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Abstract

Many real phenomena may be modelled as random closed sets in Rd, of different Hausdorff dimen-
sions. Of particular interest are cases in which their Hausdorff dimension, say n, is strictly less than
d, such as fiber processes, boundaries of germ-grain models, and n-facets of random tessellations.
A crucial problem is the estimation of pointwise mean densities of absolutely continuous, and spa-
tially inhomogeneous random sets, as defined by the authors in a series of recent papers. While the
case n = 0 (random vectors, point processes, etc.) has been, and still is, the subject of extensive
literature, in this paper we face the general case of any n < d; pointwise density estimators which
extend the notion of kernel density estimators for random vectors are analyzed, together with a
previously proposed estimator based on the notion of Minkowski content. In a series of papers,
the authors have established the mathematical framework for obtaining suitable approximations of
such mean densities. Here we study the unbiasedness and consistency properties, and identify op-
timal bandwidths for all proposed estimators, under sufficient regularity conditions. We show how
some known results in literature follow as particular cases. A series of examples throughout the
paper, both non-stationary, and stationary, are provided to illustrate various relevant situations.

Keywords: density estimator, kernel estimate, stochastic geometry, random closed set, Hausdorff
dimension, Minkowski content
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1. Introduction

Given an Euclidean space Rd, the problem of the evaluation and the estimation of the mean
density of lower dimensional random closed sets (i.e. with Hausdorff dimension less than d),
such as fibre processes and surfaces of full dimensional random sets, has been of great interest
in many different scientific and technological fields over the last decades [7, 18]; recent areas of
interest include pattern recognition and image analysis [43, 24], computer vision [48], medicine
[1, 13, 14, 15], material science [12], etc.
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The papers [11, 16] offer examples of the intrinsic relevance of local approximation of mean den-
sities of random closed sets with lower Hausdorff dimension in stochastic homogenization problems
arising in applications.

We remind that, given a probability space (Ω,F,P), a random closed set Θ in Rd is a measurable
map

Θ : (Ω,F) −→ (F, σF),

where F denotes the class of the closed subsets in Rd, and σF is the σ-algebra generated by the so
called Fell topology, or hit-or-miss topology, that is the topology generated by the set system

{FG : G ∈ G} ∪ {FC : C ∈ C}

where G and C are the system of the open and compact subsets of Rd, respectively (e.g., see [38]).
We say that a random closed set Θ : (Ω,F) → (F, σF) satisfies a certain property (e.g., Θ has
Hausdorff dimension n) if Θ satisfies that property P-a.s.; throughout the paper we shall deal
with countably Hn-rectifiable random closed sets (we denote by Hn the n-dimensional Hausdorff
measure).
Let Θn be a set of locally finite Hn-measure; then it induces a random measure µΘn defined by

µΘn(A) := Hn(Θn ∩A), A ∈ BRd ,

(BRd is the Borel σ-algebra of Rd), and the corresponding expected measure

E[µΘn ](A) := E[Hn(Θn ∩A)], A ∈ BRd .

For a discussion of the measurability of the random variables µΘn(A), we refer to [6, 55].
Whenever the measure E[µΘn ] is absolutely continuous with respect to the measure Hd on Rd, its
density (i.e. its Radon-Nikodym derivative) with respect to Hd has been called mean density of
Θn. In this case we say that the random set Θn is absolutely continuous in mean, and we shall
denote its mean density by λΘn [17, 19].

The aim of the present paper consists of providing a rigorous mathematical background for
the estimation of the mean density of a random closed set Θn, of Hausdorff dimension n less
than d, based on an i.i.d. sample Θ1

n, ....,Θ
N
n for Θn. In particular we will analyze two different

mean density estimators and their statistical properties, the first of which is a direct extension
of the kernel estimators of probability densities of random vectors, while the second one, already
introduced in [51] and [52], is based on the notion of n-dimensional Minkowski content of sets.
We have felt of interest to report here a discussion about an additional density estimator that
naturally derives from the Besicovitch derivation theorem (see e.g. [4]); anyway we observe that it
can be seen as a particular case of the kernel estimator.

As in the classical literature referring to the case of random variables, we have paid a particular
attention to the identification of an optimal bandwidth, for a given sample size N.
We will show how the theory developed here extends the classical one for absolutely continuous
random variables and random vectors [40, 42] (for a general treatment see e.g. [45, 46, 9]), and for
point processes (see e.g. [26], [20, page 629], and the recent paper [50]). See also [23] and [54] for
a survey of additional foundational papers.

The required mathematical background regarding the global and local approximation of mean
densities of random closed sets has been carried out with great detail in a series of papers by
Capasso and Villa (see [2, 17, 18, 19, 52], and references therein).
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In Section 2 we recall basic definitions and relevant notations, leaving to the Appendix a concise
account of basic classical results. In Section 3 we present the main statistical properties of the kernel
type estimator, and face the problem of the identification of an optimal bandwidth. Section 4 is
devoted to the “Minkowski content”-based estimator. For a better readability of the main results,
we have left the proofs of the main theorems to Section 7. As a simple example of applicability of
the results presented here, we consider in Section 5 an inhomogeneous Boolean model of segments
already introduced in previous literature (see e.g. [52, Example 2] and [7, page 86]); we provide

explicit expressions of the optimal bandwidth rN associated both to λ̂ν,N
Θn

and to λ̂µ,N
Θn

. Hints for
further analysis are provided in the concluding remarks (Section 6).

2. Basic notation and definitions

Throughout the paper Hn is the n-dimensional Hausdorff measure, dx stands for Hd(dx), and
BX is the Borel σ-algebra of any space X . Br(x), bn and Sd−1 will denote the closed ball with
centre x and radius r > 0, the volume of the unit ball in Rn and the unit sphere in Rd, respectively.
For any function f , discf will denote the set of its discontinuity points.

In Appendix A.2 basics on point process theory are recalled; in particular we recall that every
random closed set in Rd can be represented as a germ-grain model; therefore we shall consider
here random sets Θ described by marked point processes Φ = {(ξi, Si)}i∈N in Rd with marks in a
suitable mark space K so that Zi = Z(Si), i ∈ N is a random set containing the origin:

Θ(ω) =
∪

(xi,si)∈Φ(ω)

xi + Z(si), ω ∈ Ω. (1)

We remind that, whenever Φ is a marked Poisson point process, Θ is said to be a Boolean model.
In this paper we shall denote by Θn a random closed set in Rd with integer dimension 0 ≤ n < d,
represented as in (1), where Φ has intensity measure Λ(d(x, s)) = λ(x, s)dxQ(ds) and second
factorial moment measure ν[2](d(x, s, y, t)) = g(x, s, y, t)dxdyQ[2](d(s, t)), while the grains Zi are
countably Hn-rectifiable. (For a brief summary on basic notions of geometric measure theory, see
Appendix A.3.)

Within the mathematical framework provided in [2] and in [52, Theorem 7], regularity assump-
tions on Θn have been given, ensuring a local approximation of its mean density λΘn(x). Since
such assumptions are instrumental throughout this paper, we report here a key result proven in
[52].

Theorem 1. Let Θn be a random closed set in Rd with integer Hausdorff dimension 0 ≤ n < d as
in (1), where Φ has intensity measure Λ(d(x, s)) = λ(x, s)dxQ(ds) and second factorial moment
measure ν[2](d(x, s, y, t)) = g(x, s, y, t)dxdyQ[2](d(s, t)) such that the following assumptions are
fulfilled:

(A1) for any (y, s) ∈ Rd × K, y + Z(s) is a countably Hn-rectifiable and compact subset of Rd,
such that there exists a closed set Ξ(s) ⊇ Z(s) such that

∫
K
Hn(Ξ(s))Q(ds) < ∞ and

Hn(Ξ(s) ∩Br(x)) ≥ γrn ∀x ∈ Z(s), ∀r ∈ (0, 1)

for some γ > 0 independent of y and s;

3



(A2) for any s ∈ K, Hn(disc(λ(·, s))) = 0 and λ(·, s) is locally bounded such that for any compact
K ⊂ Rd

sup
x∈K⊕diam(Z(s))

λ(x, s) ≤ ξ̃K(s)

for some ξ̃K(s) with ∫
K

Hn(Ξ(s))ξ̃K(s)Q(ds) < ∞

(A3) for any (s, y, t) ∈ K × Rd × K, Hn(disc(g(·, s, y, t))) = 0 and g(·, s, y, t) is locally bounded
such that for any compact K ⊂ Rd and a ∈ Rd,

1(a−Z(t))⊕1
(y) sup

x∈K⊕diam(Z(s))

g(x, s, y, t) ≤ ξa,K(s, y, t)

for some ξa,K(s, y, t) with∫
Rd×K2

Hn(Ξ(s))ξa,K(s, y, t)dyQ[2](ds, dt) < ∞. (2)

Then

λΘn(x) = lim
r↓0

P(x ∈ Θn⊕r )

bd−nrd−n
, Hd-a.e. x ∈ Rd. (3)

For a discussion on the above assumptions we refer to [52, Sec. 3.1]; we recall just here that if Θn

is a Boolean model, then (A3) is a consequence of (A1) and (A2). It is worth recalling also that by
[52, Remark 4] and [52, Proposition 5], if Θn is a random closed set as above satisfying assumption
(A1), then E[µΘn

] is locally bounded and absolutely continuous with respect to Hd, with density

λΘn
(x) =

∫
K

∫
x−Z(s)

λ(y, s)Hn(dy)Q(ds), for Hd-a.e x ∈ Rd. (4)

We may notice that, if n = 0 and Θ0 = X is an absolutely continuous random vector with pdf
fX , we have E[µΘ0(A)] = E[H0(X ∩ A)] = P(X ∈ A) =

∫
A
fX(y)dy, for any Borel set A ⊂ Rd,

therefore λΘ0 ≡ fX , and, as a consequence, Eq. (3) reduces to

λΘ0(x) = lim
r↓0

P(x ∈ X⊕r)

bdrd
= lim

r↓0

P(X ∈ Br(x))

bdrd
= fX(x), Hd-a.e. x ∈ Rd, . (5)

It is then well known that (5) leads to either the histogram, or to the kernel estimators for the
pdf fX (see Appendix A.1). By taking all the above into account, we will deal with two kinds of
estimators for the mean density λΘn(x), for any 0 ≤ n < d; the first one as an extension of classical
kernel density estimators, and the other one based on (3), as in [52] (see also Appendix A.3).
Namely, given an i.i.d. random sample Θ1

n, . . . ,Θ
N
n of the random closed set Θn, we will analyze

here the following estimators:

• Kernel estimator λ̂κ,N
Θn

(x)
as a natural extension of the kernel estimator for the probability density of a random vector
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(see (A.4)), we define as kernel estimator of the mean density λΘn
(x) of Θn, at a point

x ∈ Rd, the function

λ̂κ,N
Θn

(x) :=
1

N

N∑
i=1

krN ∗ Hn
|Θi

n

(x) =
1

NrdN

N∑
i=1

∫
Θi

n

k
(x− y

rN

)
Hn(dy), (6)

where k is a multivariate kernel on Rd;

• “Minkowski content”-based estimator λ̂κ,N
Θn

(x)
as a natural byproduct of (3), we define as “Minkowski content”- based estimator of the mean
density λΘn(x) of Θn, at a point x ∈ Rd, the function (firstly introduced in [51])

λ̂µ,N
Θn

(x) :=

∑N
i=1 1Θi

n∩BrN (x) ̸=∅

Nbd−nr
d−n
N

. (7)

• Natural estimator λ̂ν,N
Θn

(x).
For the sake of completeness, we explicitly mention an additional estimator, directly deriving
from the definition of density of a measure. Namely, we may notice that, if E[µΘn ] ≪ Hd,
by the Besicovitch derivation theorem (e.g., see [4, Theorem 2.22]), we get

λΘn(x) = lim
r↓0

E[Hn(Θn ∩Br(x))]

bdrd
Hd-q.o. x ∈ Rd;

therefore, given an i.i.d. sample Θ1
n, ...,Θ

N
n for Θn, the above approximation suggests to

define as natural estimator λ̂ν,N
Θn

(x) of the mean density λΘn(x) of Θn, at a point x ∈ Rd,
the function

λ̂ν,N
Θn

(x) :=
1

NbdrdN

N∑
i=1

Hn(Θi
n ∩BrN (x)).

Remark 2. The well known kernel density estimators for random vectors, as defined in (A.4),

follows now as the particular case of λ̂κ,N
Θn

(x) for random closed sets of Hausdorff dimension n = 0.

Furthermore, we may easily recognize that λ̂ν,N
Θn

(x) can be obtained as a particular case of the

kernel estimator λ̂κ,N
Θn

(x) by choosing as kernel the function

k(z) =
1

bd
1B1(0)(z).

It is not difficult to realize that such an argument does not apply to the “Minkowski content”-
based estimator defined in (7), which seems not reducible to a particular case of kernel estimators.

Anyhow it is worth noticing that both λ̂ν,N
Θn

(x) and λ̂µ,N
Θn

(x) reduce to the usual histogram density
estimator if n = 0, and Θ0 = X is a real random variable

λ̂ν,N
X (x) = λ̂µ,N

X (x) =
1

N2rN

N∑
i=1

1[x−rN ,x+rN ](Xi),

where X1, . . . , XN is an i.i.d. random sample for X. In the d-dimensional case, both kinds of
estimators coincide with the so-called naive kernel estimator (the one given by k(z) = 1

bd
1B1(0)(z)),

in the case n = 0, when Θ0 is a random vector.
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In [52, Corollary 13], it has already been proven that, under the assumptions (A1), (A2) and

(A3), λ̂µ,N
Θn

(x) is asymptotically unbiased and weakly consistent, for Hd-a.e. x ∈ Rd, if rN is such
that

lim
N→∞

rN = 0 and lim
N→∞

Nrd−n
N = ∞. (8)

In order to prove relevant statistical properties of the estimators of the mean densities of ran-
dom closed sets introduced above, and to face the problem of finding the corresponding optimal
bandwidths, we shall require that the involved sets satisfy analogous regularity conditions.

3. Statistical properties and optimal bandwidths of λ̂κ,N
Θn

(x)

As anticipated in the introduction, the proofs of the main results are left to Section 7, so to let
the reader follow the “leit motiv” of our treatment.

It is worth noticing that according to [43, page 589] “It is well known that the value of the band-
width is of critical importance, while the shape of the kernel function has little practical impact”.
This may justify our own choice of kernels of easier analytical treatment, while concentrating on
the analysis of optimal bandwidths.

3.1. Bias and variance

Theorem 3 (Asymptotic unbiasedness). Let Θn satisfy assumptions (A1) and (A2), and
{Θi

n}i∈N be a sequence of random closed sets i.i.d. as Θn. Let k be a kernel with compact support

(defined as in Definition A.2); then the kernel density estimator λ̂κ,N
Θn

(x) of λΘn(x) defined by (6)
is asymptotically unbiased, i.e.

lim
N→∞

E[λ̂κ,N
Θn

(x)] = λΘn(x), for Hd-a.e. x ∈ Rd,

if limN→∞ rN = 0.

Proof. See Section 7. �
In order to prove also the weak consistency of λ̂κ,N

Θn
(x), we require the following additional

regularity assumptions on Θn, closely related to the assumptions (A1) and (A3),

(A1) for any (y, s) ∈ Rd × K, y + Z(s) is a countably Hn-rectifiable and compact subset of Rd,
such that there exists a closed set Ξ(s) ⊇ Z(s) such that

∫
K
Hn(Ξ(s))Q(ds) < ∞ and

γrn ≤ Hn(Ξ(s) ∩Br(x)) ≤ γ̃rn ∀x ∈ Z(s), r ∈ (0, 1)

for some γ, γ̃ > 0 independent of y and s;

(A3) for any s, t ∈ K , g(·, s, ·, t) is locally bounded such that, for any C,C ⊂ Rd compact sets:

sup
y∈C⊕diamZ(t)

sup
x∈C⊕diamZ(s)

g(x, s, y, t) ≤ ξC,C(s, t)

for some ξC,C(s, t) with∫
K2

Hn(Ξ(s))Hn(Ξ(t))ξC,C(s, t)Q[2](ds,dt) < ∞. (9)
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Note that (A1) is just the assumption (A1), together with the condition that the grains of the
germ-grain model Θn are n-Alfhors regular; moreover, the assumptions (A1) and (A1) might be
regarded as the stochastic version of (A.7) and (A.8), respectively, well known in geometric mea-
sure theory (see Appendix A.3).

The following proposition tells us the relationship between the assumptions (A3) and (A3).

Proposition 4. If (A1) is satisfied, then (9) =⇒ (2).

Proof. See Section 7. �

Remark 5 (Particular case: Boolean models). If Θn is a Boolean model with intensity mea-
sure Λ(d(x, s)) = λ(x, s)dxQ(ds), then g(x, s, y, t) = λ(x, s)λ(y, t) and Q[2](d(s, t)) = Q(ds)Q(dt);

thus it is easy to check that (9) holds with ξC,C(s, t) := ξ̃C(s)ξ̃C(t), and so (A3) is implied by (A2).

We are now ready to provide an upper bound for the variance of the kernel estimator λ̂κ,N
Θn

(x).

Theorem 6 (Upper bound for the variance). Let Θn satisfy assumptions (A1), (A2) and
(A3), and {Θi

n}i∈N be a sequence of random closed sets, i.i.d. as Θn. Let k be a kernel with
compact support, supp(k) ⊆ BR(0), defined as in Definition A.2; then, for N sufficiently large so
that rN ≤ min{1, 1/2R},

V ar(λ̂κ,N
Θn

(x)) ≤ Mγ̃2nRn

Nrd−n
N

∫
K

Hn(Ξ(s))ξ̃BR(x)(s)Q(ds)

+
1

N

∫
K2

Hn(Ξ(s))Hn(Ξ(s̃))ξBR(x),BR(x)(s, s̃)Q[2](ds, ds̃).

Proof. See Section 7. �
By Theorem 3 and Theorem 6, we may directly state the following

Corollary 7. Let Θn satisfy assumptions (A1), (A2) and (A3), and {Θi
n}i∈N be a sequence of

random closed sets, i.i.d. as Θn. Let k be a kernel with compact support, supp(k) ⊆ BR(0),
defined as in Definition A.2; if rN is such that

lim
N→∞

rN = 0 and lim
N→∞

Nrd−n
N = ∞, (10)

then the kernel density estimator λ̂κ,N
Θn

(x) of λΘn
(x), defined by (6), is weakly consistent for Hd-

a.e. x ∈ Rd.

Note that the above conditions on rN are the same required for the weak consistency of the
“Minkowski content”-based estimator λ̂κ,N

Θn
(x) (see (8)).

3.2. Optimal bandwidths

As mentioned above, a crucial problem of statistical interest is the choice of an optimal band-
width rN . As usual, we will look for an rN which minimizes the asymptotic mean square error
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(AMSE); the optimal bandwidth known in literature for the kernel density estimation of a random
variable will follow here as a particular case (see Corollary 12).

To fix the notation, in the sequel α := (α1, ..., αd) will be a multi-index of Nd
0; we will denote

|α| := α1 + · · ·+ αd

α! := α1! · · ·αd!
yα := yα1

1 · · · yαd

d

Dα
y λ(y, s) :=

∂|α|λ(y, s)

∂yα1
1 · · · ∂yαd

d

;

furthermore, for all s ∈ K, we will denote

D(α)(s) := disc(Dα
y λ(y, s)), D(s) := disc(λ(·, s)).

The (well known in geometric measure theory) notion of approximate tangent space to any Hn-
rectifiable compact set A of Rd at a point x ∈ A (see Appendix A.3), will arise in the approximation

of the variance of λ̂κ,N
Θn

(x). In the following theorem we assume that λ(·, s) is twice differentiable
at least; for sake of simplicity, we also assume that k is continuous (the non-continuous case is
discussed in Remark 9).
Note that the assumption (A2bis) below will play the same role of the assumption (A2), and it is
trivially satisfied if Dα

y λ(y, s) are bounded.

Theorem 8 (Main theorem). In addition to the hypotheses of Theorem 6, we assume that the
kernel k is continuous, and that the following assumption is fulfilled, for |α| = 2,

(A2bis) for any s ∈ K, Hn(D(α)(s)) = 0 and Dα
y λ(y, s) is locally bounded such that for any compact

C ⊂ Rd

sup
y∈C⊕diamZ(s)

|Dα
y λ(y, s)| ≤ ξ̃

(α)
C (s)

for some ξ̃
(α)
C (s) with ∫

K

Hn(Ξ(s))ξ̃
(α)
C (s)Q(ds) < ∞.

Then, for Hd-a.e. x ∈ Rd,

Bias(λ̂κ,N
Θn

(x)) = CBias(x)r
2
N + o(r2N ) (11)

V ar(λ̂κ,N
Θn

(x)) =
CV ar(x)

Nrd−n
N

+ o(
1

Nrd−n
N

), (12)

with

CBias(x) :=
∑
|α|=2

1

α!

∫
Rd

k(z)zαdz

∫
K

∫
x−Z(s)

Dα
y λ(y, s)Hn(dy)Q(ds), (13)

CV ar(x) :=

∫
K

∫
Rd

∫
x−Z(s)

∫
πx,s
y

k(z)k(z + w)λ(y, s)Hn(dw)Hn(dy)dzQ(ds), (14)

where πx,s
y ∈ Gn is the approximate tangent space to x− Z(s) at y ∈ x− Z(s).
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Proof. See Section 7. �

Remark 9. By Theorem A.5 in Appendix A.3, it follows that the limit in (33) in the proof of
the above theorem (and so its assertion well) holds also in the case the kernel k is not necessarily
continuous, provided that

Hn
|πx,s

y
(disc(k(z + · )) = 0, (15)

for any s ∈ K, z ∈ supp(k), and Hn-a.e. y ∈ x − Z(s). Such a condition is trivially fulfilled in
several cases of interest in applications; for instance, if Z(s) is a sufficiently regular curve in Rd,
it follows that πx,s

y is a line in Rd for any s ∈ K, x ∈ Rd, and H1-a.e. y ∈ x− Z(s), and so (15)

is satisfied by the kernel k(z) = 1
bd
1B1(0)(z), which is of particular interest among all kernels with

compact support (see Remark 2).

It may be proved that the the above results hold for kernels k with non-compact support too,
provided that the assumptions (A2) and (A3) are replaced by suitable integrability conditions on
k, λ and g which allow to apply again the Dominated Convergence Theorem.
Actually, in practical applications it is commonly assumed that λ, its partial derivatives Dα

x , and
g are bounded; under such assumptions, if k has compact support, (A2) and (A3) simplify. More
precisely, the integrability conditions expressed in (A2) and (A2bis) are trivially satisfied by (A1);
moreover, (A3) is a consequence of (A1) whenever Q[2](ds,dt) = Q(ds)Q(dt). Examples of point
processes having bounded both intensity and second moment density are provided in [52, Example
2]. A relevant particular case of bounded intensity λ is discussed in the Section 3.3.3.

3.2.1. Pointwise optimal bandwidth

The mean square error MSE(λ̂κ,N
Θn

(x)) of λ̂κ,N
Θn

(x), defined as usual by

MSE(λ̂κ,N
Θn

(x)) := E[(λ̂κ,N
Θn

(x)− λΘn(x))
2],

is given by
MSE(λ̂κ,N

Θn
(x)) = Bias(λ̂κ,N

Θn
(x))2 + V ar(λ̂κ,N

Θn
(x)),

so that, from (11) and (12), the following asymptotic approximation of the mean square error
follows

MSE(λ̂κ,N
Θn

(x)) = C2
Bias(x)r

4
N +

1

Nrd−n
N

CV ar(x) + o(r4N ) + o
( 1

Nrd−n
N

)
, as N → +∞. (16)

Hence

AMSE(rN ) = C2
Bias(x)r

4
N +

1

Nrd−n
N

CV ar(x).

Thus, by defining the optimal bandwidth ro,AMSE
N (x) associated to a point x ∈ Rd as

ro,AMSE
N (x) := argmin

rN

AMSE(rN ),

it is easy to obtain

ro,AMSE
N (x) = 4+d−n

√
(d− n)CV ar(x)

4NC2
Bias(x)

, Hd-a.e.x ∈ Rd, (17)
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for any fixed sample size N (sufficiently large so to guarantee the asymptotic properties of λ̂κ,N
Θn

),
provided that CBias(x) ̸= 0.

We may observe that, if CBias(x) = 0, the above equation does not apply; in such a case one
should use additional terms in the bias expansion. Of course this might complicate the solution
for the optimal bandwidth; we refer to [44] for a more detailed discussion of such a problem in the
particular case of random variables. We point out that a case of particular interest which cannot
be solved by adding additional terms in the bias expansion, is the one in which the germ grain
process Θn is stationary, that is when λ is constant (see Section 3.3.3).

In accordance with Theorem 6, by (10) and (16) we have that MSE goes to 0 as N → ∞; hence,
by (17), the optimal bandwidth goes to 0 as N−1/(4+d−n).

We also point out that ro,MSE
N (x) depends on the unknown intensity λ and the probability measure

Q. As for the case n = 0, which has been recalled in Appendix A.1, methods for estimating the
intensity λ and the probability measure Q are required. This problem is a subject for further
investigation. The reader may refer to [20, p. 770 and followings], [39, p. 77 and followings] and
[47] for related inference problems regarding Boolean models.

3.2.2. Uniform optimal bandwidth

It is of interest to provide a uniform (or global) optimal bandwidth for the estimate of the
mean density λΘn , in any given window W, a compact subset of Rd. As for the random variables,

we introduce the integrated mean square error of λ̂κ,N
Θn

in W, so defined

MISE[λ̂κ,N
Θn

(W )] :=

∫
W

MSE[λ̂κ,N
Θn

(x)]dx

=

∫
W

[Bias(λ̂κ,N
Θn

(x))]2dx+

∫
W

V ar(λ̂κ,N
Θn

(x))dx. (18)

By proceeding along the same lines of Theorem 8, we can prove the following.

Proposition 10. Under the hypotheses of Theorem 8, for any compact set W in Rd,

MISE(λ̂κ,N
Θn

(W )) = c2Bias(x)r
4
N +

1

Nrd−n
N

cV ar(x) + o(r4N ) + o
( 1

Nrd−n
N

)
, as N → +∞,

where

c2Bias :=

∫
W

C2
Bias(x)dx, and cV ar :=

∫
W

CV ar(x)dx.

Proof. See Section 7. �
By the proposition above, we get the following asymptotic approximation of MISE(λ̂κ,N

Θn
(W ))

AMISE(λ̂κ,N
Θn

(W )) := c2Bias(x)r
4
N +

1

Nrd−n
N

cV ar(x), as N → +∞.

Thus, by defining the uniform optimal bandwidth ro,AMISE
N,W in W as

ro,AMISE
N,W := argmin

rN

AMISE(λ̂κ,N
Θn

(W )),

10



we may easily derive

ro,AMISE
N,W = 4+d−n

√
(d− n)cV ar

4Nc2Bias

, (19)

for any given sample size N, sufficiently large.

Remark 11. We point out that we need to introduce a compact window W in the definition of the
MISE of the kernel estimator λ̂κ,N

Θn
because, in general,

∫
A
MSE[λ̂κ,N

Θn
(x)]dx = ∞, for unbounded

subsets A of Rd. As a matter of fact, in the particular case of a point process Θ0 = Ψ in Rd (see
Section 3.3.2 below), we may notice that, for instance, in order to evaluate cV ar it emerges the
evaluation of E[Ψ(W )], i.e. the mean number of points in W, which may diverge for non compact
windows W. Clearly then, in the particular case of random variables (discussed in Section 3.3.1)
the above results hold also for non-necessarily compact subsets of Rd; indeed a random vector X
in Rd may be seen as a point process Ψ with only one point, and so E[Ψ(A)] = P(X ∈ A) ≤ 1 for
any A ⊆ Rd.

3.3. Particular cases

3.3.1. Random variables

The next corollary shows how already known results for kernel density estimates of the pdf of
absolutely continuous random variables (see Appendix A.1), follow as particular cases.

Corollary 12. Let X be a random variable with pdf fX ∈ C2; then the well-known pointwise
optimal bandwidth given in (A.2), and the well-known global optimal bandwidth given in (A.3),
follow now by (17) and by (19), respectively, as a particular case.

Proof. We observed that if n = 0 and Θ0 = X is an absolutely continuous random vector with pdf
fX , then λΘ0 ≡ fX . In order to apply the above results, let us consider X as the trivial germ-grain
process driven by the marked point process Φ = {(X, s)} in R with mark spaceK = R, consisting of
one point (X) only, with grain Z(s) := s, and intensity measure Λ(d(y, s)) = f(y)dyδ0(s)ds (hence
λX(x) = f(x), in accordance with (4), as expected). It is clear that the hypotheses of Theorem 8
are fulfilled, being (A1), (A2), (A3) and (A2bis) trivially satisfied by choosing Ξ(s) = Z(s), and
γ = γ̃ = 1, and observing that f, f ′ and f ′′ are continuous by hypothesis, and g ≡ 0. Thus,

CBias(x)
(13)
=

1

2

∫
R
k(z)z2dz

∫
R

∫
x−s

f ′′(y)H0(dy)δ0(s)ds =
1

2
f ′′(x)

∫
R
k(z)z2dz,

CV ar(x)
(14)
=

∫
R

∫
R

∫
x−s

∫
0

k(z)k(z + w)f(y)H0(dw)H0(dy)dzδ0(s)ds = f(x)

∫
R
k2(z)dz,

so that, by (17) with d = 1, n = 0, we reobtain

ro,AMSE
N (x) = 5

√
CV ar(x)

4NC2
Bias(x)

= (A.2).

11



With regard to the global optimal bandwidth, it is sufficient to observe that, in this case,

4Nc2Bias = 4N

∫
R

(1
2
f ′′(x)

∫
R
k(z)z2dz

)2

dx = N(c2∥f ′′∥)2,

cV ar =

∫
R
f(x)

∫
R
k2(z)dz dx = c1.

�

3.3.2. Point processes

Since a point process Ψ in Rd with intensity f may be regarded as a particular random closed
set of dimension n = 0 with mean density λΨ = f , we may apply the above results to provide
kernel density estimators, as well as the optimal bandwidth, of the intensity of point processes too.

Corollary 13. Let {Ψi}i∈N be a sequence of point processes in Rd, i.i.d. as Ψ, with intensity
λΨ ∈ C2, and locally bounded second moment density g, and let k be a kernel with compact support,
continuous in 0. Then the kernel density estimator λ̂κ,N

Ψ (x) of λΨ(x), so defined

λ̂κ,N
Ψ (x) =

1

NrdN

N∑
i=1

∑
xj∈Ψi

k
(x− xj

rN

)
, (20)

is asymptotically unbiased and weakly consistent for Hd-a.e. x ∈ Rd, if rN is such that

lim
N→∞

rN = 0 and lim
N→∞

NrdN = ∞.

Moreover, the pointwise optimal bandwidth ro,AMSE
N (x) minimizing the AMSE is given by

ro,AMSE
N (x) = 4+d

√√√√√√√√
dλΨ(x)

∫
Rd

k2(z)dz

4N
( ∑

|α|=2

1

α!
Dα

xλΨ(x)

∫
Rd

k(z)zαdz
)2 , for Hd-a.e. x ∈ Rd, (21)

whereas, for any compact window W ⊂ Rd, a uniform optimal bandwidth ro,AMISE
N,W is given by

ro,AMISE
N,W = 4+d

√√√√√√√√
dE[Ψ(W )]

∫
Rd

k2(z)dz

4N

∫
W

( ∑
|α|=2

1

α!
Dα

y λΨ(x)

∫
Rd

k(z)zαdz
)2

dx

. (22)

Proof. By proceeding along the same lines of the proof of Corollary 12, Ψ might be seen as
a trivial marked point process with mark space K = R having intensity measure Λ(d(y, s)) =
λΨ(y)dyδ0(s)ds, and second factorial moment measure ν[2](d(x, s, y, t)) = g(x, y)dxdyδ0(s)δ0(t)dsdt.
Then, the asymptotic properties of the kernel estimator (20) directly follow by Theorem 6.

12



By Remark 9, observing that πx,s
y = {0}, and that by hypothesis the kernel k is continuous in 0,

we may claim that the assertion of Theorem 8 holds with

CBias(x) =
∑
|α|=2

1

α!
Dα

y λΨ(y)

∫
Rd

k(z)zαdz,

CV ar(x) = λΨ(x)

∫
Rd

k2(z)dz,

so that, by (17), we get the optimal bandwidth defined in (21).
The equality in (22) directly follows by (19) and the proof of Corollary 13, having observed that∫

W

λΨ(x)dx = E[Ψ(W )].

�

Remark 14. Let us notice that by choosing k(z) := 1
bd
1B1(0)(z) in (20), with N = 1, we reobtain

the well-known classic and widely used Berman-Diggle estimator [26, 8, 50]

λ̂κ,N
Ψ (x) =

Ψ(Br(x))

bdrd
.

3.3.3. Homogeneous case: unbiased estimators

Let us assume that Λ(d(x, s)) = cdxQ(ds); i.e. λ(x, s) ≡ c for any (x, s) ∈ Rd × K; then
Φ = {(xi, si)}i∈N is an independent marking of the marginal process {xi}i∈N, which is stationary,
and so Θn is a stationary random closed set as well. Notice that the very particular case of a
real random variable Θ0 = X (see also Corollary 12) does not make sense, since λ cannot be a
nontrivial constant on the whole real line, whereas the case λ = const on a compact set corresponds
to the case of a random variable uniformly distributed on that set. This might be a reason why
such a case has not been taken into account in the usual kernel density estimation theory; on the
other hand the homogeneous case is of particular interest in random sets theory (even for a point
process Θ0, for which we still have n = 0).
Under the assumption that Θn is stationary, a first important result is that the kernel density
estimator λ̂κ,N

Θn
(x) is now unbiased for any bandwidth r, and independent of x; namely Theorem 3

simplifies as follows.

Proposition 15. Let Θn be a random closed set in Rd with integer dimension 0 ≤ n < d,
represented as in (1), where Φ has intensity measure Λ(d(x, s)) = cdxQ(ds), such that Assumption
(A1) is fulfilled, and let {Θi

n}i∈N be a sequence of random closed sets, i.i.d. as Θn. Then the kernel

density estimator λ̂κ,N
Θn

of λΘn , defined by

λ̂κ,N
Θn

(x) :=
1

N

N∑
i=1

kr ∗ Hn
|Θi

n

(0) =
1

Nrd

N∑
i=1

∫
Θi

n

k
(−y

r

)
Hn(dy), for Hd-a.e. x ∈ Rd (23)

is unbiased for any bandwidth r > 0, and any sample size N .
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Proof. First of all let us notice that Assumption (A2) is trivially satisfied, and so, by the proof
of Theorem 3, we have that λΘn(x) = cE[Hn(Z)] =: λΘn ∈ R+, for Hd-a.e. x ∈ Rd. Then, for

Hd-a.e. x ∈ Rd, we may take λ̂κ,N
Θn

(x) ≡ λ̂κ,N
Θn

(0), as in (6), with r independent of N (and so defined
as in (23)), and observe that

E[λ̂κ,N
Θn

(x)]
(28)
= c

∫
K

Hn(Z(s))Q(ds) = λΘn .

�
As a byproduct of the above proposition, we have that Corollary 7 simplifies now as follows.

Corollary 16. Let Θn satisfy the hypotheses of Proposition 15, with (A1) replaced by (A1), and
Assumption (A3). Let {Θi

n}i∈N be a sequence of random closed sets, i.i.d. as Θn, and let k be

a kernel with compact support. Then the kernel density estimator λ̂κ,N
Θn

of λΘn defined by (23) is

strongly consistent for Hd-a.e. x ∈ Rd, as N → ∞.

Proof. By defining Yi := kr ∗ Hn
|Θi

n

(0), i = 1, 2, . . . , we have that Y1, Y2, . . . are i.i.d. as Y =

kr ∗Hn
|Θn

(0); we have E[Y ] = λΘn , and, by Theorem 6, V ar(Y ) < ∞. Then the SLLN implies that

λ̂κ,N
Θn

→ λΘn , a.s. as N → ∞. �

It is clear that in this case Bias(λ̂κ,N
Θn

) = 0 for any fixed sample size N , and for any bandwidth
r; equivalently,

MSE(λ̂κ,N
Θn

) = V ar(λ̂κ,N
Θn

) =
E
[
(kr ∗ Hn

|Θn
(0))2

]
− (λΘn)

2

N
,

therefore the optimal bandwidth which minimizes the MSE has to minimize the variance: for any
fixed sample size N , for Hd-a.e. x ∈ Rd,

ro,MSE(x) := argmin
r

MSE(λ̂κ,N
Θn

) = argmin
r

V ar(λ̂κ,N
Θn

) = argmin
r

E
[
(kr ∗ Hn

|Θn
(0))2

]
.

By the proof of Theorem 6 we know that

E
[
(kr ∗ Hn

|Θn
(0))2

]
= I1(r) + I2(r),

with

I1(r)
(31)
:=

c

rd

∫
K

∫
Z(s)

∫
Z(s)

∫
Rd

k(z)k
(
z +

y − ỹ

r

)
dzHn(dy)Hn(dỹ)Q(ds)

I2(r) :=

∫
K2

∫
Z(s)

∫
Z(s̃)

∫
R2d

k(z)k(z̃)g(−y − rz, s,−ỹ − rz̃, s̃)dz̃dzHn(dỹ)Hn(dy)Q[2](ds,ds̃).

Then one has to minimize the function I(r) := I1(r) + I2(r).
We discuss here two important cases of particular interest in applications, homogeneous Boolean
models, and a - non Boolean - stationary germ-grain model with a cluster point process as germ
process.
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Particular case: homogenous Boolean models
Let Θn be a homogenous Boolean model with intensity measure Λ(d(x, s)) = cdxQ(ds) and typical
grain Z, such that E[(Hn(Z))2] < ∞, and let k be continuous in the interior of its support. Then,
it is easy to check (see also Remark 5) that

I2(r) = (cE[Hn(Z)])2 < ∞,

and so ro,MSE = argmin
r

I1(r).

By observing now that I1(r) > 0 is continuous for any r > 0 (by using for instance the Dominated
Convergence Theorem),

lim
r→∞

I1(r) ≤ lim
r→∞

Mc

rd

∫
K

Hn(Z(s))2Q(ds) = 0,

and, by the proof of Theorem 8,

lim
r↓0

I1(r) = lim
r↓0

1

rd−n
rd−nI1(r)

= c

∫
K

∫
Rd

∫
−Z(s)

∫
π0,s
y

k(z)k(z + w)Hn(dw)Hn(dy)dzQ(ds) lim
r↓0

1

rd−n
= +∞,

we conclude that, for Hd-a.e. x ∈ Rd, ro,MSE = +∞.

Remark 17. As a particular case, if Ψ is a homogenous Poisson point process in Rd with intensity
λΨ > 0, the optimal bandwidth ro,MSE of the kernel intensity estimator λ̂κ,N

Ψ (x) = λ̂κ,N
Ψ (0) for any

x ∈ Rd, defined by (20), is ro,MSE = +∞, in accordance with both intuition and known results
in literature (e.g., see [47, p. 46], [25, p. 34], [39, p. 8]); in particular, if W is the observation
window of any realization of the process (and so N = 1), and |W | its volume, we reobtain (by
choosing k(z) := 1

bd
1B1(0)(z)) that the best unbiased estimator of the intensity λΨ of Ψ is given by

λ̂Ψ =
Ψ(W )

|W |
, with |W | → ∞.

Note that, being Ψ stationary, λ̂Ψ defined above is equivalent to the following estimator introduced
in [25, p. 34]

λ̂D
Ψ :=

∑N
i=1 Ψ(Wi)

N |W |
, with N → ∞,

where W1, . . . ,WN , are disjoint compact subsets of Rd, each with volume |W |; let us also observe
that

λ̂D
Ψ = λ̂N

Ψ :=

∑N
i=1 Ψ

i(W )

N |W |
, with N → ∞,

where W is a given observation window, and Ψ1, . . . ,ΨN is an i.i.d. sample of Ψ, and so we
conclude that λ̂Ψ, λ̂

D
Ψ and λ̂N

Ψ provide equivalent ways to estimate λΨ.
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An example of stationary non Boolean germ-grain model
Let Θn be a random closed set in R2 with integer dimension 0 ≤ n < 2, represented as in (1),

such that Φ is an independent marking of the germ point process Ψ̃ = {xi}, which is assumed to
be a Matèrn cluster process in R2 (e.g., see [5]), whose parent process is a homogeneous Poisson
process with intensity α, and each cluster consists of M ∼ Poisson(m) points independent and
uniformly distributed in the ball BR(x), where x is the centre of a cluster. It follows that Θn is
stationary with intensity measure Λ(d(x, s)) = mαdxQ(ds), and second factorial moment measure

ν[2](d(x, s, y, t)) =
(
α2m2 + αm2H2(BR(x) ∩BR(y))

πR4

)
dxdyQ(ds)Q(dt).

We assume that the typical grain Z satisfies the regularity assumption (A1). Note that g(x, s, y, t) =

α2m2+αm2H2(BR(x)∩BR(y))
πR4 ≤ α2m2+αm2/(πR2), and so Assumption (A3) is fulfilled; thus Corol-

lary 16 applies.
Similarly to the homogeneous Boolean model case, if k is continuous in the interior of its support,
k ≤ M , and E[(Hn(Z))2] < ∞, it is easy to check that I(r) is continuous and limr↓0 I(r) = +∞.
Let us notice that

I2(r) = α2m2(E[Hn(Z)])2 +
αm2

πR4

∫
K2

∫
Z(s)

∫
Z(s̃)

∫
R2d

k(z)k(z̃)

H2(BR(−y − rz) ∩BR(−ỹ − rz̃))dz̃dzHn(dỹ)Hn(dy)Q(ds)Q(ds̃)

= α2m2(E[Hn(Z)])2 +
αm2

πR4

∫
K2

∫
Z(s)

∫
Z(s̃)

∫
Rd

∫
B 2R

r
( y−ỹ

r )

k(z)k(z + w)

H2(BR(0) ∩BR((||ỹ − y + rw||, 0)))dwdzHn(dỹ)Hn(dy)Q(ds)Q(ds̃)

≤
(u:= r

2Rw+ ỹ−y
2R )

α2m2(E[Hn(Z)])2 +
4αm2

πR2r2
(E[Hn(Z)])2

∫
B1(0)

MH2(BR(0))du

= (E[Hn(Z)])2(α2m2 +
4Mπαm2

r2
) −→ (E[Hn(Z)])2α2m2, as r → ∞.

Finally, being I(r) = I1(r) + I2(r) > (E[Hn(Z)])2α2m2 for any r > 0, and limr→∞ I(r) =

(E[Hn(Z)])2α2m2, we may conclude that, for Hd-a.e. x ∈ Rd, ro,MSE(x) := argmin
r

MSE(λ̂κ,N
Θn

) =

+∞.

4. Optimal bandwidths of λ̂µ,N
Θn

(x): Boolean models case

As mentioned at the end of Section 2, the “Minkowski content”-based estimator λ̂µ,N
Θn

(x) of
λΘn(x). defined in (7) is asymptotically unbiased and weakly consistent if the bandwidth rN is
such that limN→∞ rN = 0 and limN→∞ Nrd−n

N = ∞. It is then worth to carry on the analysis of

such an estimator too, by facing the left open problem of finding an optimal bandwidth for λ̂µ,N
Θn

(x)
(see [51, Sec. 6]).

A first difficulty arises, due to the fact that it does not seem possible to get a Taylor series
expansion of Bias(λ̂µ,N

Θn
(x)) without any further assumption on the distribution of Θ; indeed it is
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easy to check that, for Hd-a.e. x ∈ Rd,

Bias(λ̂µ,N
Θn

(x)) =
P(x ∈ Θn⊕rN

)

bd−nrd−n
− λΘn(x) (24)

V ar(λ̂µ,N
Θn

(x)) =
P(x ∈ Θn⊕rN )(1− P(x ∈ Θn⊕rN

))

N(bd−nr
d−n
N )2

=
λΘn(x)

Nrd−n
N bd−n

+ o
( 1

Nrd−n
N

)
. (25)

Then it is clear that, if we wish to proceed as in the previous sections of this paper, an explicit
expression for P(x ∈ Θn⊕rN ) is required for evaluating the MSE; this is the reason why, for the
time being, we restrict our analysis to particular classes of germ-grain models Θn which allow to
explicit the Bias(λ̂µ,N

Θn
(x)).

Let Θn be a Boolean model with intensity measure Λ(d(y, s)) = λ(y, s)dyQ(ds); then

P(x ∈ Θn⊕rN
) = 1− exp

{
−
∫
K

∫
x−Z(s)⊕rN

λ(y, s)dyQ(ds)
}
,

and so a Taylor expansion of
∫
x−Z(s)⊕rN

λ(y, s)dy is needed. General expressions are not available

in literature so far, therefore such a problem is still open. We only mention here that a possible
solution might follow, under suitable regularity assumptions on the grains, by an application of the
general Steiner-type formula for closed sets (see [35, Theorem 2.1]). Nevertheless, if the “shape”
of the grains is known, it is possible to evaluate directly the integral above (see, for instance, the
example discussed in Section 5). We may notice that the case in which Θ is homogeneous and grains
have positive reach might be handled in a more direct way, by using the well known polynomial
expansion of the volume of an enlarged compact set with positive reach [29]. We remind that the
reach of a compact set A ⊂ Rd is defined by

reach(A) := inf
a∈A

sup{r > 0 : Br(a) ⊂ Unp(A)},

where Unp(A) := {x ∈ Rd : ∃! a ∈ A such that dist(x,A) = ||a − x||} is the set of points having
a unique projection on A. For any compact set A ⊂ Rd with positive reach, the total curvature
measures Φi(A) ∈ R for i = 1, . . . , d − 1, introduced in [29], are well defined, and the following
global Steiner formula holds

Hd(A⊕r) =
d∑

i=0

rd−ibd−iΦi(A), ∀r < reach(A). (26)

We also point out that if dim(A) = n, then Φi(A) = 0, for any i > n, and Φn(A) = Hn(A). Then,
the following assertion is easily proved.

Proposition 18. Let Θn be a Boolean model with intensity measure Λ(d(y, s)) = cdyQ(ds), sat-
isfying Assumption (A1), and such that, for any s ∈ K, reachZ(s) > R, for some R > 0. Let us
assume also that E[Φi(Z)] < ∞ for all i = 0, . . . , n − 1. Then, the optimal bandwidth associated
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with the estimator (7) is given by

ro,AMSE
N :=



3

√
cE[Hn(Z)]

N
(
πcE[Φn−1(Z)]− 2(cE[Hn(Z)])2

)2 if d− n = 1,

d−n+2

√
(d− n)bd−ncE[Hn(Z)]

2N
(
cbd−n+1E[Φn−1(Z)]

)2 if d− n > 1,

(27)

independent of x ∈ Rd.

Proof. It is easy to check that Θn satisfies Assumptions (A1), (A2) and (A3), so that

lim
N→∞

λ̂µ,N
Θn

(x) = cE[Hn(Z)] = λΘn(x) for all x ∈ Rd.

Moreover, for N is sufficiently large so that rN < R, by (26) we get:

lim
N→∞

Bias(λ̂µ,N
Θn

(x))

rN

(24)
= lim

N→∞

1

rN

(1− exp
{
− cE[Hd(Z⊕rN )]

}
bd−nr

d−n
N

− cE[Hn(Z)]
)

(26)
= lim

N→∞

1

bd−nr
d−n+1
N

(
crd−n+1

N bd−n+1E[Φn−1(Z)] + o(rd−n+1
N )

−1

2
c2b2d−n(E[Φn(Z)])2r

2(d−n)
N + o(r

2(d−n)
N )

)

=


πcE[Φn−1(Z)]

2
− (cE[Hn(Z)])2 , if d− n = 1

cbd−n+1E[Φn−1(Z)]

bd−n
, if d− n > 1;

consequently the asymptotic mean square error of λ̂µ,N
Θn

(x) is given by

AMSE(rN )
(25)
=



(
πcE[Φn−1(Z)]− 2(cE[Hn(Z)])2

)2
4

r2N +
cE[Hn(Z)]

2NrN
, if d− n = 1,

(cbd−n+1E[Φn−1(Z)]

bd−n

)2

r2N +
cE[Hn(Z)]

Nrd−n
N bd−n

, if d− n > 1,

which is independent of x ∈ Rd as expected, being the process stationary.
By defining now ro,AMSE

N := argmin
rN

AMSE(rN ), the assertion follows. �

5. A case studied: inhomogenous segment Boolean model

As a simple example of applicability of the above results, let us consider the segment Boolean
model extensively studied in [51, Example 2] (see also [7, page 86]), where an explicit expression
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for its mean density has been obtained. We provide here the pointwise and the uniform optimal
bandwidth ro,AMSE

N (x) and ro,AMISE
N , respectively associated with both λ̂ν,N

Θn
and λ̂µ,N

Θn
.

Let Θ1 be an inhomogeneous Boolean model of segments in R2 with random length L and
uniform orientation; so that the mark space is K = R+ × [0, 2π]; for all s = (l, α) ∈ K, let
Z(s) := {(u, v) ∈ R2 : u = τ cosα, v = τ sinα, τ ∈ [0, l]} be the segment with length l ∈ R+, and
orientation α ∈ [0, 2π]. Denoted by PL(dl) the probability law of the random length L, we assume
that

∫
R+

l3PL(dl) < ∞. Finally the segment process Θ1, represented as in (1), is driven by the

marked Poisson process Φ in R2 × K having intensity measure Λ(dy × ds) = f(y)dyQ(ds), with
f(y) = f(y1, y2) = y21 + y22 , and Q(ds) = 1

2πdαPL(dl). It is easy to check that the assumptions of
all theorems above are fulfilled, and that

λΘ1(x1, x2) = (x2
1 + x2

2)E[L] +
1

3
E[L3], H2-a.e. x = (x1, x2) ∈ R2.

(i) optimal bandwidth of λ̂ν,N
Θn

.

By noticing that πx,s
y = {(y1, y2) ∈ R2 : y1 = t cosα, y2 = t sinα, t ∈ R}, and that

H2(B1(0) ∩B1(−(t cosα, t sinα))) = H2(B1(0) ∩B1((t, 0))) for any α ∈ [0, 2π], we get

CV ar(x)
(14)
=

1

2π3

∫ ∞

0

∫ 2π

0

∫
R2

∫ l

0

∫ +∞

−∞
1B1(0)(z)

1B1(−(t cosα,t sinα))(z)λ(x1 − τ cosα, x2 − τ sinα)dtdτdzdαPL(dl)

=
1

π3

∫ ∞

0

∫ 2π

0

∫ l

0

∫ +2

0

H2(B1(0) ∩B1((t, 0)))dtλ(x1 − τ cosα, x2 − τ sinα)dτdαPL(dl)

=
1

π3

∫ ∞

0

∫ 2π

0

∫ l

0

8

3
((x1 − τ cosα)2 + (x2 − τ sinα)2)dτdαPL(dl)

=
16

3π2
((x2

1 + x2
2)E[L] +

1

3
E[L3])

(
=

16

3π2
λΘ1(x)

)
,

and

CBias(x)
(13)
= E[L]

∫
B1(0)

1

π
(z21 + z22)dz =

E[L]
2

;

thus, by Eq (17),

ro,AMSE
N (x) =

5

√
16(EL(x2

1 + x2
2) +

1
3EL3)

3π2N(E[L])2
.

Let us now consider the window W = [0, 1]× [0, 1]; then the uniform optimal bandwidth in
W is given by

ro,AMISE
N

(19)
= 5

√
16(E[L3] + 2E[L])

N9π2(E[L])2
.

(ii) optimal bandwidth of λ̂µ,N
Θn

.

19



Let us observe that

Bias(λ̂µ,N
Θn

(x))

(24)
=

1− exp{2rNE[L](x2
1 + x2

2) +
2
3rNE[L3] + π

2 r
2
N (2x2

1 + 2x2
2 + E[L2]) + 2E[L]r3N + π

2 r
4
N}

2rN

−(x2
1 + x2

2)E[L] +
1

3
E[L3]

=
(π
2
(x2

1 + x2
2) +

π

4
E[L2]− (E[L](x2

1 + x2
2) +

1

3
E[L3])2

)
rN + o(rN ),

and

V ar(λ̂µ,N
Θn

(x))
(25)
=

(x2
1 + x2

2)E[L] + 1
3E[L

3]

N2rN
+ o

( 1

NrN

)
;

then,

AMSE(rN ) =
(π
2
(x2

1+x2
2)+

π

4
E[L2]−(E[L](x2

1+x2
2)+

1

3
E[L3])2

)2
r2N+

(x2
1 + x2

2)E[L] + 1
3E[L

3]

N2rN
;

and so we get

ro,AMSE
N (x) = 3

√√√√ (x2
1 + x2

2)E[L] + 1
3E[L3]

4N
(
π
2 (x

2
1 + x2

2) +
π
4EL2 − (EL(x2

1 + x2
2) +

1
3EL3)2

)2 .
Let us now consider the window W = [0, 1]× [0, 1]; then it is not difficult to obtain

MISE(λ̂µ,N
Θ1

(W )) :=

∫
W

MSE(λ̂µ,N
Θ1

(x))dx

=

∫
W

[Bias(λ̂µ,N
Θ1

(x))]2dx+

∫
W

V ar[λ̂µ,N
Θ1

(x)]dx

= r2N

∫
W

C2
B(x)dx+

1

NrN

∫
W

λΘ1(x)

2
dx︸ ︷︷ ︸

=:AMISE(λ̂µ,N
Θ1

(W ))

+o(r2N ) + o
( 1

NrN

)
,

and so

ro,AMISE
N := argmin

rN

AMISE(̂λ
µ,N

Θ1
(W )) = 3

√√√√√ 2
3E[L] +

1
3E[L3]

4N

∫
W

C2
Bias(x)dx

,

where∫
W

C2
Bias(x)dx =

1328

1575
(E[L])4 − 48

35

(π
2
− 2

3
E[L]E[L3]

)
(E[L])2

− 56

45

(π
4
E[L2]− (E[L3])2

9

)
(E[L])2 +

28

45

(π
2
− 2

3
E[L]E[L3]

)2

+
4

3

(πE[L2]

4
− (E[L3])2

9

)(π
2
− 2

3
E[L]E[L3]

)
+
(π
4
E[L2]− 1

9
(E[L3])2

)2

.
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Remark 19. As already mentioned in Section 4, the evaluation of the optimal bandwidth of the
estimator λ̂µ,N

Θn
simplifies when the Boolean model Θn is homogeneous. Indeed, let us consider for

instance the above Boolean model of segments, for f(y) ≡ c > 0. By observing that reachZ(s) = ∞,
and Φ0(Z(s)) = 1, for any s ∈ K, the optimal bandwidth is then given by

ro,AMSE
N

(27)
= 3

√
cE[L]

N(cπ − 2(cE[L])2)2
.

6. Concluding Remarks

Based on the analysis carried out in the previous sections, we may conclude with the following
remarks.

• Kernel estimators: the pro for the kernel estimators λ̂κ,N
Θn

proposed in Section 2 extend in
a natural way the corresponding kernel estimators for random objects of dimension n =
0 (random variables - univariate and multivariate, point processes) to random closed sets
of any integer Hausdorff dimension n < d, in a space Rd; the cons concern the practical
applicability of them, due not only to the enhanced computational problems related to the
higher dimensionality of the relevant objects, but also due to the problems encountered for
the case n = 0, in connection with the preliminary estimation of bounds of the relevant
parameters of the unknown density. This would require further research about possible
extensions of plug-in methods as exploited for the case n = 0 (e.g., see [49] and references
therein).

• “Minkowski content”-based estimators: the pro for the estimators λ̂µ,N
Θn

proposed in Section
2 concerns its easy computational evaluation; the cons include the analytical difficulty of
evaluating an optimal bandwidth.

• Natural estimators: the pro for the natural estimators λ̂ν,N
Θn

proposed in Section 2 concerns
their direct derivation from the Besicovitch Theorem; they generalizes the notion of histogram
estimators for the case n = 0 (see Remark 2); the cons include the nontrivial evaluation of
Hn(Θi

n ∩BrN (x)) for any element Θi
n of the sample; for segment processes (n = 1) it seems

more feasible, but for other sets of dimension n ≥ 1 it results of higher computational
complexity. This problem has been already raised in [41] even for stationary fibre processes
in R2.

It is clear that we have left open a series of problems towards which we address the attention
of readers for further research.

Here we wish to evidence the need of analyzing the very realistic case in which only one
realization of the geometric process is available, and only in a bounded window, as it fre-
quently happens in material science and medicine. This problem is still of great interest in
current research, even for the case n = 0, in particular for point processes (see e.g. [33, 32]
and references therein). In this case there is a need of additional properties for the process,
such as stationarity, ergodicity, mixing properties, allowing a possible “increasing domain
asymptotics” (see e.g. [20, page 480], [7, page 88] and references therein).
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7. Proofs of the main results

Proof of Theorem 3
Lemma 3 in [52] tells us that the event that different grains of Θn overlap in a subset of Rd of
positive Hn-measure has null probability; therefore, the following chain of equalities holds:

E[λ̂κ,N
Θn

(x)] = E
[ 1

N

N∑
i=1

krN ∗ Hn
|Θi

n

(x)
]
= E

[ 1

rdN

∫
Θn

k
(x− y

rN

)
Hn(dy)

]
= E

[ 1

rdN

∑
(xi,si)∈Φ

∫
(xi+Z(si))

k
(x− y

rN

)
Hn(dy)

]
(A.5)
=

∫
K

∫
Rd

1

rdN

∫
w+Z(s)

k
(x− y

rN

)
Hn(dy)λ(w, s)dwQ(ds)

=

∫
K

∫
Rd

∫
Z(s)

1

rdN
k
(x− (w + y)

rN

)
Hn(dy)λ(w, s)dwQ(ds)

=

∫
Rd

∫
K

∫
x−Z(s)

k(z)λ(y − rNz, s)Hn(dy)Q(ds)dz (28)

By hypothesis we know that k has compact support, say S ⊂ BR(0) for some R > 0; besides, by
denoting D(s) := disc(λ(·, s)), we have Hn(D(s)) = 0 for any s ∈ K. Therefore,

(28) =

∫
Rd

∫
K

∫
(x−Z(s))\D(s)

k(z)λ(y − rNz, s)Hn(dy)Q(ds)dz.

Note that, for N sufficiently large, BR(x) ⊃ BRrN (x), and so

sup
y∈(x−Z(s))\D(s)

λ(y − rNz, s) ≤ sup
y∈BR(x)⊕diamZ(s)

λ(y, s)
(A2)

≤ ξ̃BR(x)(s),

lim
N→∞

k(z)λ(y − rNz, s) = k(z)λ(y, s) < ∞, ∀y ∈ (x− Z(s)) \ D(s), (29)

so that, by (A2),∫
Rd

∫
K

∫
(x−Z(s))\D(s)

k(z)λ(y − rNz, s)Hn(dy)Q(ds)dz

≤
∫
BR(0)

∫
K

∫
(x−Z(s))

k(z)ξ̃BR(x)(s)Hn(dy)Q(ds)dz

≤
∫
BR(0)

k(z)dz

∫
K

ξ̃BR(x)(s)Hn(Ξ(s))Q(ds) < ∞.
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Hence, we may apply the Dominated Convergence Theorem to (28) in order to obtain

lim
N→∞

E[λ̂κ,N
Θn

(x)] = lim
N→∞

∫
Rd

∫
K

∫
(x−Z(s))\D(s)

k(z)λ(y − rNz, s)Hn(dy)Q(ds)dz

(29)
=

∫
Rd

k(z)dz

∫
K

∫
(x−Z(s))\D(s)

λ(y, s)Hn(dy)Q(ds)

=

∫
K

∫
(x−Z(s))

λ(y, s)Hn(dy)Q(ds)
(4)
= λΘn(x),

thus proving that λ̂κ,N
Θn

(x) is asymptotically unbiased for Hd-a.e. x ∈ Rd. �

Proof of Proposition 4
Let C ⊂ Rd, a ∈ Rd, and ξC,B1(a) satisfy (9). By Remark 4 in [52] we know that (A1) guarantees
that

Hd(Z(s)⊕R) ≤
{

Hn(Ξ(s))γ−12n4dbdR
d−n if R < 2

Hn(Ξ(s))γ−12n4dbdR
n if R ≥ 2

. (30)

Let ξa,C(s, y, t) := 1(a−Z(t))⊕1
(y)ξC,B1(a)(s, t), for any (s, y, t) ∈ K× Rd ×K; then

1(a−Z(t))⊕1
(y) sup

x∈C⊕diam(Z(s))

g(x, s, y, t) ≤ 1(a−Z(t))⊕1
(y) sup

y∈B1(a)⊕diam(Z(t))

sup
x∈C⊕diam(Z(s))

g(x, s, y, t)

≤ ξa,C(s, y, t),

and∫
Rd×K2

Hn(Ξ(s))ξa,C(s, y, t)dyQ[2](ds,dt)

=

∫
K2

Hn(Ξ(s))Hd((a− Z(t))⊕1)ξC,B1(a)(s, t)Q[2](ds, dt)

(30)

≤ γ−12n4dbd

∫
K2

Hn(Ξ(s))Hn(Ξ(t))ξC,B1(a)(s, t)Q[2](ds, dt) < ∞

�

Proof of Theorem 6
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Let us notice that

V ar(λ̂κ,N
Θn

(x)) =
E
[
(krN ∗ Hn

|Θn
(x))2

]
−

(
E[krN ∗ Hn

|Θn
(x)]

)2
N

≤
E
[
(krN ∗ Hn

|Θn
(x))2

]
N

=
1

N
E
[ ∑
(xi,si)∈Φ

(∫
xi+Z(si)

1

rdN
k
(x− y

rN

)
Hn(dy)

)2]
+

1

N
E
[ ∑

(xi, si), (xj , sj) ∈ Φ,
xi ̸= xj

∫
xi+Z(si)

1

rdN
k
(x− y

rN

)
Hn(dy)

∫
xj+Z(sj)

1

rdN
k
(x− ỹ

rN

)
Hn(dỹ)

]
(A.5),(A.6)

=
1

N

∫
K×Rd

(∫
w+Z(s)

1

rdN
k
(x− y

rN

)
Hn(dy)

)2

λ(w, s)dwQ(ds) +
1

N

∫
(K×Rd)2(∫

w+Z(s)

1

rdN
k
(x− y

rN

)
Hn(dy)

∫
w̃+Z(s̃)

1

rdN
k
(x− ỹ

rN

)
Hn(dỹ)

)
g(w, s, w̃, s̃)dwdw̃Q[2](ds, ds̃).

We remind that k(z) ≤ M1BR(0)(z) for any z ∈ Rd; for N sufficiently large so that rN ≤
min{1, 1/2R}, we get

1

N

∫
K×Rd

(∫
w+Z(s)

1

rdN
k
(x− y

rN

)
Hn(dy)

)2

λ(w, s)dwQ(ds)

=
1

Nr2dN

∫
K

∫
Rd

∫
Z(s)

∫
Z(s)

k
(x− y − w

rN

)
k
(x− ỹ − w

rN

)
λ(w, s)Hn(dy)Hn(dỹ)dwQ(ds)

=
1

NrdN

∫
K

∫
Z(s)

∫
Z(s)

∫
Rd

k(z)k
(
z +

y − ỹ

rN

)
λ(x− y − rNz, s)dzHn(dy)Hn(dỹ)Q(ds) (31)

≤ 1

NrdN

∫
K

∫
Rd

∫
Z(s)

k(z)1BR(0)(z)λ(x− y − rNz, s)

∫
Z(s)

M1BrNR(y+rNz)(ỹ)Hn(dỹ)Hn(dy)dzQ(ds)

≤ 1

NrdN

∫
K

∫
Rd

∫
Z(s)

k(z)1BR(0)(z) sup
ξ∈x−Z(s)−rNz

λ(ξ, s)MHn(Ξ(s) ∩BrNR(y + rNz))Hn(dy)dzQ(ds)

≤ 1

NrdN

∫
K

∫
Z(s)

ξ̃BR(x)(s)MHn(Ξ(s) ∩B2rNR(y))Hn(dy)Q(ds)

(A1)

≤ 1

NrdN

∫
K

∫
Z(s)

ξ̃BR(x)(s)Mγ̃(2rNR)nHn(dy)Q(ds)

≤ Mγ̃2nRn

Nrd−n
N

∫
K

Hn(Ξ(s))ξ̃BR(x)(s)Q(ds)
(A2)
< ∞.
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Similarly,

1

N

∫
(K×Rd)2

(∫
w+Z(s)

1

rdN
k
(x− y

rN

)
Hn(dy)

∫
w̃+Z(s̃)

1

rdN
k
(x− ỹ

rN

)
Hn(dỹ)

)
g(w, s, w̃, s̃)dwdw̃Q[2](ds, ds̃)

≤ 1

N

∫
BR(0)

k(z)dz

∫
BR(0)

k(z̃)dz̃∫
K2

Hn(Ξ(s))Hn(Ξ(s̃)) sup
y∈BR(x)⊕diamZ(s)

sup
ỹ∈BR(x)⊕diamZ(s̃)

g(y, s, ỹ, s̃)Q[2](ds, ds̃)

≤ 1

N

∫
K2

Hn(Ξ(s))Hn(Ξ(s̃))ξBR(x),BR(x)(s, s̃)Q[2](ds,ds̃)
(A3)
< ∞,

so that the assertion follows. �

Proof of Theorem 8
Let us observe that

∫
Rd zik(z)dz = 0, being k radially symmetric; thus, by a Taylor series expansion

we get:

Bias(λ̂κ,N
Θn

(x)) := E[λ̂κ,N
Θn

(x)]− λΘn(x) =

(28)
=

∫
K

∫
Z(s)

∫
Rd

k(z)λ(x− y − rNz, s)dzHn(dy)Q(ds)− λΘn(x)

=

∫
K

∫
Z(s)

∫
Rd

k(z)
[
λ(x− y, s)−

∑
|α|=1

1

α!
Dα

xλ(x− y, s)zαrN

+
∑
|α|=2

1

α!
Dα

xλ(x− y − θrNz, s)zαr2N

]
dzHn(dy)Q(ds)− λΘn(x)

(4)
= r2N

∫
K

∫
Z(s)

∫
Rd

k(z)
∑
|α|=2

1

α!
Dα

xλ(x− y − θrNz, s)zαdzHn(dy)Q(ds),

with θ ∈ (0, 1) depending on x, y, z, s.
By hypothesis, for any fixed s ∈ K and y ̸∈

∪
|α|=2 D(α)(s), with Hn(∪|α|=2D(α)(s)) = 0, we have

that

lim
N→∞

k(z)1x−Z(s)(y)
∑
|α|=2

1

α!
Dα

xλ(y − θrNz, s)zα = k(z)1x−Z(s)(y)
∑
|α|=2

1

α!
Dα

xλ(y, s)z
α;

moreover, since k(z) ≤ M1BR(0)(z) for any z ∈ Rd, for N sufficiently large so that rN < 1, the
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following holds∫
K

∫
Z(s)

∫
Rd

∣∣k(z) ∑
|α|=2

1

α!
Dα

xλ(x− y − θrNz, s)zα
∣∣dzHn(dy)Q(ds)

≤
∫
K

∫
Z(s)

∫
Rd

M1BR(0)(z)
∑
|α|=2

1

α!
sup

ξ∈x−Z(s)−θrNz

|Dα
xλ(ξ, s)| · |zα|dzHn(dy)Q(ds)

(A2bis)

≤
∑
|α|=2

M

α!

∫
BR(0)

|zα|dz
∫
K

Hn(Ξ(s))ξ̃
(α)
BR(x)(s)Q(ds) < +∞. (32)

By applying now the Dominated Convergence Theorem we get

lim
N→∞

Bias(λ̂κ,N
Θn

(x))

r2N
=

∑
|α|=2

1

α!

∫
Rd

k(z)zαdz

∫
K

∫
x−Z(s)

Dα
y λ(y, s)Hn(dy)Q(ds) = CBias(x).

As far as the variance is concerned, by the proof of Theorem 6 we know that:

V ar[λ̂κ,N
Θn

(x)]

=
E
[
(krN ∗ Hn

|Θn
(x))2

]
−

(
E[krN ∗ Hn

|Θn
(x)]

)2
N

=
1

N

∫
K

∫
Rd

(∫
w+Z(s)

1

rdN
k
(x− y

rN

)
Hn(dy)

)2

λ(w, s)dwQ(ds) +O
( 1

N

)
(31)
=

1

NrdN

∫
K

∫
Z(s)

∫
Z(s)

∫
Rd

k(z)k
(
z +

y − ỹ

rN

)
λ(x− y − rNz, s)dzHn(dy)Hn(dỹ)Q(ds) +O

( 1

N

)
=

1

Nrd−n
N

∫
K

∫
Z(s)

∫
Rd

k(z)λ(x− y − rNz, s)
(∫

y−Z(s)
rN

k(z + w)Hn(dw)
)
dzHn(dy)Q(ds) +O

( 1

N

)
=

1

Nrd−n
N

∫
K

∫
x−Z(s)

∫
Rd

k(z)1BR(0)(z)λ(y − rNz, s)1(D(s))c(y)∫
(x−Z(s))−y

rN

k(z + w)Hn(dw)dzHn(dy)Q(ds) + o
( 1

Nrd−n
N

)
,

being supp(k) ⊂ BR(0), and Hn(D(s)) = 0 for any s ∈ K, and d > n.
Let us observe that, by Theorem A.5, for any s ∈ K, z ∈ Rd, and Hn-a.e. y ∈ x− Z(s),

lim
N→∞

k(z)1BR(0)(z)λ(y − rNz, s)1(D(s))c(y)

∫
(x−Z(s))−y

rN

k(z + w)Hn(dw)

= k(z)1BR(0)(z)λ(y, s)1D(s)(y)

∫
πx,s
y

k(z + w)Hn(dw), (33)

having denoted by πx,s
y the approximate tangent space to x− Z(s) at y.
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Moreover, for N sufficiently large so that rN ≤ min{1, 1
2R}, we get∫

K

∫
x−Z(s)

∫
Rd

(
k(z)1BR(0)(z)λ(y − rNz, s)1(D(s))c(y)∫

(x−Z(s))−y
rN

k(z + w)Hn(dw)
)
dzHn(dy)Q(ds)

≤
∫
K

∫
x−Z(s)

∫
Rd

k(z)1BR(0)(z) sup
ξ∈x−Z(s)−rNz

λ(ξ, s)

1

rnN

∫
x−Z(s)

k(z + (ỹ − y)/rN )Hn(dỹ)dzHn(dy)Q(ds)

≤ M2

rnN

∫
K

∫
x−Z(s)

∫
Rd

1BR(0)(z)ξ̃BR(x)(s)

∫
x−Ξ(s)

1BrNR(0)(ỹ − y + rNz)Hn(dỹ)dzHn(dy)Q(ds)

≤ M2bdR
d

rnN

∫
K

ξ̃BR(x)(s)

∫
x−Z(s)

Hn((x− Ξ(s)) ∩B2rNR(y))Hn(dy)Q(ds)

(A1)

≤ 2nM2bdR
d+nγ̃

∫
K

ξ̃BR(x)(s)Hn(Ξ(s))Q(ds)
(A2)
< ∞.

Therefore, by applying the Dominated Convergence Theorem, we get

lim
N→∞

Nrd−n
N V ar[λ̂κ,N

Θn
(x)] (34)

= lim
N→∞

∫
K

∫
x−Z(s)

∫
Rd

k(z)1BR(0)(z)λ(y − rNz, s)1(D(s))c(y)∫
(x−Z(s))−y

rN

k(z + w)Hn(dw)dzHn(dy)Q(ds) + o(1)

=

∫
K

∫
x−Z(s)

∫
Rd

k(z)1BR(0)(z)λ(y, s)1D(s)(y)

∫
πx,s
y

k(z + w)Hn(dw)dzHn(dy)Q(ds)

=

∫
K

∫
Rd

∫
x−Z(s)

∫
πx,s
y

k(z)k(z + w)λ(y, s)Hn(dw)Hn(dy)dzQ(ds) = CV ar(x).

�

Proof of Proposition 10
By the proof of Theorem 8, we know that, for N sufficiently large so that rN < 1,

Bias(λ̂κ,N
Θn

(x))2

r4N

(32)

≤
( ∑

|α|=2

M

α!

∫
BR(0)

|zα|dz
∫
K

Hn(Ξ(s))ξ̃
(α)
W⊕R

(s)Q(ds)
)2

< +∞ Hd-a.e. x ∈ W,

which is integrable on W ; thus, by (11) and the Dominated Convergence Theorem, we get

lim
N→∞

1

r4N

∫
W

[Bias(λ̂κ,N
Θn

(x))]2dx =

∫
W

C2
Bias(x)dx. (35)
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Similarly, by the proof of Theorem 6, we deduce the following upper bound for the variance, for
N sufficiently large so that rN ≤ min{1, 1/(2R)}, Hd-a.e. x ∈ W ,

Nrd−n
N V ar(λ̂κ,N

Θn
(x)) = rd−n

N E
[
(krN ∗ Hn

|Θn
(x))2

]
− rd−n

N

(
E[krN ∗ Hn

|Θn
(x)]

)2
≤ Mγ̃2nRn

∫
K

Hn(Ξ(s))ξ̃W⊕R(s)Q(ds)

+rd−n
N

∫
K2

Hn(Ξ(s))Hn(Ξ(s̃))ξW⊕R,W⊕R
(s, s̃)Q[2](ds, ds̃) < ∞,

which is integrable on W ; thus, by (34) and the Dominated Convergence Theorem, we get

lim
N→∞

Nrd−n
N

∫
W

V ar(λ̂κ,N
Θn

(x))dx =

∫
W

CV ar(x)dx. (36)

The assertion directly follows by (18), (35) and (36). �

Appendix A. Background

Appendix A.1. Kernel density estimation of random variables

Let X be an absolutely continuous real random variable having p.d.f f , and let {Xi}i∈N be a
countable sample of X, i.e. a sequence of random variables i.i.d. as X. A (scaled) kernel density

estimator f̂N
X (x) of f(x), based on a kernel k, is defined as

f̂N
X (x) :=

1

NrN

N∑
i=1

k
(x−Xi

rN

)
, x ∈ R. (A.1)

A kernel is usually taken as a unimodal probability density function on the real line; in this
case it is usually assumed that it satisfies the following conditions

1. 0 ≤ k(z) ≤ M for all z ∈ R, for some M > 0;

2. k is symmetric with respect to zero;

3.
∫
R k(z)dz = 1.

We may notice that, since k is a kernel, the following holds

c1 :=

∫
k(z)2dz < +∞.

We further assume that

c2 :=

∫
R
z2k(z)dz ∈ (0,+∞).

The scaling parameter rN ∈ (0,+∞), also known as the bandwidth of the estimate, is respon-
sible of the smoothness of the kernel estimate; smaller rN ’s generate more noisy estimates, while
larger rN ’s generate smoother estimates.

Advantages of kernel estimates of a density functions are well know in literature [45], [31], [53];
in particular we may remind that, due to the above assumptions on k, we know that
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• the kernel estimate f̂N
X is a pdf on R;

• the kernel estimate f̂N
X inherits the smoothness of the kernel k; i.e. if k is n times continuously

differentiable, f̂N
X is n times continuously differentiable, too.

The guidelines for choosing an optimal kernel estimator are thus based on the required analytical
properties of the kernel k, and on an optimal choice of the bandwidth rN , so to obtain optimal
statistical properties of f̂N

X , which include unbiasedness, minimal variance, and consistency.
By assuming that the underlying density f and the chosen kernel k are sufficiently smooth, (in

particular, provided that f ∈ C2) it can be shown (see e.g. [45, Chapter 3], [53, p. 20-21]) that

Bias(f̂N
X (x)) =

1

2
f ′′(x)c2r

2
N + o(r2N ), for limN→∞ rN = 0

V ar(f̂N
X (x)) =

1

NrN
c1f(x) + o

( 1

NrN

)
, for lim

N→∞
rN = 0 and lim

N→∞
NrN = ∞.

As a consequence, the following assertion is proved in [40].

Theorem A.1. Let X be an absolutely continuous real random variable having p.d.f f , and let
{Xi}i∈N be a countable sample of X, i.e. a sequence of random variables i.i.d. as X. Then the

kernel estimate f̂N
X (x) of f defined in (A.1) is asymptotically unbiased and weakly consistent at all

points x at which f is continuous, if rN is such that

lim
N→∞

rN = 0 and lim
N→∞

NrN = ∞.

For a given sample size N ∈ N \ {0}, a compromise is required about an optimal choice of the
bandwidth, since the bias tends to 0 as the bandwidth decreases, but correspondingly the variance
diverges. A well known measure of both effects is the pointwise mean square error (MSE(f̂N

X (x)))
defined as follows.

MSE(f̂N
X (x)) = E[(f̂N

X (x))− f(x))2] = [Bias(f̂N
X (x))]2 + V ar(f̂N

X (x)), x ∈ R.

We are now ready to obtain an optimal bandwidth for estimating f(x), by minimizingMSE(f̂N
X (x)).

The analysis is simplified by considering the asymptotic approximation of the mean square error,
i.e. the quantity

AMSE(f̂N
X (x)) :=

(1
2
f ′′(x)c2r

2
N

)2
+

1

NrN
c1f(x);

an optimal bandwidth is then given by (e.g.,[31, p. 59], [45, 40])

ro,AMSE
N (x) := argmin

rN

AMSE(f̂N
X (x)) = 5

√
c1f(x)

N(c2f ′′(x))2
. (A.2)

A criterion for obtaining a uniform choice of the optimal bandwidth is based on the integrated
mean square error (MISE(f̂N

X )), defined as follows (e.g., see [31, p. 60])

MISE(f̂N
X ) :=

∫
R
MSE(f̂N

X (x))dx.
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By considering, as above, the asymptotic approximation of the MISE, i.e. the quantity

AMISE(f̂N
X ) :=

1

NrN
c1 +

r4N
4
(c2∥f ′′∥)2,

it follows that a global optimal bandwidth is given by

ro,AMISE
N := argmin

rN

AMISE(f̂N
X (x)) = 5

√
c1

N(c2∥f ′′∥)2
. (A.3)

Equation (A.3) shows in particular the dependence of both optimal bandwidths upon ∥f ′′∥2
which is a measure of the roughness of the unknown pdf f. Methods for estimating ∥f ′′∥2 are
discussed in [31] (see also [45, 43, 37, 10] and references therein).

A natural extension to the multivariate case Rd, d ∈ N \ 0 is obtained by introducing a multi-
variate kernel defined as follows.

Definition A.2 (Multivariate kernel). A measurable function k : Rd −→ R is said to be a
multivariate kernel if it satisfies the following conditions,

1. 0 ≤ k(z) ≤ M for all z ∈ Rd, for some M > 0;

2. k is radially symmetric;

3.
∫
Rd k(z)dz = 1.

Given a countable sample {Xi}i∈N of an absolutely continuous d−dimensional random vector X
having p.d.f f , the multivariate kernel density estimator of f, based on a chosen kernel k, and
scaling parameter rN ∈ (0,+∞), is defined, as in the scalar case, by

f̂N
X (x) :=

1

NrdN

N∑
i=1

k

(
x−Xi

rN

)
, x ∈ Rd. (A.4)

By introducing the scaled kernel

krN (x) :=
1

rdN
k

(
x

rN

)
,

we may rewrite Eq. (A.4) in the form

f̂N
X (x) :=

1

NrdN

N∑
i=1

∫
Rd

k
(x− y

rN

)
εXi(dy) =

1

N

N∑
i=1

krN ∗ H0
|Xi

(x),

where ∗ stands for the usual convolution product, having noticed that the Dirac measure εXi , i =
1, . . . N, can be rewritten as the restriction to Xi of the 0-dimensional Hausdorff measure H0.

Appendix A.2. Point processes and germ-grain representation of random closed sets

We briefly recall here that, by means of marked point processes in Rd with marks in the class
of compact subset of Rd, every random closed set in Rd can be represented as a germ-grain model
(see e.g., [5] and references therein). To lighten the presentation, we shall use similar notation to
previous works [51, 52]; in particular, we refer to [52, Sec. 2.2] for further details.
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A point process Φ̃ in Rd is a locally finite collection {ξi}i∈N of random points in Rd; equivalently,
it can be seen as a random counting measure, that is a measurable map from a probability space
(Ω,F,P) into the space of locally finite counting measures on Rd (e.g., see [21, 36]). We shall always

consider simple point processes Φ̃, i.e. Φ̃({x}) ≤ 1 for all x ∈ Rd. The measure Λ̃(A) := E[Φ̃(A)]
on BRd is called intensity measure of Φ̃; whenever it is absolutely continuous with respect to Hd,
its density is called intensity of Φ̃.
Marked point processes generalize the above notion; we recall that a marked point process Φ =
{ξi,Ki}i∈N on Rd with marks in a Polish spaceK (a complete and separable metric space) is a point

process on Rd×K with the property that the unmarked process {Φ̃(B) : B ∈ BRd} := {Φ(B×K) :

B ∈ BRd} is a point process in Rd. The point process Φ̃ is called the underlying point process,
while K is called the mark space; the random element Ki of K is the mark associated to the point
ξi ∈ Φ̃. Φ is said to be stationary if the distribution of {ξi + x,Ki}i∈N is independent of x ∈ Rd.
If the marks are independent and identically distributed, and independent of the unmarked point
process Φ̃, then Φ is said to be an independent marking of Φ̃.
The intensity measure of Φ, say Λ, is a σ-finite measure on BRd×K defined as Λ(B × L) :=
E[Φ(B × L)], the mean number of points of Φ in B with marks in L. We recall that Campbell’s
formula for marked point processes reads as follows [5]:

E
[ ∑
(x,K)∈Φ

f(x,K)
]
=

∫
Rd×K

f(x,K)Λ(d(x,K)). (A.5)

A common assumption is that, given a probability measure Q on K, called the distribu-
tion of marks, there exists a measurable function λ : Rd × K → R+ such that Λ(d(x,K)) =
λ(x,K)dxQ(dK); if Φ is stationary, then its intensity measure is of the type Λ = λνd⊗Q for some

λ > 0. If Φ is an independent marking of Φ̃, then Λ(d(x,K)) = Λ̃(dx)Q(dK).
Another important measure associated to Φ is the so-called second factorial moment measure, ν[2],
defined on B(Rd×K)2 as follows [47]:∫

f(x1,K1, x2,K2)ν[2](d(x1,K1, x2K2)) = E
[ ∑

(xi, Ki), (xj , Kj) ∈ Φ,
xi ̸= xj

f(xi,Ki, xj ,Kj)
]
, (A.6)

for any non-negative measurable function f on (Rd ×K)2. Informally, ν[2](d(x1,K1, x2,K2)) rep-
resents the joint probability that there are points at two specific locations x1 and x2 with marks
K1 and K2, respectively. Similarly to Λ, we shall assume that there exist a measurable function
g : (Rd ×K)2 → R+, and a probability measure Q[2] on K2 such that

ν[2](d(x1,K1, x2,K2)) = g(x1,K1, x2,K2)dx1dx2Q[2](d(K1,K2)).

We remind that if Φ is a marked Poisson point process (i.e. its underlying point process is a
Poisson process on Rd) with intensity measure Λ, then ν[2] = Λ⊗Λ. (See [52, Sec. 2.2] for a more
complete discussion about ν[2], and additional references.)

We also recall that point processes in Cd, the class of compact subsets of Rd, are called particle
process (e.g., see [5] and references therein), and it is well known that, by a center map, any
particle process can be transformed into a marked point process Φ on Rd with marks in Cd, by
representing any compact set C as a pair (x,Z), where x may be interpreted as the “location” of C
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and Z := C−x the “shape” (or “form”) of C (e.g., see [5, p. 192] and [34]). In this case the marked
point process Φ = {(ξi, Zi)}i∈N is also called germ-grain model. Thus, every random closed set in
Rd can be represented as a germ-grain model, by a suitable marked point process Φ = {ξi, Zi}i∈N.
In many examples and applications the random sets Zi, i ∈ N are uniquely determined by suitable
random parameters S ∈ K. For instance, in the very simple case of random balls, K = R+ and
S is the radius of a ball centred in the origin; in applications to birth-and-growth processes, in
some models K = Rd and S is the spatial location of the nucleus (e.g., [2, Example 2]); in segment
processes in R2, K = R+ × [0, 2π] and S = (L,α), where L and α are the random length and
orientation of the segment through the origin, respectively (e.g., [51], Example 2); etc.

Appendix A.3. Basic notions of geometric measure theory

We remind that a compact set A ⊂ Rd is called n-rectifiable (0 ≤ n ≤ d − 1 integer) if it can
be written as the image of a compact subset of Rn by a Lipschitz map from Rn to Rd; more in
general, a closed subset A of Rd is said to be countably Hn-rectifiable if there exist countably many
n-dimensional Lipschitz graphs Γi ⊂ Rd such that A \ ∪iΓi is Hn-negligible. (For definitions and
basic properties of Hausdorff measure and rectifiable sets see, e.g., [4, 27, 30].)

We recall that, given a subset A of Rd and an integer n with 0 ≤ n ≤ d, the n-dimensional
Minkowski content of A is defined as

Mn(A) := lim
r↓0

Hd(A⊕r)

bd−nrd−n
,

whenever the limit exists finite, where A⊕r is the parallel set of A at distance r > 0, i.e. A⊕r :=
{s ∈ Rd : dist(x,A) ≤ r} (see, e.g. [4]). Well known general results about the existence of
the Minkowski content of closed sets in Rd are related to rectifiability properties of the involved
sets; in particular, the following theorem proved in [4, p. 110] provides a quite general condition
ensuring the existence of the n-dimensional Minkowski content of any compact subset of Rd. We
call Radon measure in Rd any nonnegative and σ-additive set function defined on BRd which is
finite on bounded sets.

Theorem A.3. Let A ⊂ Rd be a countably Hn-rectifiable compact set, and assume that

η(Br(x)) ≥ γrn, ∀x ∈ A, ∀r ∈ (0, 1) (A.7)

holds for some γ > 0 and some Radon measure η ≪ Hn in Rd. Then Mn(A) = Hn(A).

Condition (A.7) is a kind of quantitative non-degeneracy condition which prevents A from being
too sparse; simple examples show that Mn(A) can be infinite, and Hn(A) arbitrarily small, when
this condition fails [4, 3]. The above theorem extends (see [4, Theorem 2.106]) the well-known
Federer’s result [30, p. 275] to countably Hn-rectifiable compact sets; in particular for any n-
rectifiable compact set A ⊂ Rd there exists a suitable measure η satisfying (A.7) (see [3, Remark 1]).
As a consequence, for instance in the case n = d − 1, the boundary of any convex body or, more
in general, of a set with positive reach, and the boundary of a set with Lipschitz boundary satisfy
condition (A.7), which in many applications is fulfilled with η(·) = Hn(Ã ∩ · ) for some closed set

Ã ⊇ A (see [4, p. 111], [3]). A regularity condition closely related to (A.7) is the so-called n-Ahlfors
regularity (e.g., see [22, 28]); more precisely, we say that a compact set A ⊂ Rd is n-Ahlfors regular
if there exist γ1, γ2 > 0 such that

γ1r
n ≤ Hn(A ∩Br(x)) ≤ γ2r

n, ∀x ∈ A, ∀r ∈ (0, 1). (A.8)
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Finally, we recall the notion of approximate tangent space, which arises in the approximation
of the variance of the kernel density estimator in Theorem 8.
Let Gn be the set of unoriented n-dimensional subspaces of Rd, and Cc(Rd;R) be the space of all
the real valued continuous functions with compact support in Rd.

Definition A.4. [4, Definition 2.79] Let A be a Hn-rectifiable compact set of Rd, and Ax,r :=
(A − x)/r, x ∈ A, r > 0. We say that µ = Hn

|A has approximate tangent space πx ∈ Gn with
multiplicity 1 at x, and we write

Tann(µ, x) = Hn
|πx

if Hn
|Ax,r

locally weakly∗ converge to Hn
|πx

as r → 0, i.e.

lim
r→0

∫
Ax,r

ϕ(y)Hn(dy) =

∫
πx

ϕ(y)Hn(dy) ∀ϕ ∈ Cc(Rd;R). (A.9)

By Theorem 2.83 and Proposition 1.62 in [4] the following holds.

Theorem A.5. Let A be a Hn-rectifiable compact set of Rd, and let µ = Hn
|A, then µ admits an

approximate tangent space with multiplicity 1 for Hn-a.e. x ∈ A. Moreover, (A.9) holds for any
bounded Borel measurable function ϕ : Rd → R with compact support such that Hn

|πx
(disc(ϕ)) = 0.
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