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Abstract

The problem of the evaluation of the so-called specific area of a random closed set, in
connection with its mean boundary measure, is mentioned in the classical book by Matheron
on random closed sets [21, p. 50]; it is still an open problem, in general. We offer here an
overview of some recent results concerning the existence of the specific area of inhomogeneous
Boolean models, unifying results from geometric measure theory and from stochastic geometry.
A discussion of possible applications to image analysis concerning the estimation of the mean
surface density of random closed sets, and, in particular, to material science concerning birth-
and-growth processes, is also provided.
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1 Introduction

In this paper we offer an overview of some recent results concerning the existence of the specific
area of inhomogeneous Boolean models, and its relationship with the mean surface density of the
involved random sets. (A preliminary version appeared in [27]). Applications to birth-and-growth
stochastic processes are also discussed.

If a n-dimensional random closed set Θ in Rd is such that E[Hn
|Θ] is absolutely continuous with

respect to Hd, where Hn is the n-dimensional Hausdorff measure, and Hn
|Θ is its restriction to

Θ, then the density (or Radon-Nikodym derivative) of E[Hn
|Θ] with respect to Hd is called mean

density of Θ. Whenever the mean density of Θ exists, we denote it by λΘ.
The problem of the evaluation of the mean densities of lower dimensional random closed sets, and
in particular of the mean surface density, is of interest in several real applications.
In [1] the notion of local mean n-dimensional Minkowski content of a random closed set has been
introduced in order to provide approximations of the mean density of n-dimensional random closed
sets in Rd. With regard to the approximation of the mean surface density of a d-dimensional random
closed set, the concept of specific area introduced in [21, p. 50] turns out to be closely related to
the notion of local mean outer Minkowski content of a random closed set. We remind that, given
a random closed set Θ in Rd, the specific area σΘ(x) of Θ at a point x in Rd is defined as the
following limit

σΘ(x) := lim
r↓0

P(x ∈ Θ⊕r \Θ)
r

(1)
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whenever it exists. (Θ⊕r denotes here the parallel set of Θ at distance r, i.e. Θ⊕r := {x ∈ Rd :
dist(x, Θ) ≤ r}.) It is mentioned in [21] that the definition of σΘ(x) is the “translation” into
probabilistic terms of the following limit

lim
r↓0

Hd(K⊕r \K)
r

, K ⊂ Rd compact. (2)

The limit above, whenever it exists finite, is called area of K in [21], or outer Minkowski content
of K in [2]. As right derivative at r = 0 of the volume function V (r) := Hd(K⊕r), it is intuitively
clear that there exist compact subsets of Rd such that the limit in (2) equals the surface measure
Hd−1(∂K) of K (e.g. if K is convex with nonempty interior), that explains the name area of
K; actually, examples of subsets of Rd, even closure of their interior, such that the above limit
differs from the Hd−1-measure of their boundary can be provided. Notice that a computer graphics
representation of lower dimensional sets in R2 is anyway provided in terms of pixels, which can
offer only a 2-D box approximation of points in R2 (an interesting discussion on this is contained
in [18]); therefore, the possibility of evaluating and estimating the surface measure of a set (the
mean surface density for random sets) by the volume measure of the Minkowski enlargement of
the involved set by (2) (by (1) in the stochastic case) might be a solution to problems of this kind.

2 Specific area and local mean outer Minkowski content

Throughout the paper Hn is the n-dimensional Hausdorff measure, dx stands for Hd(dx), BRd is
the Borel σ-algebra of Rd and Hn

|A denotes the restriction of Hn to a Hn-measurable set A ⊂ Rd

(i.e. Hn
|A(B) = Hn(A ∩ B) for all B ∈ BRd). Br(x) will denote the closed ball with centre x and

radius r, whereas for any integer n we denote by bn the volume of the unit ball in Rn.
We recall that, given a subset S of Rd and an integer n with 0 ≤ n ≤ d, the n-dimensional
Minkowski content of S is defined by

Mn(S) := lim
r↓0

Hd(S⊕r)
bd−nrd−n

,

whenever the limit exists finite.
Let A ∈ BRd ; the quantity SM(A) defined as [2]

SM(A) := lim
r↓0

Hd(A⊕r \A)
r

,

provided that the limit exists finite, is called outer Minkowski content of A. Note that if A is lower
dimensional, then SM(A) = 2Md−1(A), whereas if A is a d-dimensional set, closure of its interior,
then A⊕r \A coincides with the outer Minkowski enlargement at distance r of ∂A.

In this section we show why the specific area can be interpreted as the translation into prob-
abilistic terms of the outer Minkowski content. For basic definitions and results of stochastic
geometry we refer to [6, 23, 22].
If the limit

lim
r↓0

Hd((A⊕r \A) ∩B)
r

exists finite for any B ∈ BRd such that Hd−1(∂A ∩ ∂B) = 0, then we say that A admits local
outer Minkowski content. Now, let us consider a random closed set Θ in Rd, that is a measurable
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map Θ : (Ω,F,P) → (F, σF) (F and σF denote here the class of the closed subsets in Rd and the
σ-algebra generated by the so-called hit-or-miss topology [21], respectively). If the limit

lim
r↓0

E[Hd((Θ⊕r \Θ) ∩B)]
r

(3)

exists finite for any B ∈ BRd such that E[Hd−1(∂Θ ∩ ∂B)] = 0, then we say that Θ admits local
mean outer Minkowski content. Let us notice that, by a straightforward application of Fubini’s
theorem, (3) can be written equivalently

lim
r↓0

∫

B

P(x ∈ Θ⊕r \Θ)
r

dx; (4)

if furthermore Θ is stationary (and so P(x ∈ Θ⊕r \Θ) is constant), then, by choosing B = [0, 1]d

in (4), we have that the specific area σΘ is constant, given by

σΘ = lim
r↓0

E[Hd((Θ⊕r \Θ) ∩ [0, 1]d)]
r

. (5)

More in general, as we shall see in the next sections, if the boundary ∂A of a d-dimensional Borel set
A ∈ Rd is “sufficiently regular”, then SM(A) = Hd−1(∂A); thus, it is intuitive that for “sufficiently
regular” random closed sets we may have

E[Hd−1(∂Θ ∩B)] = lim
r↓0

E[Hd((Θ⊕r \Θ) ∩B)]
r

,

and

lim
r↓0

∫

B

P(x ∈ Θ⊕r\Θ)dx

r
=

∫

B

σΘ(x)dx,

so that σΘ(x) turns out to be the mean surface density of Θ. This is true for instance when
Θ satisfies a (local) Steiner formula; in this case the limit in (5) can be studied in terms of the
quermass densities (or Minkowski functionals) associated to Θ, and so by means of tools from
integral geometry mainly (e.g, see [6, 14, 17, 29] and references therein). For other related works
see also [15, 16, 19].
The passage from stationary to nonstationary random closed sets, and from convex to more general
grains gives rise to nontrivial problems. We will focus here on the specific area of inhomogeneous
Boolean models; for this kind of random closed sets (widely used in real applications in Material
Science, as we shall mention in the last section) the relationship between specific area and outer
Minkowski content (of the typical grain) is more evident. Let us see why briefly.
Let Ξ be a Boolean model in Rd [6, 23, 22] whose typical grain Z0 has topological boundary ∂Z0

with Hausdorff dimension d−1 P-a.s. It is well known that Boolean models in Rd can be described
by marked Poisson point processes on Rd with marks in the space of centred compact sets. In
many examples and applications Z0 is uniquely determined by a random quantity, say S, in a
suitable mark space K; for instance, in the very simple case of random balls, K = R+ and S is the
radius, whereas in applications to birth-and-growth processes, in some models K = Rd and S is
the spatial location of the nucleus, in other models K = R+ and S is the birth time of the nucleus
(see last section). Therefore, we shall consider (inhomogeneous) Boolean models of the type

Ξ(ω) =
⋃

(xi,si)∈Ψ(ω)

xi + Z0(si),

3



where Z0(s) is a compact subset of Rd containing the origin for any s ∈ K, and Ψ is the marked
Poisson point process in Rd with marks in K associated to Ξ, with intensity measure

Λ(d(x, s)) = f(x)dxQ(ds).

The function f and the probability measure Q on K are called intensity of Ξ and mark distribution,
respectively, and they are commonly assumed to be such that the mean number of grains hitting
any compact subset of Rd is finite:

∫

K

∫

(−Z0(s))⊕R

f(x)dxQ(ds) < ∞ ∀R > 0. (6)

(For basic definitions and results on the theory of point processes, we refer to [6] and references
therein.)
We shall denote by diam(Z0) the (random) diameter of Z0, and by discf the set of all the points
of discontinuity of f .
From now on let Zx := x− Z0 ∀x ∈ Rd. By the explicit expression of the capacity functional of a
Boolean model (e.g., see [21]), it is not difficult to get (see [28, Equation (3.1)]) that

σΘ(x) := lim
r↓0

P(x ∈ Ξ⊕r \ Ξ)
r

= e−EQ[
∫

Zx f(y)dy] lim
r↓0

(
1− exp

{
− EQ

[ ∫
Zx
⊕r\Zx f(y)dy

]})

r
, (7)

where EQ denotes the expectation with respect to Q; thus, in order to obtain sufficient conditions
for the existence of σΘ(x), existence results for limits of the type

lim
r↓0

1
r

∫

A⊕r\A
f(x)dx (8)

have to be studied.
Note that in the particular case in which f is constant the limit above exists if and only if A admits
outer Minkowski content.

In the next section we recall some recent results on the existence of the outer Minkowski content
of Borel subsets of Rd, which will be the starting point to obtain existence results for the specific
area of random closed sets.

2.1 Existence results for the outer Minkowski content

We remind that a compact set A ⊂ Rd is called n-rectifiable (0 ≤ n ≤ d − 1 integer) if it is
representable as the image of a compact subset of Rn by a Lipschitz map from Rn to Rd; more
in general, a closed subset A of Rd is called to be countably Hn-rectifiable if there exist countably
many Lipschitz maps gi : Rn → Rd such that A \⋃

i gi(Rn) is Hn-negligible. (For definitions and
basic properties of Hausdorff measure and rectifiable sets see, e.g., [3, 12, 13].) We call Radon
measure in Rd any nonnegative and σ-additive set function µ defined on BRd which is finite on
bounded sets.
Federer’s theorem (see [13, p. 275]) on the existence of the n-dimensional Minkowski content of
n-rectifiable compact sets is well known. We recall a generalization of such theorem, proved in [3,
p. 110], to countably Hn-rectifiable compact sets and then we shall see that if the boundary of a
Borel subset of Rd satisfies similar conditions, then it admits outer Minkowski content.
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Theorem 1 Let A ⊂ Rd be a countably Hn-rectifiable compact set and assume that

η(Br(x)) ≥ γrn ∀x ∈ A, ∀r ∈ (0, 1) (9)

holds for some γ > 0 and some Radon measure η in Rd absolutely continuous with respect to Hn.
Then Mn(A) = Hn(A).

Condition (9) is a kind of quantitative non-degeneracy condition which prevents A from being too
sparse; simple examples (see [3, 2]) show that Mn(A) can be infinite, and Hn(A) arbitrarily small,
when this condition fails.
It is reasonable to conjecture that, if the boundary ∂A of a subset A of Rd satisfies the assumptions
of the theorem above, then A admits outer Minkowski content; in [26] it has been proved that the
value of SM(A) depends on the density of A at its boundary points. We remind that the d-
dimensional density (briefly, density) of A is defined by [3]

θd(A, x) := lim
r↓0

Hd(A ∩Br(x))
Hd(Br(x))

,

provided that the limit exists. It is clear that θd(A, x) equals 1 for all x in the interior of A, and 0
for all x into the interior of the complement set of A, whereas different values can be attained at
its boundary points. It is well known (e.g., see [3, Theorem 3.61]) that if Hd−1(∂A) < ∞, then A

has density either 0 or 1 or 1/2 at Hd−1-almost every point of its boundary. For every t ∈ [0, 1]
and every Hd-measurable set A ⊂ Rd let

At := {x ∈ Rd : θd(A, x) = t}.

Intuitively, a small neighborhood of a point x ∈ A1 ∩ ∂A is “almost all contained” in A, so that
it gives no contribution to the volume of A⊕r \ A; thus, roughly speaking, we may say that x has
negligible weight in the computing of the outer Minkowski content of A. Conversely, if A has null
density in x ∈ ∂A, then, in a small neighborhood of x, A⊕r \ A “almost all coincides” with the
Minkowski enlargement of ∂A, so that, roughly speaking, we may say that the weight of x in the
computing of the outer Minkowski content of A is twice the weight of a point y ∈ A1/2.
In [26] the following class of sets (whose boundary satisfies the assumptions of Theorem 1) has
been introduced:

Definition 2 (The class O) Let O be the class of Borel sets A of Rd with countably Hd−1-
rectifiable and bounded topological boundary, such that

η(Br(x)) ≥ γrd−1 ∀x ∈ ∂A, ∀r ∈ (0, 1) (10)

holds for some γ > 0 and some probability measure η in Rd absolutely continuous with respect to
Hd−1.

Theorem 3 [26] The class O is stable under finite unions and any A ∈ O admits outer Minkowski
content, given by

SM(A) = Hd−1(A1/2) + 2Hd−1(∂A ∩A0).

Remark 4 The set of points
∂∗A := Rd \ (A0 ∪A1)
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where the density of A is neither 0 nor 1 is called essential boundary of A. It is proved (e.g., see
[3]) that all the sets At are Borel sets, and that

Hd−1(∂∗A ∩B) = Hd−1(A1/2 ∩B)

for all B ∈ BRd .

Remark 5 (The class O′) In [26] it is also proved that the same conclusions of the above the-
orem hold for a class of Borel subsets of Rd, named O′, defined similarly to O by replacing the
condition of absolutely continuity of η with the assumption that Md−1(∂A) = Hd−1(∂A); then it
follows that this class of sets contains all Borel sets with (d− 1)-rectifiable boundary (and so finite
unions of sets with positive reach or with Lipschitz boundary, in particular).

We conclude this section by the following theorem proved in [28], which generalizes Theorem 3
providing sufficient conditions for the existence of the limit in (8).

Theorem 6 Let µ be a positive measure in Rd absolutely continuous with respect to Hd with locally
bounded density f . Let A belong to O (or O′). If Hd−1(discf) = 0, then

lim
r↓0

µ(A⊕r \A)
r

=
∫

∂∗A

f(x)Hd−1(dx) + 2
∫

∂A∩A0
f(x)Hd−1(dx).

2.2 Existence results for the specific area

For details of the proofs of the results presented in this section, and for further remarks and
comments, we refer to [28].
Let us consider a Boolean model Ξ in Rd with the notation introduced above. In order to provide
sufficient conditions on Ξ such that its specific area exists finite, it is intuitive by (7) and Theorem 6
why the following Assumptions implies the formula (12) for σΞ(x) in Proposition 7.
In the assumption (A1) below the notation Θ ⊇ ∂Z0 with EQ[Hd−1(Θ)] < ∞ means that for any
s ∈ K there exists a closed set Θ(s) ⊇ Z0(s) such that

∫
K
Hd−1Θ(s)Q(ds) < ∞.

Assumptions: (A1) ∂Z0 is countably Hd−1-rectifiable and compact, and such that there exist
γ > 0 and a random closed set Θ ⊇ ∂Z0 with EQ[Hd−1(Θ)] < ∞ such that, for Q-a.e. s ∈ K,

Hd−1(Θ(s) ∩Br(x)) ≥ γrd−1 ∀x ∈ ∂Z0(s), ∀r ∈ (0, 1).

(A2) Hd−1(discf) = 0 and f is locally bounded such that for any compact set K ⊂ Rd

sup
y∈K⊕diam(Z0)

f(y) ≤ ξK (11)

for some random variable ξK with EQ[Hd−1(Θ)ξK ] < ∞.

Proposition 7 Let Ξ be a Boolean model as in the Assumptions. Then

σΞ(x) = exp
{
− EQ

[ ∫

Zx

f(y)dy
]}
·

· EQ

[ ∫

∂∗Zx

f(y)Hd−1(dy) + 2
∫

∂Zx∩(Zx)0
f(y)Hd−1(dy)

]
(12)

for all x ∈ Rd.

6



Remark 8 The assumption (A1) is often fulfilled with Θ = ∂Z0 or Θ = ∂Z0 ∪ Ã for some
sufficiently regular random closed set Ã. As a matter of fact, it can be seen as the stochastic
version of (10), which, in many applications, is satisfied with η(·) = Hn(Ã∩ · ) for some closed set
Ã ⊇ A, as proved in [3, p. 111] (see also [2]).
The other integrability assumptions in (A1) and (A2) are just technical assumptions in order to
exchange limit and integral in Eq. (7). We may notice that if f is bounded, then ξK is constant
for any K, and so EQ[Hd−1(Θ)ξK ] is finite by (A1).

Having now an explicit formula for the specific area of inhomogeneous Boolean models as in the
Assumptions, we may ask when σΞ coincides with λ∂Ξ, the mean surface density of Ξ. The next
theorem shows that, without any further regularity assumption on Z0, σΞ may differ form the
mean surface density λ∂Ξ of Ξ, in general.

Theorem 9 If Ξ is a Boolean model as in the Assumptions satisfying (6), then

σΞ(x) = λ∂∗Ξ(x) + 2λ∂Ξ∩Ξ0(x)

for Hd-a.e. x ∈ Rd, where λ∂∗Ξ and λ∂Ξ∩Ξ0 are the densities of E[Hd−1
|∂∗Ξ] and E[Hd−1

|∂Ξ∩Ξ0 ], respec-
tively.

Remark 10 By the proof of Theorem 9 it follows in particular that Ξ admits local mean outer
Minkowski content, i.e. for any Borel set B ⊂ Rd such that E[Hd−1(∂Θ ∩ ∂B)] = 0 it holds

lim
r↓0

E[Hd((Ξ⊕r \ Ξ) ∩B)]
r

= E[Hd−1
|Ξ1/2(B)] + 2E[Hd−1

|∂Ξ∩Ξ0(B)]. (13)

We point out that the Assumptions, which guarantee the equation above, are quite general (see
also Remark 8); the random sets which don’t admit local mean outer Minkowski content could be
considered as “pathological” sets.

Theorem 9 tells us that, in general, it may well happen that the specific area does not coincide
with the mean surface density. We mentioned in the Introduction that a problem of interest in
image analysis is the estimation of the mean surface density of random sets, and that the 2-D
box approximations of points in R2 by pixels in computer graphics suggests the use of σΞ for the
estimation of the mean surface density. Therefore we provide now sufficient conditions on Ξ such
that σΞ(x) = λ∂Ξ for Hd-a.e. x ∈ Rd. The Assumptions above on Ξ imply that E[Hd−1(∂Ξ)] < ∞
P-a.s., so that its mean surface density can be decomposed as follows:

λ∂Ξ = λ∂Ξ∩Ξ0 + λ∂∗Ξ + λ∂Ξ∩Ξ1.

Then, it follows that σΞ(x) = λ∂Ξ(x) = λ∂∗Ξ(x) for Hd-a.e. x ∈ Rd if E[Hd−1
|∂Ξ∩(Ξ0∪Ξ1)] = 0.

The following proposition provides a sufficient regularity condition on the typical grain in order to
have σΞ = λ∂Ξ.

Proposition 11 Let Ξ be a Boolean model as in the Assumptions satisfying (6), such that

EQ[Hd−1(∂∗Z0)] = EQ[Hd−1(∂Z0)]. (14)

Then
σΞ(x) = exp

{
− EQ

[ ∫

Zx

f(y)dy
]}
EQ

[ ∫

∂Zx

f(y)Hd−1(dy)
]

= λ∂Ξ(x) (15)

for Hd-a.e. x ∈ Rd.
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We point out that there exist (although a bit “pathological”) subsets of Rd such that the Hd−1-
measure of their boundary differs from that one of their essential boundary (e.g., see [2, Section 5];
so, by choosing a set of this kind as deterministic typical grain, the condition (14) is not satisfied,
and λ∂Ξ 6= σΞ for the corresponding Boolean model Ξ. Furthermore, it can be shown (see [2]) that
the class of subsets A of Rd such that Hd−1(∂A) = Hd−1(∂∗A) is not stable under finite unions,
that is, even if two subsets A1 and A2 of Rd are such that Hd−1(∂Ai) = Hd−1(∂∗Ai), i = 1, 2, it
may well happen that Hd−1(∂(A1 ∪ A2)) 6= Hd−1(∂∗(A1 ∪ A2)). Noticing that, by condition (6),
Ξ is almost surely a locally finite union of grains, Proposition 11 tells us that a sort of stability
under finite unions for the expected value holds for Boolean models, because (14) implies that
E[Hd−1(∂Ξ)] = E[Hd−1(∂∗Ξ)].
Since ∂∗Z0 ⊂ ∂Z0, condition (14) is satisfied if Hd−1(∂∗Z0) = Hd−1(∂Z0) P-a.s.; we remind that
any compact subset A of Rd with Lipschitz boundary satisfies Hd−1(∂∗A) = Hd−1(∂A), and that
the same holds also for a certain class of compact sets with positive reach, containing, in particular,
all the d-dimensional convex bodies (see [2, 28].) Therefore we may claim that σΞ = λ∂Ξ Hd-a.e.
for all Boolean models with typical grain Z0 satisfying regularity conditions of this kind, and so,
starting by the definition of σΞ, estimators for the mean surface density λ∂Ξ of Ξ can be provided
(see section below). We also mention that examples of applications of the above results to Boolean
models of balls and segments are provided in [28, Section 5.3].

Remark 12 It is clear that Proposition 7 and Proposition 11 can be easily specified for the
particular cases in which Ξ is stationary (in such case f is constant, say c, and so σΞ is constant
as well, equal to e−cEQ[Hd(Z0)]cEQ[SM(Z0)]), or Ξ has deterministic typical grain (in such case it
is sufficient to assume that Z0 is a compact set in O, or O′, and that the intensity f is locally
bounded such that Hd−1(discf) = 0).
Let us also notice that σΞ(x) might be not trivial for (d− 1)-dimensional Boolean models, as well;
it can be shown that under similar assumptions to (A1) and (A2),

σΞ(x) = 2λ∂Ξ(x) = EQ

[ ∫

Zx

f(y)Hd−1(dy)
]

Hd-a.e. x ∈ Rd.
We refer to [28, Section 5] (see also [27]) for a more detailed discussion of these particular cases.

3 Some applications

In this section we shall discuss a couple of applications of the results above; in particular, applica-
tions to birth-and-growth processes which are of interest in several application areas as Material
Science, Biology, etc.

3.0.1 An estimator of the mean surface density

It could be of interest in Image Analysis to estimate the mean surface density of random closed
sets by means of their Minkowski enlargements, because of the computer graphics representation of
lower dimensional sets in terms of pixels. By repeating the same argument in [28, Proposition 6.1],
where estimators for the mean density of lower dimensional random closed sets are provided, in [27]
a natural estimator for λ∂Ξ has been introduced, being Ξ a Boolean model as in the assumptions
of Proposition 11, and so

λ∂Ξ(x) = lim
r↓0

P(x ∈ Ξ⊕r \ Ξ)
r
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for Hd-a.e. x ∈ Rd.
Given an i.i.d. random sample Ξ1, . . . , ΞN of Ξ, the equation above suggests the following estimator
of λ∂Ξ(x):

λ̂N
∂Ξ(x) :=

∑N
i=1 1Ξi⊕RN

\Ξi
(x)

NRN
=

∑N
i=1(1Ξi∩BRN

(x)6=∅ − 1Ξi∩{x}6=∅)

NRN
,

with RN such that
lim

N→∞
RN = 0 and lim

N→∞
NRN = ∞.

It is not difficult to check that λ̂N
∂Ξ(x) is an asymptotically unbiased and consistent estimator of

λ∂Ξ(x) for Hd-a.e. x ∈ Rd.

Remark 13 We also mention that the outer Minkowski content concept as measure of the bound-
ary of deterministic sets, has been recently used to provide estimators for the Hd−1-measure of
the boundary of compact subsets of Rd in [5]. Therefore, open problems related to the estimation
of the mean boundary measure of random closed sets might be the following: the study of the
statistical properties of the estimator above, and the generalization to random closed sets of the
results in [5].

3.0.2 Applications to birth-and-growth processes

Many real phenomena as crystallization processes (see, e.g., [9, 24] and references therein), tumor
growth (e.g., [4]), etc., may be modelled as evolving random closed sets, that is as full dimensional
time dependent random closed sets. In particular, any real situation in which nuclei are born
in time and are located in space randomly, and each nucleus generates a grain evolving in time
according to a given growth law, may be modelled as space-time structured stochastic birth-and-
growth processes. Such a process is described by a marked point process, say N := {(Tj , Xj)}j∈N,
modelling births at random times Tj ∈ R+ and related random spatial locations (nuclei) Xj ∈ Rd

(d ≥ 2), and by a growth model.
Denoting by Θt

t0(x0) the grain born at some time t0 and location x0, and grown up to time t,
under regularity assumptions on the birth and growth model, the union set

Θt =
⋃

n:Tn≤t

Θt
Tn

(Xn)

of such grains at time t is then a locally finite union of random closed sets. The family {Θt}t is
called birth-and-growth process, and a problem of interest in many applications is to find evolution
equations for the mean volume density, in terms of the mean surface density of Θt.
A lot of papers on this subject can be found in literature; in particular, the case in which N is
given by a marked Poisson process has been studied extensively (e.g., see [8, 20] and references
therein).
In this section we want to point out the role of the existence of the (local) mean outer Minkowski
content and the specific area of Θt in the study of the mean volume and surface densities of Θt.
We recall that the mean volume density of Θt, usually denoted by VV (t, · ), is the Radon-Nikodym
derivative of the measure E[Hd

|Θt ], i.e.

E[Hd(Θt ∩B)] =
∫

B

VV (t, x)dx, ∀B ∈ BRd ;
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similarly, the mean surface density of Θt, usually denoted by SV (t, · ), is the Radon-Nikodym
derivative of the measure E[Hd−1

|∂Θt ], i.e.

E[Hd−1(∂Θt ∩B)] =
∫

B

SV (t, x)dx, ∀B ∈ BRd .

Let us notice that
VV (t, x) = P(x ∈ Θt),

whereas SV (t, x) = λ∂Θt(x), according to our previous notation.
We assume here that the nucleation process N is a Poisson marked point process (equivalently,

a Poisson point process in R+ × Rd), with intensity measure Λ of the type

Λ(d(t, x)) = α(t, x)dtdx

and satisfying the usual condition (6).
Models of volume growth have been studied extensively, since the pioneering work by [20]. Clearly,
different kinds of growth model give rise to different kinds of processes {Θt}t.

Let us first consider the normal growth model (see also, e.g., [10] and references therein),
according to which, at Hd−1-almost every point of the actual grain surface at time t (i.e. at Hd−1-
a.e. x ∈ ∂Θt

Tj
(Xj)), growth occurs with a given strictly positive normal velocity

v(t, x) = G(t, x)n(t, x), (16)

where G(t, x) is a given deterministic growth field, and n(t, x) is the unit outer normal at point
x ∈ ∂Θt

T0
(X0). We assume that

0 < g0 ≤ G(t, x) ≤ G0 < ∞ ∀(t, x) ∈ R+× Rd,

for some g0, G0 ∈ R, and that G(t, x) is sufficiently regular such that the evolution problem given
by (16) for the growth front ∂Θt

t0(x) is well posed. It follows that for any fixed t ∈ R+, the topo-
logical boundary of each grain is a random closed set with locally finite Hd−1-measure P-almost
surely (e.g., see [7]). This and the assumption that Θt is a locally finite union of grains imply
that P-almost surely Hd−1(∂Θt) < ∞, and so that Θt has density 1 or 1/2 at Hd−1-a.e. point
of its boundary P-almost surely. We can claim the assumptions on the growth model imply that
Hd−1((Θt)0) = 0 P-a.s.
For the normal growth model above with Poissonian nucleation process, recent results (see [11,
Prop. 25], and also [10, Prop. 19],[25, Prop. 2.3]) show that, if Θt admits local mean outer
Minkowski content for all t > 0 and if the random variable T (x) defined by

T (x) := min{t > 0 : x ∈ Θt}
is continuous with density, then the following evolution equation holds in weak form:

∂

∂t
VV (t, x) = G(t, x)SV (t, x). (17)

The random variable T (x) is called time of capture of point x, and its probability density function,
say pT (x), is just the partial derivative of VV with respect to t (e.g., see [11, Eq. (14)]). By
repeating the same arguments of Proposition 25 in [11] and assuming that Θt admits local mean
outer Minkowski content, we can state the following slightly more general result. Note that the
assumption that the boundary of Θt is sufficiently regular so that Θt admits local mean outer
Minkowski content, is not so restrictive for applications (see Remark 10).

10



Proposition 14 Let {Θt}t be a birth-and-growth process with normal growth model as above,
and sufficiently regular such that Θt admits local mean outer Minkowski content (13). Then the
following equation holds in weak form

∂

∂t
VV (t, x) = G(t, x)λ∂∗Θt(x). (18)

Proof. (Sketch)
The assumptions on the nucleation process and on the growth model imply (by [25, Theorem 3.3])
that T (x) admits probability density function pT (x). By Eq.s (17) and (24) in [11], the following
chain of equalities hold

∂

∂t
VV (t, x) = pT (x) = h(t, x)P(x 6∈ Θt) = G(t, x)

∂

∂r
P(x ∈ Θt

⊕r \Θt)|r=0 = G(t, x)σΘt(x),

where h(t, x) is the so-called hazard function associated to the point x at time t. (See [11, Def. 21].)
Eq. (13) can be written equivalently (in weak form) as

∂

∂r
P(x ∈ Θt

⊕r \Θt)|r=0 = λ∂∗Θt(x) + 2λ∂Θt∩(Θt)0(x) = λ∂∗Θt(x),

where the last equation follows by having observed that Hd−1((Θt)0) = 0 P-a.s., and so we obtain
(18). ¤

Remark 15 Let us notice that the following decomposition of the mean surface density holds

λ∂Θt = λ∂∗Θt + λ∂Θt∩(Θt)0 + λ∂Θt∩(Θt)1 .

As a consequence, since λ∂Θt∩(Θt)0 = 0, Eq. (18) can be equivalently written

∂

∂t
VV (t, x) = G(t, x)(λ∂Θt(x)− λ∂Θt∩(Θt)1);

assuming now that for a.e. t ∈ R+ E[Hd−1
|∂Θt∩(∂Θt)1 ] = 0 , then for a.e. t ∈ R+ λ∂∗Θt = λ∂Θt and

Eq. (18) coincides with Eq. (17).

Let us now consider a different growth model. We assume now that each grain grows with the
same growth law of a “typical grain” with its nucleus at the origin; in other words, the grain Θt

s(x)
born at point x at time s and grown up to time t can be seen as the translation in x of a grain
born in 0 at the same birth-time. By using the notation introduced for Boolean models, given
the nucleation process {(Tn, Xn)}n, where now the marks are the birth times Tn associated to the
spatial locations Xn of the nuclei, we can model the crystallized region Θt at time t as the Boolean
model

Θt =
⋃

(Tn,Xn)∈N :Tn≤t

Xn + Z0(Tn) = Xn + Θt
Tn

(0) (19)

Notice that such a model may be used to describe real situations in which the growth model is
assumed to be such that the shape of the grains is preserved during the process (e.g., prolates
and spheroids in [24]). Clearly, the particular case of spherical growth (which corresponds to the
previous growth model with G = G(t)), can be described also by means of the present model with
Z0(Tn) = BR(Tn,t)(0), where R(Tn, t) =

∫ t

Tn
G(s)ds.

11



Thus, if the Boolean model Θt satisfies the Assumptions, then by Proposition 7 it follows that
the specific area σΘt exists given by (12); if furthermore condition (14) is satisfied (usually true
in many real applications), then an explicit formula for the mean surface density (equivalently
SV ) can be obtained by (15). In order to apply such formula to the birth-and-growth process in
(19), note that the mark distribution Q represents now the probability law of the birth time of
the typical grain; for instance, if the nucleation rate is constant in time, then, for any fixed t, Q is
the uniform distribution in [0, t]. More in general, for any fixed t, since the nucleation takes place
during the time interval [0, t], Eq. (15) will be of the type

σΘt(x) = SV (t, x) = exp
{
−

∫ t

0

∫

x−Θt
s(0)

f(y)dyQds
} ∫ t

0

∫

∂(x−Θt
s(0))

f(y)Hd−1(y. )Q(ds)

Remark 16 Whenever the nucleation is homogeneous in space, then f is constant and the above
formula simplify as follows

SV (t, x) = exp
{
−

∫ t

0

cHd(Θt
s(0))Qds

} ∫ t

0

Hd−1(∂(Θt
s(0))Q(ds),

in accordance with [24, Eq.s 9-12]
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