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ABSTRACT

Starting from an open problem in (Matheron, 1975, p. 50-51) related to the existence of the so-called specific
area of a random closed set, we consider here a class of d-dimensional inhomogeneous Boolean models in Rd

and we provide an explicit formula for the specific area. This turns out to be closely related to the notion of
outer Minkowski content of sets. In particular, we show that the specific area may differ from the mean density
of the topological boundary of the random set in general, and we provide sufficient conditions ensuring the
equality.

Keywords: Boolean models, geometric measure theory, mean densities, outer Minkowski content.

INTRODUCTION AND BASIC
NOTATION

As stated in (Weil, 2001, p. 55), a problem
of interest is to have explicit formulae for local
densities of specific inhomogeneous Boolean models.
In particular, about the notion of mean surface density
of a d-dimensional random closed set Θ in Rd , the
concept of specific area σ(x) of Θ at a point x∈Rd has
been introduced in (Matheron, 1975, p. 50) and defined
as the following limit

σ(x) := lim
r↓0

P(x ∈Θ⊕r \Θ)
r

whenever it exists. (Θ⊕r denotes here the parallel
set of Θ at distance r, i.e. Θ⊕r := {x ∈ Rd :
dist(x,Θ) ≤ r}.) It is mentioned in (Matheron, 1975)
that the definition of σ(x) can be interpreted as the
“translation” into probabilistic terms of the definition
of area S(K) := limr↓0 H d(K⊕r \K)/r of a compact
set K ⊂Rd , where H d is the d-dimensional Hausdorff
measure. Indeed, noticing that P(x ∈ Θ) is the
density (the classical Radon-Nikodym derivative) of
the mean volume measure E[H d(Θ∩ ·)] on Rd , the
existence of σ(x) might be related to the existence
of the limit of E[H d(Θ⊕r \ Θ)]/r as r goes to
0, known as mean outer Minkowski content of Θ,
introduced in (Ambrosio et al., 2008). More precisely,
a straightforward application of Fubini’s theorem gives

lim
r↓0

E[H d((Θ⊕r \Θ)∩B)]
r

= lim
r↓0

∫

B

P(x ∈Θ⊕r \Θ)
r

dx,

(1)
for all Borel subsets B of Rd ; then it is clear that,
whenever Θ is stationary, σ is constant and given by

σ = lim
r↓0

E[[H d((Θ⊕r \Θ)∩ [0,1]d)]
r

.

If Θ satisfies a (local) Steiner formula (e.g., if Θ is
a Boolean model with convex grains), then the above
limit can be studied in terms of the quermass densities
(or Minkowski functionals) associated to Θ, and so by
means of tools from integral geometry mainly (e.g, see
(Baddeley et al., 2007; Hug, 2000; Hug et al., 2006;
Weil, 2001) and references therein).
The passage from stationary to nonstationary random
closed sets, and from convex to more general grains
gives rise to nontrivial problems. We provide here an
overview of results in this direction recently obtained
in (Villa, 2008b), by means of tools from geometric
measure theory.

Throughout the paper H n is the n-dimensional
Hausdorff measure, dx stands for H d(dx), BRd is the
Borel σ -algebra of Rd and H n

|A denotes the restriction
of H n to a H n-measurable set A⊂Rd (i.e. H n

|A(B) =
H n(A∩ B) for all B ∈ BRd ). Br(x) will denote the
closed ball with centre x and radius r. We remind that
a compact set A ⊂ Rd is called n-rectifiable (0 ≤ n ≤
d− 1 integer) if it is representable as the image of a
compact subset of Rn by a Lipschitz map from Rn to
Rd ; more in general, a closed subset A of Rd is called
to be countably H n-rectifiable if there exist countably
many n-dimensional Lipschitz graphs Γi ⊂ Rd such
that A \ ∪iΓi is H n-negligible. (For definitions and
basic properties of Hausdorff measure and rectifiable
sets see, e.g., (Ambrosio et al., 2000; Falconer, 1985;
Federer, 1969).) We call Radon measure in Rd any
nonnegative and σ -additive set function µ defined on
BRd which is finite on bounded sets.
In the sequel we shall deal with P-a.s. countably
H d−1-rectifiable random closed sets Θ : (Ω,F,P) →
(F,σF) (F and σF denote here the class of the
closed subsets in Rd and the σ -algebra generated by
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VILLA E : Mean surface densities of Boolean models

the so-called hit-or-miss topology (Matheron, 1975),
respectively). For a discussion about measurability of
H d−1(Θ) we refer to (Zähle, 1982). In particular, we
shall consider Boolean models Ξ in Rd (Baddeley et
al., 2007; Stoyan et al., 1995) whose typical grain
Z0 has topological boundary ∂Z0 with Hausdorff
dimension d− 1 P-a.s. It is well known that Boolean
models in Rd can be described by marked Poisson
point processes on Rd with marks in the space of
centred compact sets. Since in many examples and
applications Z0 is uniquely determined by a random
quantity in a suitable mark space K, we shall consider
(inhomogeneous) Boolean models

Ξ(ω) =
⋃

(xi,si)∈Ψ(ω)

xi +Z0(si),

where Z0(s) is a compact subset of Rd containing the
origin for any s∈K, and Ψ is the marked Poisson point
process in Rd with marks in K associated to Ξ with
intensity measure

Λ(d(x,s)) = f (x)dxQ(ds).

The function f and the probability measure Q on
K are called intensity of Ξ and mark distribution,
respectively; EQ will denote the expectation with
respect to Q.
Dealing with Boolean models, it is commonly assumed
that the mean number of grains hitting any compact
subset of Rd is finite; in terms of Λ, this is equivalent
to assume that∫

K

∫

(−Z0(s))⊕R

Λ(dy×ds) < ∞ ∀R > 0. (2)

Definition 1 (Mean surface density) If the measure
E[H d−1

|∂Ξ ] is absolutely continuous with respect to H d ,
we denote by λ∂Ξ its Radon-Nikodym derivative and
we also call it the mean surface density of Ξ.

From now on we set Zx := x−Z0 ∀x ∈ Rd . It is easily
seen (Villa, 2008b) that

P(x ∈ Ξ⊕r \Ξ) = exp
{
−EQ

[∫

Zx
f (y)dy

]}
·

·
(

1− exp
{
−EQ

[∫

Zx⊕r\Zx
f (y)dy

]})
(3)

Note that in the particular case in which Ξ is stationary
(say f ≡ c > 0) with deterministic typical grain, the
above equation becomes

P(x ∈ Ξ⊕r \Ξ) = e−cH d(Z0)(1− e−cH d(Z0⊕r\Z0));

therefore the existence of σ(x), in this case
independent of x, as expected, strongly depends on the
existence of the so-called outer Minkowski content of
Z0.

OUTER MINKOWSKI CONTENT
OF SETS

The right derivative at r = 0 of the volume function
V (r) := H d(A⊕r) of a Borel set A ⊂ Rd is also
named the outer Minkowski content of A, defined as
(Ambrosio et al., 2008)

SM (A) := lim
r↓0

H d(Ar \A)
r

,

provided that the limit exists finite. Note that if A
is lower dimensional, then SM (A) = 2M d−1(A),
where M d−1(A) is the (d−1)-dimensional Minkowski
content of A (see, e.g., (Ambrosio et al., 2000; Federer,
1969)), whereas if A is a d-dimensional set, closure
of its interior, then A⊕r \ A coincides with the outer
Minkowski enlargement at distance r of ∂A.
It is known (e.g., by the Steiner formula) that
SM (A) = H d−1(∂A) if A is a d-dimensional convex
body; more in general, it can be proved (Villa, 2008a)
that the same general conditions which guarantee the
existence of M d−1(∂A) (see, e.g., (Ambrosio et al.,
2000, Th. 2.104) and (Federer, 1969, Th.3.2.39)) imply
the existence of the outer Minkowski content of A,
but SM (A) may differ form H d−1(∂A). In particular,
the d-dimensional density (briefly, density) of A at its
boundary points, defined as (Ambrosio et al., 2000)

θd(A,x) := lim
r↓0

H d(A∩Br(x))
H d(Br(x))

,

whenever the limit exists, plays a central role in the
determination of the value of the outer Minkowski
content of A. It is clear that θd(A,x) equals 1 for all x
into the interior of A, and 0 for all x into the interior
of the complement set of A, while different values
can be assumed at its boundary points. The following
definition is given (Ambrosio et al., 2000):

Definition 2 (Essential boundary) For every t ∈
[0,1] and every H d-measurable set A⊂ Rd let

At := {x ∈ Rd : θd(A,x) = t}.

The set of points ∂ ∗A := Rd \ (A0 ∪ A1) where the
density of A is neither 0 nor 1 is called essential
boundary of A.
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It is proved (e.g., see (Ambrosio et al., 2000)) that all
the sets At are Borel sets, and that

H d−1(∂ ∗A∩B) = H d−1(A1/2∩B) = P(A,B)

for all B ∈BRd , where P(A,B) := |DχA|(B), the total
variation |DχA| of the characteristic function χA of A in
B (with B contained in an open set), is called perimeter
of A in B. In the sequel we shall write P(A) instead of
P(A,Rd).
The following class of sets has been introduced in
(Villa, 2008a):

Definition 3 (The class O) Let O be the class of
Borel sets A of Rd with countably H d−1-rectifiable
and bounded topological boundary, such that

η(Br(x))≥ γrd−1 ∀x ∈ ∂A, ∀r ∈ (0,1) (4)

holds for some γ > 0 and some probability measure η
in Rd absolutely continuous with respect to H d−1.

Theorem 4 (Villa, 2008a) The class O is stable under
finite unions and any A ∈ O admits outer Minkowski
content, given by

SM (A) = P(A)+2H d−1(∂A∩A0).

Remark 5 Condition (4) is a kind of quantitative non-
degeneracy condition which prevents ∂A from being
too sparse; simple examples (see, e.g., (Ambrosio et
al., 2008, Example 3)) show that SM (A) can be
infinite, and H d−1(∂A) arbitrarily small, when this
condition fails.
In (Villa, 2008a) it is also proved that the same
conclusions of the above theorem hold for a class
of Borel subsets of Rd , defined similarly to O by
replacing the condition of absolutely continuity of η
with the assumption that M d−1(∂A) = H d−1(∂A);
then it follows that this class of sets contains all Borel
sets with (d − 1)-rectifiable boundary (and so finite
unions of sets with positive reach or with Lipschitz
boundary, in particular).

By (3) and the definition of σ(x) it is intuitive that
the following theorem, which may be seen as a
generalization of Theorem 4 since the classical (outer)
Minkowski content follows by choosing f ≡ 1, plays
an important role in the determination of an explicit
formula for σ(x).

Theorem 6 Let µ be a positive measure in Rd

absolutely continuous with respect to H d with locally

bounded density f . Let A belong to O . If the set of all
the discontinuity points of f is H d−1-negligible, then

lim
r↓0

µ(A⊕r \A)
r

=
∫

∂ ∗A
f (x)H d−1(dx)+2

∫

∂A∩A0
f (x)H d−1(dx).

MEAN BOUNDARY DENSITIES

We give now general regularity conditions on
the typical grain Z0 and on the intensity f of an
inhomogeneous Boolean model Ξ inRd such that σ(x)
exists and is finite for all x ∈ Rd .
Assumptions: (A1) ∂Z0 is countably H d−1-
rectifiable and compact, and such that there exist
γ > 0 and a random closed set Θ ⊇ ∂Z0 with
EQ[H d−1(Θ)] < ∞ such that, for Q-a.e. s ∈K,

H d−1(Θ(s)∩Br(x))≥ γrd−1 ∀x∈ ∂Z0(s), ∀r∈ (0,1).
(5)

(A2) The set of all the discontinuity points of f is
H d−1-negligible and f is locally bounded such that,
denoted by δ the diameter of Z0, for any compact set
K ⊂ Rd

sup
y∈K⊕δ

f (y)≤ ξK (6)

for some random variable ξK with EQ[H d−1(Θ)ξK ] <
∞.

Remark 7 i) condition (6) is trivially satisfied
whenever f is bounded, or f is locally bounded
and δ ≤ c ∈ R+ Q-a.s.;

ii) the assumption (A1) is often fulfilled with Θ =
∂Z0 or Θ = ∂Z0 ∪ Ã for some sufficiently regular
random closed set Ã. As a matter of fact, it
can be seen as the stochastic version of (4),
which, in many applications, is satisfied with
η(·) = H n(Ã∩ ·) for some closed set Ã ⊇ A, as
proved in (Ambrosio et al., 2000, p. 111) (see also
(Ambrosio et al., 2008)).

Proposition 8 (Villa, 2008b) Let Ξ be a Boolean
model as in the Assumptions. Then

σ(x) = exp
{
−EQ

[∫

Zx
f (y)dy

]}
·

·EQ

[∫

∂ ∗Zx
f (y)H d−1(dy)+2

∫

∂Zx∩(Zx)0
f (y)H d−1(dy)

]

(7)

for all x ∈ Rd .
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It can be proved (Villa, 2008b) that for any
Boolean model Ξ as in the Assumptions satisfying (2),
E[H d−1

|∂Ξ ] is a Radon measure absolutely continuous

with respect to H d . As a consequence, E[H d−1
|∂ ∗Ξ ] and

E[H d−1
|∂Ξ∩Ξ0 ] are Radon measures with density λ∂ ∗Ξ and

λ∂Ξ∩Ξ0 , respectively.
The next theorem shows that, without any further
regularity assumption on Z0, σ differs form the mean
surface density λ∂Ξ of Ξ, in general.

Theorem 9 (Villa, 2008b) If Ξ is a Boolean model as
in the Assumptions satisfying (2), then

σ(x) = λ∂ ∗Ξ(x)+2λ∂Ξ∩Ξ0(x) (8)

for H d-a.e. x ∈ Rd .

The proof of the above theorem is based on the
following two main steps:

1. the limit in the left side of (1) gives rise (for B
varying in BRd ) to a Radon measure inRd , namely
E[H d−1

|∂ ∗Ξ +2H d−1
|∂Ξ∩Ξ0 ], absolutely continuous with

respect to H d ;

2. limit and integral can be exchanged in the right
side of (1).

Remark 10 By the proof of Theorem 9 it follows in
particular that Ξ admits local mean outer Minkowski
content, i.e. for any Borel set B ⊂ Rd such that
E[H d−1(∂Θ∩∂B)] = 0 it holds

lim
r↓0

E[H d((Ξ⊕r \Ξ)∩B)]
r

= E[P(Ξ,B)]+2E[H d−1
|∂Ξ∩Ξ0(B)]. (9)

Taking into account the general inequality P(A)≤
H d−1(∂A) ∀A ∈BRd , by assumption (A1) we know
that Z0 has finite perimeter Q-a.s.; we also remind
that a classical result of geometric measure theory
states that any set A ⊂ Rd of finite perimeter has
density either 0 or 1 or 1/2 at H d−1-almost every
point of its boundary (e.g., see (Ambrosio et al., 2000,
Theorem 3.61)); as a consequence, Ξ is a random set
with locally finite perimeter and

λ∂Ξ = λ∂Ξ∩Ξ0 +λ∂ ∗Ξ +λ∂Ξ∩Ξ1.

Then, it follows that σ(x) = λ∂Ξ(x) = λ∂ ∗Ξ(x)for H d-
a.e. x ∈ Rd if E[H d−1

|∂Ξ∩(Ξ0∪Ξ1)] = 0.
The proof of the following proposition, which provides
a sufficient regularity condition on the typical grain

ensuring σ = λ∂Ξ, is based on the fact that if A1
and A2 are random closed sets of finite perimeter
in Rd with E[P(Ai)] = E[H d−1(∂Ai)], i = 1,2, such
that E[H d−1(∂A1 ∩ ∂A2)] = 0, then E[P(A1 ∪A2)] =
E[H d−1(∂ (A1∪A2))].

Proposition 11 (Villa, 2008b) Let Ξ be a Boolean
model as in the Assumptions satisfying (2), such that
EQ[P(Z0)] = EQ[H d−1(∂Z0)]. Then

σ(x) = exp
{
−EQ

[∫

Zx
f (y)dy

]}
·

·EQ

[∫

∂Zx
f (y)H d−1(dy)

]
= λ∂Ξ(x)

for H d-a.e. x ∈ Rd .

We remind that any compact subset A of Rd with
Lipschitz boundary satisfies P(A) = H d−1(∂A); the
same holds also for a certain class of compact sets
with positive reach, containing, in particular, all the
d-dimensional convex bodies. (See (Ambrosio et al.,
2008).)

FURTHER REMARKS AND
PARTICULAR CASES

The (d−1)-dimensional case

Let us notice that σ(x) might be not trivial for
(d− 1)-dimensional random closed sets, as well. The
(d− 1)-dimensional counterpart of Proposition 8 and
Theorem 9 is given by the following theorem (Villa,
2008b)

Theorem 12 Let Ξ be a Boolean model in Rd

satisfying the two following conditions on the intensity
f and the typical grain Z0:
(A1’) Z0 is countably H d−1-rectifiable and compact,
and such that there exist γ > 0 and a random closed
set Θ ⊇ Z0 with EQ[H d−1(Θ)] < ∞ such that, for Q-
a.e. s ∈K,

H d−1(Θ(s)∩Br(x))≥ γrd−1 ∀x∈Z0(s), ∀r∈ (0,1).

(A2’) The set of all the discontinuity points of f is
H d−1-negligible and f is locally bounded such that,
denoted by δ the diameter of Z0, for any compact set
K ⊂Rd , supy∈K⊕δ

f (y)≤ ξK for some random variable
ξK with EQ[H d−1(Θ)ξK ] < ∞.

Then E[H d−1
|Ξ ] is a Radon measure in Rd

absolutely continuous with respect to H d , whose
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density is given by

λΞ(x) = EQ

[∫

Zx
f (y)H d−1(dy)

]

= lim
r↓0

P(x ∈ Ξ⊕r)
2r

=
σ(x)

2
(10)

for H d-a.e. x ∈ Rd .

Remark 13 It can be shown (Villa, 2008b) that,
contrary to the d dimensional case, we do not have
to assume also the usual condition (2) on Boolean
models, being this implied now by assumptions (A1’)
and (A2’). As a simple counterexample let us consider
a stationary Boolean model Ξ of balls; namely, let f ≡
c > 0 and Z0 = Bρ(0) with ρ random variable greater
than 1. If ρ is such that E[ρd−1] < ∞, but E[ρd ] = ∞,
then it is easy to check that Ξ satisfies the Assumptions
with Ξ = ∂Z0 and ξK = c for all compacts K in Rd , but

∫

K

∫

(−Z0(s))⊕R

Λ(dy×ds) = cbdE[(R+ρ)d ] = ∞.

Clearly, the equalities in (10) are in accordance
with (7) and (8): it is sufficient to notice that Z0 = ∂Z0
(since Z0 has empty interior) and that Z0 has null
density at any point of Rd , and so Ξ as well.

The stationary case
The previous results simplify in the stationary case.

Let us notice that if Ξ is stationary with f ≡ c > 0,
then only the regularity assumption (A1) on the typical
grain Z0 and the usual condition (2) are required (only
(A1’) in the lower dimensional case, by Remark 13).
Then σ is now independent of x, as expected, given by

σ = e−cEQ[H d(Z0)]cEQ[SM (Z0)],

where SM (Z0) exists finite equal to P(Z0) +
2H d−1(Z0

0 ∩∂Z0) as a consequence of (A1).

Deterministic typical grain
Whenever the typical grain Z0 is deterministic,

all the above results still hold (clearly removing
the expected value with respect to Q) under weaker
corresponding assumptions, analogous to those ones of
Theorem 6. Namely, it is sufficient to assume that Z0 is
a compact set in O , and that the intensity f is locally
bounded such that the set of all its discontinuity points
is H d−1-negligible.

Remark 14 By the definition of the class O , there
exists a probability measure η in Rd such that

η(Br(x)) ≥ γrd−1 for all x ∈ Z0 and r ∈ (0,1). The
role played by H d−1(Ξ) in the assumption (A1) is
played here by η . We also recall that, by geometric
measure theory arguments, condition (4) implies that
H d−1(∂Z0) < ∞. Further, since Z0 is compact then
diamZ0 = δ < ∞ and so the assumption (A2) and the
condition (2) are easily checked.

A statistical application
Let Ξ be a Boolean model as in the assumptions of

Proposition 11; then

λ∂Ξ(x) = lim
r↓0

P(x ∈ Ξ⊕r \Ξ)
r

(11)

for H d-a.e. x ∈ Rd .
Therefore, given an i.i.d. random sample Ξ1, . . . ,ΞN of
Ξ, by repeating the same argument in (Villa, 2008b),
a natural estimator λ̂ N

∂Ξ(x) of λ∂Ξ(x) can be defined as
follows:

λ̂ N
∂Ξ(x) :=

∑N
i=1 1Ξi⊕RN

\Ξi(x)

NRN

=
∑N

i=1(1Ξi∩BRN (x)6= /0−1Ξi∩{x}6= /0)

NRN
, (12)

with RN such that

lim
N→∞

RN = 0 and lim
N→∞

NRN = ∞. (13)

It can be easily seen that λ̂ N
∂Ξ(x) is an asymptotically

unbiased and weakly consistent estimator of λ∂Ξ(x) for
H d-a.e. x ∈ Rd .
Then, a problem of statistical interest could be to
find the optimal width RN satisfying condition (13)
which minimizes the mean squared error of λ̂ N

∂Ξ(x)
(i.e. E[(λ̂ N

∂Ξ(x)−λ∂Ξ(x))2]).
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