⊂ R
d there exists a random variable Y

with E[Y ] < ∞, such that 1/ΓW (Θ) ≤ Y almost surely. If Θ is absolutely continuous in mean,

then

lim
r↓0

∫

A

P(x ∈ Θ⊕r)

bd−nrd−n
dx =

∫

A

λΘ(x)dx (2)

for any bounded Borel set A ⊂ R
d with Hd(∂A) = 0.

Hence the above theorem gives a weak result for the mean density of very general lower dimensional

random closed sets. In order to obtain a pointwise result, using the fact that A is arbitrary, we

should prove that limit and integral in (2) can be exchanged; in such a way we could state that

λΘ(x) = lim
r↓0

P(x ∈ Θ⊕r)

bd−nrd−n
for Hd-a.e. x ∈ R

d, (3)

and, as by-product, the right side of the above equation could suggest estimators for λΘ(x) in

terms of the capacity functional of Θ. The proof of the validity of this formula for absolutely

continuous in mean random sets seems to be a quite delicate problem, with the only exception

of the stationary ones and the extreme cases n = d and n = 0. In Theorem 9 we prove that (3)
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holds for a wide class of (inhomogeneous) Boolean models and, in particular, we give an explicit

representation of the mean density λΘ in terms of the intensity and of the typical grain of the

process. To this end we recall now the definition (typically standard) of Boolean model and we

refer to [4, 9] for details about point processes and related concepts and results.

Definition 4 (Boolean model) Let Ψ = {xi}i∈N be Poisson point process in R
d with intensity

f and let {Zi}i∈N be a sequence of i.i.d. random compact sets in R
d, which are also independent

of the Poisson process Ψ. Denoting by Z0 a further random compact set of the same distribution

as the Zi’s and independent of both of them and of Φ, the resulting random set

Θ :=
⋃

i

(xi + Zi)

is said (inhomogeneous) Boolean model with intensity f and typical grain Z0.

In our assumptions Z0 will be a lower dimensional random closed set uniquely determined by a

random quantity in a suitable mark space K, so that Z0(s) is a compact subset of R
d containing

the origin for any s ∈ K. We remind that in common literature is usually assumed that

E[card{i : (xi + Zi) ∩ K 6= ∅}] < ∞ ∀ compact K ⊂ R
d (4)

(card stands for cardinality), and that a Boolean model as above can be described by a Poisson

point process in R
d×K with intensity measure Λ(d(x, s)) = f(x)dxQ(ds), where Q is a probability

measure on K representing the distribution of the typical grain.

3 A generalization of the Minkowski content of closed sets

Denoted by bk the volume of the unit ball in R
k, the n-dimensional Minkowski content Mn(S) of

a closed set S ⊂ R
d is defined by

Mn(S) := lim
r↓0

Hd(S⊕r)

bd−nrd−n

whenever the limit exists finite.

General results about the existence of the Minkowski content of closed subsets in R
d are known

in literature, related to rectifiability properties of the involved sets. In particular, the following

theorem is proved in [3] (p. 110).

Theorem 5 Let S ⊂ R
d be a countably Hn-rectifiable compact set and assume that

η(Br(x)) ≥ γrn ∀x ∈ S, ∀r ∈ (0, 1) (5)

holds for some γ > 0 and some Radon measure η in R
d absolutely continuous with respect to Hn.

Then Mn(S) = Hn(S).

Note that such theorem extends the well-known Federer’s result ([11], p. 275) about the existence

of Mn(S) for n-rectifiable compact sets S ⊂ R
d (i.e. S is representable as the image of a compact

subset of R
n by a Lipschitz function from R

n to R
d) to countably Hn-rectifiable compact sets (see

Remark 2.3 in [2]). Moreover, in many applications condition (5) is satisfied with η(·) = Hn(S̃ ∩· )

for some closed set S̃ ⊇ S, and for n = d−1, it is not hard to check that such condition is satisfied

by all sets with Lipschitz boundary (see [2, 3]).

We state now the main result of this section.
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Theorem 6 Let µ be a positive measure in R
d absolutely continuous with respect to Hd with

density f such that

i) f is locally bounded (i.e. supx∈K f(x) < ∞ for any compact K ⊂ R
d);

ii) the set of all discontinuity points of f is Hn-negligible.

Let S ⊂ R
d be a countably Hn-rectifiable compact set such that condition (5) holds for some γ > 0

and some probability measure η in R
d absolutely continuous with respect to Hn. Then

lim
r↓0

µ(S⊕r)

bd−nrd−n
=

∫

S

f(x)Hn(dx).

Remark 7 The above theorem may be seen as a generalization of Theorem 5; indeed, the classical

Minkowski content follows as particular case by choosing f ≡ 1 and noticing that if a Radon

measure η as in Theorem 5 exists, then it can be assumed to be a probability measure without loss

of generality. Indeed, it is sufficient to consider the measure η̃(·) := η(W ∩ · )/η(W ), where W is a

compact subset of R
d such that S⊕1 ⊂ W ; it is clear that η̃ is a probability measure satisfying

η̃(Br(x)) ≥
γ

η(W )
rn ∀x ∈ S, ∀r ∈ (0, 1).

Furthermore, a classical result from geometric measure theory (e.g., see [3] Theorem 2.56) tells

us that if µ is a positive Radon measure on R
d and B ∈ BRd such that

lim sup
r↓0

µ(Br(x))

bnrn
≥ t ∈ (0,∞) ∀x ∈ B,

then µ(·) ≥ tHn(B ∩ ·). Hence, any set S ⊂ R
d as in Theorem 6 has finite Hn-measure.

In order to make the proof of Theorem 6 more readable, we remind that Lemma 15 and Lemma

16 in [1] provide a local version of Theorem 5 and an upper bound for the Minkowski content of

compact sets in R
d, respectively; for our purpose we summarize as follows.

Lemma 8 If S ⊂ R
d is a countably Hn-rectifiable compact set such that condition (5) holds for

some γ > 0 and some finite measure η in R
d absolutely continuous with respect to Hn, then

Hd(S⊕r)

bd−nrd−n
≤

η(Rd)

γ
2n4d bd

bd−n

∀r < 2, (6)

and

lim
r↓0

Hd(S⊕r ∩ A)

bd−nrd−n
= Hn(S ∩ A) (7)

for any A ∈ BRd such that Hn(S ∩ ∂A) = 0.

Proof of Theorem 6. It is well known that, since f ≥ 0, there exists an increasing sequence {fk}k∈N

of step functions

fk(x) =

N(k)∑

j=1

a
(k)
j 1

A
(k)
j

(x), a
(k)
j ≥ 0, N(k) ∈ N,
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converging to f .

By ii), such sequence {fk} can be chosen so that Hn(S ∩ ∂A
(k)
j ) = 0 for all j, k.

Let

gk(r) :=

∫
S⊕r

fk(x)dx

bd−nrd−n
.

We may observe that

(a) lim
r↓0

gk(r) =

N(k)∑

j=1

a
(k)
j lim

r↓0

Hd(S⊕r ∩ A
(k)
j )

bd−nrd−n

(7)
=

N(k)∑

j=1

a
(k)
j Hn(S ∩ A

(k)
j ) =

∫

S

fk(x)Hn(dx).

Since S is compact with Hn(S) < ∞ by Remark 7, and f is locally bounded, it follows that∫

S

fk(x)Hn(dx) < ∞.

(b) lim
k→∞

gk(r) =

∫
S⊕r

f(x)dx

bd−nrd−n
uniformly in (0, 1); indeed:

we have that fk ↑ f uniformly in S⊕r for any r > 0 because f is bounded in S⊕r, being S⊕r

compact, i.e. for all ε > 0 there exists k0 such that

sup
x∈S⊕r

|fk(x) − f(x)| < ε ∀k > k0. (8)

Hence, for any ε > 0, for all k > k0

∣∣∣∣∣gk(r) −

∫
S⊕r

f(x)dx

bd−nrd−n

∣∣∣∣∣ ≤
∫

S⊕r
|fk(x) − f(x)|dx

bd−nrd−n

(8)
< ε

Hd(S⊕r)

bd−nrd−n

(6)

≤ ε
1

γ
2n4d bd

bd−n

∀r ∈ (0, 1).

As a consequence of (a) and (b) limr↓0 limk→∞ gk(r) = limk→∞ limr↓0 gk(r). Thus the following

chain of equalities holds

lim
r↓0

µ(S⊕r)

bd−nrd−n
= lim

r↓0

∫
S⊕r

f(x)dx

bd−nrd−n
= lim

r↓0

∫
S⊕r

limk→∞ fk(x) dx

bd−nrd−n
= lim

r↓0
lim

k→∞

∫
S⊕r

fk(x)dx

bd−nrd−n

= lim
k→∞

lim
r↓0

∫
S⊕r

fk(x)dx

bd−nrd−n

(a)
= lim

k→∞

∫

S

fk(x)Hn(dx) =

∫

S

f(x)Hn(dx).

�

4 Mean density of inhomogeneous Boolean models

Let Θ the Boolean model so defined

Θ(ω) :=
⋃

(xi,si)∈Φ(ω)

xi + Z0(si) ∀ω ∈ Ω,

with Φ Poisson process in R
d × K and Z0 typical grain in R

d, satisfying the usual condition (4)

for Boolean models. To lighten the notations, from now on we denote by

– Zx,s := x − Z0(s) ∀(x, s) ∈ R
d × K;

– δ the random variable on K so defined δ(s) := diamZ0(s), where diam stands for diameter;

– EQ the expectation with respect to the probability measure Q on K.
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Note that the condition (4) is equivalent to

E[Φ({(y, s) ∈ R
d × K : (y + Z0(s)) ∩ BR(0) 6= ∅})] < ∞ ∀R > 0,

and so, in terms of the intensity measure Λ of Φ, to

∫

K

∫

(−Z0(s))⊕R

Λ(dy × ds) < ∞ ∀R > 0, (9)

where −Z0 is the symmetric of Z0 with respect to the origin.

Assumptions: Let Φ have intensity measure Λ(dy×ds) = f(y)dyQ(ds) satisfying (9); further,

let us assume that the following conditions on f and Z0 are fulfilled:

(A1) Z0(s) is a countably Hn-rectifiable compact set in R
d for Q-a.e. s ∈ K. Further there exist

γ > 0 and a random closed set Z̃0 ⊇ Z0 with EQ[Hn(Z̃0)] < ∞ such that, for Q-a.e. s ∈ K,

Hn(Z̃0(s) ∩ Br(x)) ≥ γrn ∀x ∈ Z0(s), ∀r ∈ (0, 1). (10)

(A2) the set of all discontinuity points of f is Hn-negligible and f is locally bounded such that

for any compact set K ⊂ R
d

sup
y∈K⊕δ

f(y) ≤ ξK (11)

holds for some random variable ξK with EQ[Hn(Z̃0)ξK ] < ∞.

Theorem 9 (Main result) Any Boolean model Θ as in Assumptions is absolutely continuous in

mean with mean density λΘ given by

λΘ(x) =

∫

K

∫

Zx,s

f(y)Hn(dy)Q(ds) for Hd-a.e. x ∈ R
d. (12)

Before proving the above theorem, let us make a few observations about the above Assumptions

in order to clarify their level of generality.

• Condition (11) is trivially satisfied whenever f is bounded, or f is locally bounded and

diamZ0 ≤ c ∈ R+ Q-almost surely.

• Assumption (A1) is satisfied by a great deal of typical grains Z0 with Z̃0 = Z0 or Z̃0 = Z0∪Ã,

with Ã sufficiently regular random closed set to control the case when Z0 can be arbitrarily

small (see [1, 23]), and it assures that Z0 is a countably Hn-rectifiable random compact set

with finite expected Hn-measure.

• Stationary case. If Θ is stationary with f ≡ c > 0, then only the regularity assumption

(A1) on the typical grain Z0 is required. Indeed, the assumption (A2) is trivial and the usual

condition (9), which in this case becomes

EQ[Hd((Z0)⊕R)] < ∞ ∀R > 0,

is satisfied thanks to the assumption (A1): for all R < 2 by Lemma 8 with η(·) = Hn(Z̃0 ∩ · )

we have that EQ[Hd((Z0)⊕R)] ≤ E[Hn(Z̃0)]2
n4dbdR

d−n/γ, while for all R ≥ 2, by repeat-

ing the same argument of the proof of the quoted proposition, it is easy to check that

EQ[Hd((Z0)⊕R)] ≤ E[Hn(Z̃0)]2
n(4R)dbd/γ.
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• Deterministic typical grain. If Θ has deterministic typical grain Z0 ⊂ R
d the above

Assumptions can be replaced by: Θ has intensity f and typical grain Z0 = S as in the

hypotheses of Theorem 6. (See Corollary 13 for details.)

Lemma 10 For any Boolean model Θ as in Assumptions, E[µΘ] is a locally finite measure abso-

lutely continuous with respect to Hd.

Proof. For any R > 0 let BR := {(y, s) ∈ R
d × K : (y + Z0(s)) ∩ BR(0) 6= ∅}; then

E[Hn(Θ ∩ BR(0))] = E[E[Hn(Θ ∩ BR(0)) |Φ(BR)]] ≤ EQ[Hn(Z0)]E[Φ(BR)] < ∞

by (9) and condition (A1); so E[µΘ] is locally finite.

By contradiction, let E[µΘ] be not absolutely continuous with respect to Hd; then there exists

A ⊂ R
d with Hd(A) = 0 such that E[Hn(Θ ∩ A)] > 0. In particular,

0 < P(Hn(Θ ∩ A) > 0) ≤ P

( ∑

(xi,si)∈Φ

Hn((xi + Z0(si)) ∩ A) > 0
)

= P(Φ(A) > 0),

where

A := {(y, s) ∈ R
d × K : Hn((y + Z0(s)) ∩ A) > 0)}.

Denoting by As := {y ∈ R
d : (y, s) ∈ A} the section of A at s ∈ K, we may apply Fubini’s

theorem to get
∫

As

Hn((y+Z0(s))∩A)dy =

∫

As

(∫

Z0(s)

1A−y(x)Hn(dx)
)
dy =

∫

Z0(s)

( ∫

As

1A−x(y)dy
)
Hn(dx) = 0,

because Hd(A) = 0. Being the function y 7→ Hn((y + Z0(s)) ∩ A) strictly positive in As, we

conclude that Hd(As) = 0 for all s ∈ K. Then it follows

E[Φ(A)] =

∫

A

Λ(dy × ds) =

∫

K

(∫

As

f(y)dy
)
Q(ds) = 0;

but this is impossible, because P(Φ(A) > 0) > 0 implies E[Φ(A)] > 0. �

Proof of Theorem 9. Clearly Θ is a countably Hn-rectifiable random closed set in R
d, and by

Lemma 10 it is absolutely continuous in mean, so E[µΘ] = λΘHd for some integrable function λΘ

on R
d.

Let W be a fixed compact subset of R
d. For any ω ∈ Ω let us consider the set

Θ̃(ω) :=
⋃

(xi,si)∈Φ(ω)

xi + Z̃0(si)

and the probability measure ηW absolutely continuous with respect to Hn so defined

ηW (B) :=
Hn(Θ̃(ω) ∩ W⊕1 ∩ B)

Hn(Θ̃(ω) ∩ W⊕1)
∀B ∈ BRd .

Note that for any x ∈ Θ(ω) ∩ W⊕1 there exists (x̄, s̄) ∈ Φ(ω) such that x ∈ x̄ + Z0(s̄), and so

ηW (Br(x)) ≥
Hn(Z̃0(s̄) ∩ Br(x − x̄))

Hn(Θ̃(ω) ∩ W⊕1)

(10)

≥
γ

Hn(Θ̃(ω) ∩ W⊕1)
rn ∀r ∈ (0, 1).
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Thus, here the function ΓW (Θ) defined in (1) is such that ΓW (Θ) ≥ γ/Hn(Θ̃∩W⊕1); by the same

argument in the proof of Lemma 10 it is easy to check that E[Hn(Θ̃∩W⊕1)] < ∞, then Theorem 3

applies and we get

E[µΘ](A) = lim
r↓0

∫

A

P(x ∈ Θ⊕r)

bd−nrd−n
dx (13)

for any bounded set A ∈ BRd such that Hd(∂A) = 0.

Let us denote by Zx,r the subset of R
d × K so defined

Zx,r := {(y, s) ∈ R
d × K : x ∈ (y + Z0(s))⊕r} = {(y, s) ∈ R

d × K : y ∈ Zx,s
⊕r },

and observe that ∀x ∈ A, ∀r < 2

P(x ∈ Θ⊕r)

bd−nrd−n
=

P(Φ(Zx,r) > 0)

bd−nrd−n
=

1 − e−Λ(Zx,r)

bd−nrd−n
(14)

≤
Λ(Zx,r)

bd−nrd−n
=

1

bd−nrd−n

∫

K

∫

Z
x,s
⊕r

f(y)dy Q(ds)

≤

∫

K

Hd(Zx,s
⊕r )

bd−nrd−n
sup

y∈A⊕δ(s)+2

f(y)Q(ds)

(6),(11)

≤
2n4dbd

γbd−n

∫

K

Hn(Z̃0(s))ξA⊕2(s)Q(ds)
(A2)
< ∞.

Then by the dominated convergence theorem we can exchange limit and integral in Eq. (13).

Similarly, we have that for all r < 2
∫

Z
x,s
⊕r

f(y)dy

bd−nrd−n
≤

Hd((Z0(s))⊕r)

bd−nrd−n
sup

y∈Z
x,s
⊕r

f(y) ≤
2n4dbd

γbd−n

Hn(Z̃0(s))ξ(s)

for some random variable ξ with EQ[Hn(Z̃0)ξ] < ∞, by (6) and (A2). Then, the dominated

convergence theorem implies that

lim
r↓0

Λ(Zx,r)

bd−nrd−n
=

∫

K

lim
r↓0

∫
Z

x,s
⊕r

f(y)dy

bd−nrd−n
Q(ds) =

∫

K

∫

Zx,s

f(y)Hn(dy)Q(ds), (15)

where the last equality follows by applying Theorem 6 with µ = fHd and S = Zx,s.

Summarizing, we have that for any bounded set A ∈ BRd with Hd(∂A) = 0

E[µΘ(A)] = lim
r↓0

∫

A

P(x ∈ Θ)

bd−nrd−n
dx =

∫

A

lim
r↓0

P(x ∈ Θ)

bd−nrd−n
dx

(14)
=

∫

A

lim
r↓0

1 − e−Λ(Zx,r)

bd−nrd−n
dx =

∫

A

lim
r↓0

Λ(Zx,r) + o(rd−n)

bd−nrd−n
dx

(15)
=

∫

A

(∫

K

∫

Zx,s

f(y)Hn(dy)Q(ds)
)
dx.

We conclude that E[µΘ] has density

λΘ(x) =

∫

K

∫

Zx,s

f(y)Hn(dy)Q(ds) for Hd-a.e. x ∈ R
d.

�
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Remark 11 Formula (12) could also be obtained in a more direct way by the well-known Camp-

bell’s formula (e.g., see [4], p. 28, and [14] for a similar application), after having shown that

E[µΘ](·) = E[
∑

i H
n((xi + Zi) ∩ · )] for any Boolean model Θ as in Assumptions, being zero the

probability that different grains overlap in a subset of R
d of positive Hn-measure. (To show such

property, one could proceed arguing similarly to the final part of the proof of Lemma 10.) On

the other hand, a proof via Campbell’s formula seems not to give any hint to provide computable

estimators for the mean density (see Section 5 for a more detailed discussion).

In the particular cases in which Θ is stationary, or the typical grain Z0 is a deterministic subset

of R
d satisfying the hypotheses of Theorem 5 (with η probability measure by Remark 7), Theorem 9

specializes as follows.

Corollary 12 (Stationary case) Let Θ be a stationary Boolean model with intensity f ≡ c > 0

and typical grain Z0 satisfying the assumption (A1). Then Θ is absolutely continuous in mean with

mean density

λΘ(x) = cEQ[Hn(Z0)] ∀x ∈ R
d.

Proof. We have observed that Θ satisfies the Assumptions and λΘ is constant on R
d. Then the

thesis follows by Theorem 9, noticing that Hn(Zx,s) = Hn(Z0(s)) for all (x, s) ∈ R
d ×K and that

λΘ is constant being E[µΘ] translation invariant. �

Corollary 13 (Deterministic typical grain) Let Θ be a Boolean model in R
d with determinis-

tic typical grain Z0 ⊂ R
d. If the underlying Poisson process Φ in R

d has intensity f locally bounded

and such that the set of all its discontinuity points is Hn-negligible, and if Z0 is a countably Hn-

rectifiable compact set such that condition (5) holds for some γ > 0 and some probability measure

η in R
d absolutely continuous with respect to Hn, then Θ is absolutely continuous in mean with

mean density

λΘ(x) =

∫

Z0

f(x − y)Hn(dy) for Hd-a.e. x ∈ R
d.

Proof. Since Z0 is compact diamZ0 = δ < ∞, and we know by Remark 7 that Hn(Z0) is finite.

Then the assumption (A2) and the condition (9) are easily checked. It follows that E[µΘ] is locally

finite and, by proceeding as in Lemma 10, again we have that E[µΘ] ≪ Hd.

For any y ∈ R
d let ηy be the measure on R

d so defined

ηy(B) := η(B − y) ∀B ∈ BRd .

Let W be a fixed compact subset of R
d and for any ω ∈ Ω consider the measure

η̃(B) :=

∑
xi∈Φ(ω) ηxi(B)1(xi+Z0)∩W⊕1 6=∅

card{xi ∈ Φ(ω) : (xi + Z0) ∩ W⊕1 6= ∅}
∀B ∈ BRd .

Note that

– η̃ is a probability measure absolutely continuous with respect to Hn;

– for any x ∈ Θ(ω) ∩ W⊕1 there exists x̄ ∈ Φ(ω) such that x ∈ x̄ + Z0, and so

η̃(Br(x)) ≥
γ

card{xi ∈ Φ(ω) : (xi + Z0) ∩ W⊕1 6= ∅}
rn ∀r ∈ (0, 1).

10



Then Θ satisfies the hypotheses of Theorem 3 with Y = card{xi ∈ Φ(ω) : (xi +Z0)∩W⊕1 6= ∅}/γ,

which has finite expectation thanks to (9), and so again we have that Eq. (13) holds for any

bounded set A ∈ BRd such that Hd(∂A) = 0. Finally, by proceeding as in the final part of the

proof of Theorem 9 with deterministic Z0, we conclude that (3) still holds and

λΘ(x) =

∫

x−Z0

f(y)Hn(dy) =

∫

Z0

f(x − y)Hn(dy) for Hd-a.e. x ∈ R
d.

�

Remark 14 (The special case n = d − 1) A well known tool in stochastic geometry is the so-

called local spherical contact distribution function, defined as HΘ(r, x) := P(x ∈ Θ⊕r |x 6∈ Θ) for all

(r, x) ∈ R+×R
d (e.g, see [15]). If Θ is a Boolean model as in Assumptions with (d−1)-dimensional

typical grain, then P(x ∈ Θ) = 0 for Hd-a.e. x ∈ R
d, and so the mean density λΘ can be written

in terms of HΘ as well

λΘ(x)
(3)
=

1

2

∂

∂r
HΘ(r, x)|r=0 for Hd-a.e. x ∈ R

d.

Therefore known results about HΘ could be applied to (d − 1)-dimensional Boolean models to

obtain further information on their mean density.

We conclude this section by giving a very simple example of inhomogeneous Boolean model in

R
d, in order to show how the mean density can be easily computed by applying Theorem 9.

Example 1 (Segment Boolean model) For sake of simplicity we consider a Boolean model Θ

of segments in R
2, but a similar example can be done in R

d with d > 2.

So, let K = R+ × [0, 2π] and for all s = (l, α) ∈ K let Z0(s) be the segment with length l and

orientation α so defined

Z0(s) := {(u, v) ∈ R
2 : u = τ cosα, v = τ sin α, τ ∈ [0, l]}.

We consider the case in which both length and orientation are random. Denoting by L the R+-

valued random variable representing the length of Z0 and by PL(dl) its probability law, let Φ be

the marked Poisson process in R
d × K having intensity measure Λ(dy × ds) = f(y)dyQ(ds) with

f(u, v) = u2 + v2 and Q(ds) = 1
2π

dαPL(dl) such that
∫

R+
l3PL(dl) < ∞. (This last assumption is

to guarantee that the usual condition (4) is satisfied; for a different intensity f we might have a

different condition on the moments of L.) It is easily shown [1, 23] that Θ satisfies the assumption

(A1); by noticing that

∫

(−Z0(s))⊕R

f(y)dy ≤ (l + R)2(2lR + πR2) ∀s = (l, α) ∈ K,

it follows that
∫

K

∫

(−Z0(s))⊕R

Λ(dy × ds) ≤

∫

R+

(l + R)2(2lR + πR2)PL(dl) < ∞ ∀R > 0,

so condition (9) (and similarly the assumption (A2)) is satisfied. Hence Theorem 9 applies and we

11



get

λΘ(x1, x2)
(12)
=

∫ ∞

0

1

2π

∫ 2π

0

∫ l

0

f(x1 − τ cosα, x2 − τ sinα)dτ dα PL(dl)

=

∫ ∞

0

1

2π

∫ 2π

0

(
(x2

1 + x2
2)l − (x1 cosα + x2 sin α)l2 +

1

3
l3

)
dα PL(dl)

= (x2
1 + x2

2)E[L] +
1

3
E[L3].

Note that in the particular case f ≡ c > 0, Θ is stationary and by Corollary 12 we obtain the

well known result λΘ(x) = cE[L] ∀x ∈ R
d (cf. [7], p. 42).

5 On the estimation of the mean density

While the problem of the mean density estimation has been widely examined in the stationary case,

the inhomogeneous one has been mainly faced by assuming local stationarity. For instance, Θ is

assumed to have a gradient structure, i.e. it is considered to be homogeneous perpendicularly to a

particular gradient direction (see [13]), or it is assumed to be homogeneous in certain subregions

of R
d, so that the known results in the homogeneous case can be applied to estimate a stepwise

approximation of the mean density λΘ. We also mention that the stationary Boolean model Θ is

often assumed to have unknown constant intensity c > 0 and known mark distribution Q, so that

only the parameter c has to be estimated, being λΘ = cEQ[Hn(Z0)] in this case. A series of results

about the estimation of the intensity c of the underlying Poisson point process associated to Θ,

related to the estimation of λΘ, can be found in [7] §3.4 (see also [17, 22]).

Having now an explicit formula for the mean density of inhomogeneous Boolean models as in

Assumptions, in all situations in which it is possible to estimate the intensity f and the mark

distribution Q of the typical grain Z0, an estimation of λΘ could be obtained. Actually, the

estimation of f and Q as well as the computing of the mean density λΘ(x) at a given point x ∈ R
d

might be quite hard. In this section we introduce an estimator for the mean density λΘ(x) of

Boolean models as in Assumptions in the general case of f and Q unknown.

In the proof of Theorem 9 we have shown, in particular, that λΘ is also given by the limit in

(3) for Hd-a.e. x ∈ R
d. Noticing that P(x ∈ Θ⊕r) = TΘ(Br(x)), where TΘ is the capacity (or

hitting) functional of Θ [16], a natural estimator of λΘ(x) can be given in terms of the empirical

capacity functional of Θ, without estimating the intensity f and the distribution of Z0 separately.

We recall that the empirical capacity functional T̂ N
Ξ based on an i.i.d. random sample Ξ1, . . . , ΞN

of a random closed set Ξ is defined as (see, e.g., [12])

T̂ N
Ξ (K) :=

1

N

N∑

i=1

1Ξi∩K 6=∅, ∀ compact K ⊂ R
d,

and that the strong law of large numbers implies that T̂ N
Ξ (K) converges almost surely to TΞ(K)

for any compact subset K of R
d.

Let Θ be an inhomogeneous Boolean model in R
d as in Assumptions and Θ1, . . . , ΘN be an i.i.d.

random sample of Θ; for any fixed r > 0 we have that

E

[ T̂ N
Θ (Br(x))

bd−nrd−n

]
=

P(x ∈ Θ⊕r)

bd−nrd−n
, var

( T̂ N
Θ (Br(x))

bd−nrd−n

)
=

P(x ∈ Θ⊕r)(1 − P(x ∈ Θ⊕r))

N(bd−nrd−n)2
. (16)
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Hence, (3) and (16) suggest that we take

λ̂N
Θ (x) :=

∑N

i=1 1Θi∩BRN
(x) 6=∅

Nbd−nRd−n
N

, (17)

with RN such that

lim
N→∞

RN = 0 and lim
N→∞

NRd−n
N = ∞, (18)

as asymptotically unbiased and consistent estimator of the mean density λΘ(x) of Θ at point x.

Proposition 15 Let Θ be a Boolean model in R
d as in Assumptions and {Θi}i∈N be a sequence

of random closed sets i.i.d. as Θ; then

lim
N→∞

λ̂N
Θ (x) = λΘ(x) in probability, for Hd-a.e. x ∈ R

d.

Proof. By the definition of λ̂N
Θ it follows

lim
N→∞

E[λ̂N
Θ (x)] = lim

N→∞

P(x ∈ Θ⊕RN
)

bd−nRd−n
N

(3)
= λΘ(x) for Hd-a.e. x ∈ R

d.

We check now that the variance of λ̂N
Θ (x) goes to 0. Since

lim
N→∞

P(x ∈ Θ⊕RN
) = P(x ∈ Θ) = 0 for Hd-a.e. x ∈ R

d because n < d,

lim
N→∞

P(x ∈ Θ⊕RN
)

bd−nRd−n
N

= λΘ(x) ∈ R for Hd-a.e. x ∈ R
d by (3),

and

lim
N→∞

1

NRd−n
N

= 0 by (18),

we have that for Hd-a.e. x ∈ R
d

lim
N→∞

var(λ̂N
Θ (x)) = lim

N→∞

NP(x ∈ Θ⊕RN
)(1 − P(x ∈ Θ⊕RN

))

(Nbd−nRd−n
N )2

= 0.

Hence the thesis follows. �

Then, a problem of statistical interest could be to find the optimal width RN satisfying condition

(18) which minimizes the mean squared error of λ̂N
Θ (x) (i.e. E[(λ̂N

Θ (x) − λΘ(x))2]). To investigate

this problem is not the aim of the present paper and we leave this as open problem for further

developments; we point out here that λ̂N
Θ can be seen as the generalization to the case of n-

dimensional random closed sets, of the well known estimator of the probability density of a random

point, which is a particular 0-dimensional random closed set.

Remark 16 (The special case n = 0) Even if the particular case n = 0 can be handle with

much more elementary tools, it is easy to check that if Θ = X is a random point in R
d with

probability density function fX , Eq. (3) holds with λX = fX (it is sufficient to observe that

E[H0(X ∩ · )] = P(X ∈ · )) and the estimator λ̂N
X turns to be closely related to the well known

definition of histogram (see [23] for details). Let us consider the case of a random variable X with

density fX ; then Proposition 15 applies with d = 1 and n = 0, making explicit the correspondence
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with the usual density estimation by means of histograms (e.g., see [18] §VII.13). Indeed, if {Xi}i∈N

is a sequence of i.i.d. random variables with the same distribution of X , we define

f̂X(x) := λ̂N
X(x)

(17)
=

∑N

i=1 1BRN
(x)(Xi)

Nb1RN

=
card{i : Xi ∈ Ix}

N |Ix|
,

where Ix is the interval in R centered in x with length |Ix| = 2RN with the usual condition

|Ix| −→ 0 and N |Ix| −→ ∞ as N → ∞.

Therefore, statistical problems and techniques related to the choice of the “optimal width” RN in

the general case N > 0 could be investigated starting from available results for random variables.

We conclude observing how the following corollary of Theorem 9, which could lead to further

developments on this topic and on the estimation of the mean density, is consistent with a couple

of available results in literature.

Corollary 17 Any Boolean model Θ as in Assumptions is absolutely continuous in mean with

mean density

λΘ(x) = lim
r↓0

E[card{(xi, si) ∈ Φ : (xi + Z0(si)) ∩ Br(x) 6= ∅}]

bd−nrd−n
for Hd-a.e. x ∈ R

d. (19)

Proof. The assertion follows directly by (15), noticing that Λ(Zx,r) = E[card{(xi, si) ∈ Φ :

(xi + Z0(si)) ∩ Br(x) 6= ∅}]. �

By Proposition 21 in [1] we get that for a locally finite union Θ of i.i.d. random closed sets Ei

with Hausdorff dimension n < d it holds

lim
r↓0

P(x ∈ Θ⊕r)

bd−nrd−n
= lim

r↓0

E[card{Ei : Ei ∩ Br(x) 6= ∅}]

bd−nrd−n
for Hd-a.e. x ∈ R

d, (20)

provided that at least one of the two limits exists. On the other hand, in [20] the mean density of a

class of nonstationary n-flat processes is studied and a similar result to (19) is obtained. Namely,

we remind that a n-flat process in R
d (with n integer less than d) is a point process X on Ed

n,

the space of n-dimensional planes in R
d; it is proved that if the intensity measure of X has a

continuous density h with respect to some translation-invariant, locally finite measure on Ed
n, then

the n-dimensional random closed set Θ :=
⋃

E∈X E has continuous mean density

λΘ(x) =

∫

Ld
n

h(x + L)Ψ(dL),

where Ld
n is the Grassmannian of n-dimensional linear subspaces in R

d and Ψ is a finite measure

on Ld
n coming from a decomposition result of the intensity measure of X , and in particular it is

claimed that (see [20], p. 142, or [4], p. 179)

λΘ(x) = lim
r↓0

E[card{E ∈ X : E ∩ Br(x) 6= ∅}]

bd−nrd−n
.

We may like to notice that Theorem 3 applies to n-flat process; hence we are lead to conjecture

that the exchange between limit and integral in (2) may hold for further processes Θ =
⋃

i Ei,

union of i.i.d. n-dimensional random closed sets, so that Proposition 15 and, by (20), Corollary 17,

could be extended to this kinds of random closed sets.
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