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Abstract

The scope of this paper is to offer an overview of the main results obtained by the
authors in recent literature in connection with the introduction of a Delta formalism, á la
Dirac-Schwartz, for random generalized functions (distributions) associated with random
closed sets, having an integer Hausdorff dimension n lower than the full dimension d of
the environment space Rd. A concept of absolute continuity of random closed sets arises
in a natural way in terms of the absolute continuity of suitable mean content measures,
with respect to the usual Lebesgue measure on Rd. Correspondingly mean geometric den-
sities are introduced with respect to the usual Lebesgue measure; approximating sequences
are provided, that are of interest for the estimation of mean geometric densities of lower
dimensional random sets such as fibre processes, surface processes, etc. Many models in
material science and in biomedicine include time evolution of random closed sets, describing
birth-and-growth processes; the Delta formalism provides a natural framework for deriving
evolution equations for mean densities at all (integer) Hausdorff dimensions, in terms of
the relevant kinetic parameters.

Keywords: birth-and-growth processes, stochastic geometry, random measures, random distri-
butions, geometric measure theory, geometric densities, approximation of geometric densities

1 Introduction

Many real phenomena may be modelled as random closed sets in Rd, and in several situations
as evolving random closed sets. Application areas include crystallization processes Figs. 1,6
(see [14, 15], and references therein; see also [41] for the crystallization processes on sea shells
Fig. 3); tumor growth [3] and angiogenesis Figs. 2,4 [22]; spread of fires in the woods, spread
of a pollutant in an environment; etc.

All quoted processes may be described by time dependent random closed sets at different
Hausdorff dimensions (for instance, crystallization processes are modelled in general by full
dimensional growing sets, and lower dimensional interfaces, while angiogenesis by systems of
random curves). In particular, because of the coupling with a suitable underlying field, such
as temperature, nutrients, etc., all these kinds of phenomena may be modelled as space-time
structured stochastic birth-and-growth processes in a d-dimensional space Rd driven by a spa-
tially marked point process N = {(Ti, Xi)}i∈N, modelling births, at random times Ti ∈ R+, and
related random spatial locations Xi ∈ Rd [28, 39]. Once born, each germ generates a grain sub-
ject to surface growth, with a speed G(t, x) > 0 which should, in general, be assumed space-time
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(real)

(simulated)

Figure 1: The final tessellation in a real experiment of a crystallization process of a polymer.
This picture, together with the simulated one, shows the relevance of components at all integer
Hausdorff dimensions for describing the final morphology. Credit: MONTELL-Italy
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(a)

(b)

Figure 2: Angiogenesis on a rat cornea [Credit: Dejana et al 2005] (a). A simulation of an
angiogenesis due to a localized tumor mass (black region on the right) [23](b).

Figure 3: Crystallization on the shell of a bivalve [41]. A,B real, and C simulated, of the relevant
birth-and-growth mechanism.
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Figure 4: Vascularization of an allantoid. [Credit: Dejana et al 2005]. An important example
of a fibre process of Hausdorff dimension 1 in a 3D space.

dependent. As a first approximation one may assume that the kinetic parameters of the process
are given deterministic (space and time dependent) fields, obtained via a homogenization at
the scale of the underlying field.

We remind that a random closed set Ξ in Rd is a measurable map

Ξ : (Ω,F ,P) −→ (F, σF)

(i.e. Ξ(S) ∈ F for all S ∈ σF), where F denotes the class of the closed subsets in Rd, and σF is
the σ-algebra generated by the so called hit-or-miss topology (see [35]).

In several real applications it is of interest to study random closed sets of different Hausdorff
dimensions.
A random tessellation has been characterized by its interfaces; dimension 0 for vertices, 1 for
edges, etc. (see Fig. 1, and, e.g., [36, 37]).
For definitions and basic properties of Hausdorff measure and Hausdorff dimension see, e.g.,
[2, 24, 25]. Denoting by Hn the n-dimensional Hausdorff measure, we recall that H0 is the
usual counting measure; for any Borel set B ⊂ R, Hd(B) coincides with the usual d-dimensional
Lebesgue measure of B; for 1 ≤ n < d integer, Hn(B) coincides with the classical n-dimensional
measure of B if B ∈ BRd (the Borel σ-algebra of Rd) is contained in a C1 n-dimensional manifold
embedded in Rd. Further, we recall that the Hausdorff dimension of a set A ⊂ Rd is defined as

dimH(A) := inf{0 ≤ s < ∞|Hs(A) = 0},
so that, in particular, a point has Hausdorff dimension 0, a curve (or a fibre) has Hausdorff
dimension 1, a hypersurface in Rd has Hausdorff dimension d − 1. Note that the Hausdorff
dimension of a set A need not to be an integer (e.g., consider the Cantor set), and dimH(A) = s

does not imply that Hs(A) is positive and finite (we may have dimH(A) = s and Hs(A) = 0,
or Hs(A) = ∞).

We say that a random closed set Θ has Hausdorff dimension n if dimHΘ(ω) = n for a.e.
ω ∈ Ω); in such case we also write Θn to remind its Hausdorff dimension.
In dependence of its regularity, a random closed set Θn with Hausdorff dimension n may induce
a random Radon measure

µΘn(·) := Hn(Θn ∩ · )
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Figure 5: Degree of crystallinity (Vv(z)) and surface density (SV (z)) for an experimental 2D
sample of tungsten-copper alloy. Credit: [27].

on Rd, and, as a consequence, an expected measure

E[µΘn ](·) := E[Hn(Θn ∩ · )].

(For a discussion about measurability of Hn(Θn) we refer to [6, 43]).
A case of interest in applications [8, 36, 27] is the one in which the mean measure admits a

density (a classical function) with respect to the usual Lebesgue measure νd in Rd; for n = d

it is known as degree of crystallinity [5, 30]; for any other integer 0 ≤ n ≤ d− 1 it is known as
n-facet density ; for fibre processes (n = 1) we speak of fibre density, etc. (see Fig. 5).

We wish to stress the fact that it is not always true that the mean measure E[µΘ] admits a
classical function as density, so that the need of introducing a concept of absolute continuity for
random closed sets arises in a natural way. Thus, it is of interest to distinguish between random
closed sets which induce an absolutely continuous expected measure, and random closed sets
which induce a singular one. To this aim we introduce definitions of discrete, continuous and
absolutely continuous random closed set, coherently with the classical 0-dimensional case, in
order to propose an extension of the standard definition of discrete, continuous, and absolutely
continuous random variable, respectively. (For preliminary definitions and results see also
[18, 19].)
Our approach as reviewed here from a series of papers in the subject [1, 20, 21] is based on a
theory of random distributions as generalized densities of random measures, and mean geometric
densities as expected values of random generalized densities. In particular we introduce a Delta
formalism, á la Dirac-Schwartz, for the description of random measures associated with random
closed sets of lower dimensions, such that the well known usual Dirac delta at a point follows
as a particular case (see, for instance, [29, 31, 42]). For a first attempt to deal with random
distributions we refer to [34].

In this way, in the context of time dependent growing random sets, we provide a natural
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framework for deriving evolution equations for mean densities at all (integer) Hausdorff dimen-
sions, in terms of the relevant kinetic parameters associated with a given growth process [20].
As an important example modelling a variety of real phenomena we discuss later the case of
birth-and-growth processes, subject to a normal growth model for the grains. We evidence the
case in which such mean geometric densities are classical functions, which happens in the case
of absolutely continuous random sets.
Hence we show how evolution equations for some relevant mean densities take advantage of
the “localizing” action of the Delta formalism for writing evolution equations in terms of the
relevant local (in time and space) kinetic parameters of the system.

Finally, as for the usual Dirac delta as a generalized function, we show how to express a mean
geometric density E[δΘn

] in terms of a suitable approximating sequence of classical functions.
This turns out of great importance in several real applications, whenever we wish to estimate
the density of the mean measure E[µΘn

]. For example, when n = 1 as in the case of a fibre
process, or a line process, or when n = d− 1 as in the case of a surface process [1].

2 Generalized densities

In the sequel we will refer to a class of sufficiently regular closed sets in the Euclidean space
Rd, of integer dimension n. We denote by Br(x) the ball with center x and radius r.

Definition 1 (n-regular set) Given an integer n ∈ [0, d], we say that a closed subset S of Rd

is n-regular, if it satisfies the following conditions:

(i) Hn(S ∩BR(0)) < ∞ for any R > 0;

(ii) lim
r→0

Hn(S ∩Br(x))
bnrn

= 1 for Hn-a.e. x ∈ S.

Here bn is the volume of the unit ball in Rn.

Remark 2 Note that condition (ii) is related to a characterization of the Hn-rectifiability of
the set S ([24], p. 256, 267, [2], p. 83).

We may observe that if An is an n-regular closed set in Rd, we have

lim
r→0

Hn(An ∩Br(x))
bnrn

=
{

1 Hn-a.e. x ∈ An,
0 ∀x 6∈ An.

As a consequence (by assuming 0 · ∞ = 0), for 0 ≤ n < d we have

lim
r→0

Hn(An ∩Br(x))
bdrd

= lim
r→0

Hn(An ∩Br(x))
bnrn

bnrn

bdrd
=

{ ∞ Hn-a.e. x ∈ An,
0 ∀x 6∈ An.

It is known that every positive Radon measure µ on Rd can be represented in the form

µ = µ¿ + µ⊥,

where µ¿ and µ⊥ are the absolutely continuous part with respect to νd, and the singular part
of µ, respectively. We may notice that, if An is an n-regular closed set in Rd with n < d, then
the measure

µAn(·) := Hn(An ∩ ·)
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is a singular measure with respect to νd, and so the Radon-Nikodym derivative of µAn¿ is zero
νd-a.e. x ∈ Rd.
Even if, usually, by “density of µ” it is understood the Radon-Nikodym derivative of µ with
respect to νd, and so it is meant that µ is absolutely continuous, actually, it is well known in
literature the Delta “function” at a point X0, as the (generalized) density of the singular Dirac
measure [31]. In analogy with the usual Dirac delta function δx0(x) associated with a point
x0 ∈ Rd (a 0-regular closed set), we may introduce the following definition.

Definition 3 (generalized density) We call δAn
, the generalized density (or, briefly, the

density) associated with An, the quantity

δAn
(x) := lim

r→0

Hn(An ∩Br(x))
bdrd

,

finite or not.

In this way δAn
(x) can be considered as the generalized density (or the generalized Radon-

Nikodym derivative) of the measure µAn with respect to the d-dimensional Lebesgue measure
νd.

Define the function

δ
(r)
An

(x) :=
Hn(An ∩Br(x))

bdrd
,

and correspondingly the associated measure

µ
(r)
An

(B) :=
∫

B

δ
(r)
An

(x) dx, B ∈ BRd .

With an abuse of notations, we may introduce the linear functionals δ
(r)
An

and δAn associated

with the measures µ
(r)
An

and µAn , respectively, as follows:

(δ(r)
An

, f) :=
∫

Rd

f(x)µ(r)
An

(dx),

(δAn , f) :=
∫

Rd

f(x)µAn(dx),

for any f ∈ Cc(Rd,R), having denoted by Cc(Rd,R) the space of all continuous functions from
Rd to R with compact support.
It can be proved (see [20]) that the sequence of measures µ

(r)
An

weakly* converges to the measure

µAn ; in other words, the sequence of linear functionals δ
(r)
An

weakly* converges to the linear
functional δAn , i.e. (δAn , f) → (δA, f) for any f ∈ Cc(Rd,R).

Remark 4 In analogy with the classical Dirac delta, we may regard the continuous linear
functional δAn as a generalized function on the usual test space Cc(Rd,R), and, in accordance
with the usual representation of distributions in the theory of generalized functions, we formally
write ∫

Rd

f(x)δAn(x) dx := (δAn , f).

Consider now random closed sets.
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Definition 5 (n-regular random set) Given an integer n, with 0 ≤ n ≤ d, we say that a
random closed set Θn in Rd is n-regular, if it satisfies the following conditions:

(i) for almost all ω ∈ Ω, Θn(ω) is an n-regular set in Rd;

(ii) E[Hn(Θn ∩BR(0))] < ∞ for any R > 0.

If Θn is a random closed set in Rd, the measure

µΘn
(·) := Hn(Θn ∩ ·)

is a random measure, and consequently δΘn
is a random linear functional (i.e. (δΘn

, f) is a real
random variable for any test function f).

By extending the definition of expected value of a random operator à la Pettis (or Gelfand-
Pettis) [4, 9], we may define the expected linear functional E[δΘn

] associated with δΘn
as follows:

(E[δΘn
], f) := E[(δΘn

, f)], (1)

and the mean generalized density E[δΘn
](x) of E[µΘn

] by the formal integral representation:
∫

A

E[δΘn ](x) dx := E[Hn(Θn ∩A)],

with

E[δΘn ](x) := lim
r→0

E[Hn(Θn ∩Br(x))]
bdrd

.

It can be shown [20] that an equivalent definition of (1) can be given in terms of the expected
measure E[µΘn ] by

(E[δΘn ], f) :=
∫

Rd

f(x)E[µΘn ](dx),

for any f such that the above integral makes sense.
By using the integral representation of (δΘn , f) and (E[δΘn ], f), Equation (1) becomes

∫

Rd

f(x)E[δΘn ](x) dx = E
[∫

Rd

f(x)δΘn(x) dx

]
;

so that, formally, we may exchange integral and expectation.

Remark 6 When n = d, integral and expectation can be really exchanged by Fubini’s theorem.
Since in this case δΘd

(x) = 1Θd
(x), νd-a.s., it follows that E[δΘd

](x) = P(x ∈ Θd). In particular,
in material science, the density VV (x) := P(x ∈ Θd) is known as the (degree of) crystallinity.

If n = 0 and Θ0 = X0 is an absolutely continuous random point with pdf pX0 , then E[H0(X0

∩ · )] = P(X0 ∈ ·) is absolutely continuous, and its density E[δX0 ](x) is just the probability
density function pX0(x).

Thus, for any lower dimensional random closed set Θn in Rd, while it is clear that µΘn(ω)

is a singular measure, when we consider the expected measure E[µΘn ], it may happen that it
is absolutely continuous with respect to νd, and so it may have a classical Radon-Nikodym
derivative, so that E[δΘn ](x) is a classical real-valued locally integrable function on Rd (see [20],
and [18]).
It is then of interest to say whether or not a classical mean density can be introduced for sets
of lower Hausdorff dimensions, with respect to the usual Lebesgue measure on Rd.

In order to respond to this further requirement, we propose a concept of absolute continuity
for random closed sets.
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3 Discrete, continuous and absolutely continuous random
closed sets

Definition 7 (Discrete and continuous random sets) Let Θ be a random closed set in
Rd. We say that Θ is

• discrete if its probability law PΘ is concentrated on at most countable subset of F; i.e there
exist a family θ1, θ2, . . . of closed subsets of Rd, and a family of real numbers p1, p2, . . . ∈
[0, 1] such that P(Θ = θi) = pi and

∑
i pi = 1;

• continuous if
P(Θ = θ) = 0, ∀θ ∈ F. (2)

Note that the definition given is consistent with the case in which Θ is a random variable or
a random point in Rd. In this case, since the possible realizations of X are points in Rd, then
P(X = θ) = 0 for every subset θ of Rd which is not a point, and so we say that X is continuous
if and only if P(X = x) = 0 for any x ∈ Rd (that is the usual definition).

Denoted by ∂A the topological boundary of a set A ⊂ Rd, in a large number of cases an
equivalent condition to (2) is

P(∂Θ = ∂θ) = 0, ∀θ ∈ F,

for instance when Θ is a random closed set in Rd with dimension less than d, or when Θ is a.s.
the closure of its interior.

A definition of absolute continuity requires a reference measure; for a random point in Rd a
definition of absolute continuity is given in terms of the absolute continuity of its law PX with
respect to the usual Lebesgue measure on Rd. So that for a random point X we know that the
following relations hold:

X absolutely continuous ⇒ X continuous, (3)

but not the reverse;

X discrete ⇒ X singular, (4)

but not the reverse.

A random point is a particular random closed set of Hausdorff dimension 0; we now introduce
a definition of absolute continuity for random closed sets, such that analogous relations for
random sets hold with any Hausdorff dimension n ∈ {0, 1, . . . , d} ; as a consequence (3) and (4)
would follow as a particular case.
To avoid pathologies, as discussed later, we introduce now a class of random sets, which, in
particular, include all random sets we are interested in the sequel.

Definition 8 (R class) We say that a random closed set Θ in Rd belongs to the class R if

dimH(∂Θ) < d and P(HdimH(∂Θ)(∂Θ) > 0) = 1.

Definition 9 (Strong absolute continuity) We say that a random closed set Θ is (strongly)
absolutely continuous if Θ ∈ R and

E[µ∂Θ] ¿ νd (5)

on BRd .
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Notation: Without any further specification, in the following we will write “absolutely con-
tinuous random set” to mean a “strongly absolutely continuous random set”.

Note that, if Θ ∈ R with dimH(Θ) = d is sufficiently regular so that dimH(∂Θ) = d − 1,
then it is absolutely continuous if E[Hd−1(∂Θ ∩ · )] ¿ νd(·).

Remark 10 In the particular case that Θ = X is a random variable, Definition 9 coincides
with the usual definition of absolute continuity of a random variable. In fact, dimHX = 0,
∂X = X, and E[H0(X)] = P(X ∈ Rd) = 1, so X ∈ R and then the condition (5) is equivalent
to

E[H0(X ∩ · )] = P(X ∈ · ) ¿ νd.

In analogy with measure theory, we give the following definition:

Definition 11 (Singular random set) We say that a random closed set Θ ∈ R is singular
if and only if it is not absolutely continuous (in the sense of Definition 9).

In this way, the well known relations between the continuous and singular parts of a measure
hold also for a random closed set, although in a different context.

Proposition 12 Let Θ ∈ R. Then

Θ absolutely continuous ⇒ Θ continuous, (6)

but not the reverse;

Θ discrete ⇒ Θ singular, (7)

but not the reverse.

Proof. As a simple counterexample to (6) and (7), consider the random closed set Θ1 in R2 given
by a random unit square with two edges on the x-axis, say A and B, such that A = (a, 0), where
a is a real valued random variable uniformly distributed in [0,10] (consequently, B = (a+1, 0)).
It is clear that Θ1 is a continuous and singular random closed set.

Let us prove the first implication; the second one follows in a similar way.
By contradiction, let Θ be not continuous; then there exists θ ⊂ Rd such that P(Θ = θ) > 0.
Since Θ ∈ R, it follows that HdimH(∂θ)(∂θ) > 0. Thus, we have that Hd(∂θ) = 0, but

E[HdimH(∂Θ)(∂Θ ∩ ∂θ)]

= E[HdimH(∂Θ)(∂Θ ∩ ∂θ); {ω : Θ = θ}] + E[HdimH(∂Θ)(∂Θ ∩ ∂θ); {ω : Θ 6= θ}]
≥ E[HdimH(∂Θ)(∂Θ ∩ ∂θ); {ω : Θ = θ}]
= HdimH(∂θ)(∂θ) > 0.

Hence, by Definition 9, Θ is not absolutely continuous, that is a contradiction. ¤

The following proposition (see also [18]) may be useful to verify whether a random set Θ is
absolutely continuous.

Proposition 13 Let Θs be a random closed set such that dimHΘs = s < d. Then, for all
A ⊂ Rd such that Hd(∂A) = 0,

E[Hs(Θs ∩ · )] ¿ νd ⇐⇒ P(Hs(Θs ∩ ∂A) > 0) = 0.
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By Fubini’s Theorem it easily follows that for any random closed set Θn with Hausdorff
dimension n < d,

P(x ∈ Θn) = 0 for νd-a.e. x ∈ Rd,

independently of its probability law.
If we suppose now that the expected measure E[µΘn

] associated with Θn (n < d) is absolutely
continuous with respect to νd, then the set of points x ∈ Rd such that P(x ∈ Θn) = 0 becomes
“bigger”.

Proposition 14 Let Θn be a random closed set with Hausdorff dimension n < d and such that
E[µΘn

] ¿ νd.
Then for any Hn-measurable subset A of Rd with Hn(A) > 0, νd(A) = 0, we have that

P(x ∈ Θn) = 0 Hn-a.e. x ∈ A.

Proof. By contradiction there exists a Hn-measurable subset A of Rd with Hn(A) > 0,
νd(A) = 0, such that P(x ∈ Θn) > 0 Hn-a.e. x ∈ A.
By Corollary 2.10.48 in [25] we have that the measure Hn is σ-finite on A, so that we may use
Fubini’s Theorem. Thus it follows that

0 <

∫

A

P(x ∈ Θn)Hn(dx) =
∫

A

∫

Ω

1Θn(x)P(dω) Hn(dx)

=
∫

Ω

∫

A

1Θn(x)Hn(dx) P(dω) = E[Hn(Θn ∩A)]

But this is in contrast with the assumption E[µΘn ] ¿ νd, since E[Hn(Θn ∩A)] should be equal
to 0. ¤

Note that a natural definition related to the absolute continuity of E[µΘ] with respect to νd

would have been the following:

Definition 15 (Absolute continuity in mean) Let Θ be a random closed set in Rd such
that its associated expected measure E[µΘ] is a Radon measure. We say that Θ is absolutely
continuous in mean if the expected measure E[µΘ] is absolutely continuous with respect to νd.

We may observe that Definition 15 is consistent with the case in which Θ is a real random
variable or a random point in Rd, i.e. for n = 0; however if Θ has Hausdorff dimension d, then
the expected measure E[Hd(Θ ∩ · )] is, obviously, always absolutely continuous with respect to
the d-dimensional Lebesgue measure νd, even if Θ is a deterministic set. Thus, any random
closed sets in R with Hausdorff dimension d is absolutely continuous in mean, but in general it
is not absolutely continuous in the strong sense.
Further, there exist some pathological sets of lower dimension which may be either deterministic
or discrete and, at the same time, their expected measure is absolutely continuous. For instance,
if Θn is a random closed set such that, for almost every ω ∈ Ω, Hn(Θn(ω)) = 0, then it follows
that E[Hn(Θn)] = 0, so that E[µΘn ] ¿ νd, independently of its probability law. Indeed there
exist deterministic random closed sets which are absolutely continuous in mean. A simple
example is offered by a 2-dimensional Brownian path in a fixed plane in R3 (i.e. consider a
realization θ2 of a planar Brownian motion, as a deterministic closed set in a plane in R3); it is
known that the Hausdorff dimension of θ2 is 2, but H2(θ2) = 0.
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Remark 16 If Θ is a random closed set in R such that dimH(Θ) = s < d, then ∂Θ = Θ;
therefore E[µΘ] = E[µ∂Θ] and, by definition, it follows that there is no distinction between
absolute continuity strong and in mean.
Note that, under usual assumptions in literature (see, e.g., [8, 39]), a fibre process belong to the
class R.

4 Stochastic birth-and-growth processes

In this section we wish to analyze the case in which a random closed set Θ may depend upon
time as, for example, when it models the evolution due to a growth process, so that we have a
geometric random process {Θt, t ∈ R+}, such that for any t ∈ R+, the random set Θt satisfies
all the relevant assumptions required in the previous sections. Correspondingly the associated
linear functional δΘt will also be a functional depending on time, and so we need to define
partial derivatives of linear functionals depending on more than one variable.
Consider a linear functional L acting on a test space Sk of measurable functions s in k variables;
we formally represent it as

(L, s) :=
∫

Rk

φ(x1, . . . , xk)s(x1, . . . , xk)d(x1, . . . , xk).

Let us denote by Lh
i the linear functional defined by

(Lh
i , s) :=

∫

Rk

φ(x1, . . . , xi + h, . . . , xk)s(x1, . . . , xk)d(x1, . . . , xk). (8)

We define the weak partial derivative of the functional L with respect to the variable xi as
follows (see also [26], p. 20).

Definition 17 We say that a linear functional L on the space Sk, admits a weak partial
derivative with respect to xi, denoted by ∂

∂xi
L, if and only if ∂

∂xi
L is a linear functional on

the same space Sk and
{

Lh
i −L
h

}
weakly* converges to ∂

∂xi
L, i.e.

lim
h→0

(
Lh

i − L

h
, s

)
=

(
∂

∂xi
L, s

)
for all s ∈ Sk.

Let us consider, as an example, the case in which {Θt}t is given by a birth-and-growth
process (see Fig. 6). A birth-and-growth process is made of two main ingredients; a birth
process modelled as a marked point process, and a growth process. As far as the birth-and-
growth process is concerned, consider a Borel set E ⊆ Rd, d ≥ 2, endowed with its Borel
σ-algebra BE . A marked point process N on R+, with marks in E, is a point process on
R+ × E with the property that the marginal process {N(B × E) : B ∈ BR+} is itself a point
process. So, it is defined as a random measure given by

N =
∞∑

n=1

εTn,Xn ,

where

• Tn is an R+-valued random variable representing the time of birth of the n-th nucleus,
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Figure 6: Time evolution (from top left to bottom right) of a birth-and-growth process: a real
polymer crystallization process. Credit: MONTELL-Italy

• Xn is an E-valued random variable representing the spatial location of the nucleus born
at time Tn,

• εt,x is the Dirac measure on BR+× BE such that for any t1 < t2 and A ∈ BE ,

εt,x([t1, t2]×A) =
{

1 if t ∈ [t1, t2], x ∈ A,
0 otherwise.

Hence, in particular, for any B ∈ BR+ and A ∈ BE bounded, we have

N(B ×A) = #{Tn ∈ B, Xn ∈ A} < ∞,

i.e. it is the (random) number of germs born in the region A, during time B.
It is well known [10, 32] that, under general conditions, a marked point process is charac-

terized by its compensator (or stochastic intensity), say ν(dt×dx), with respect to the internal
history Ft of the process. Besides, if ν̃(dt) is the compensator of the marginal process, there
exists a stochastic kernel k from Ω× R+ to E such that

ν(dt× dx) = k(t,dx)ν̃(dt).

Its expected value Λ(dt×dx) := E(ν(dt×dx)) is the so called intensity measure of the process.
It is possible to factorize Λ in the following way [32]:

Λ(dt× dx) = Λ̃(dt)Q(t,dx),

where Λ̃ is the intensity measure of the marginal process and, ∀t ∈ R+, Q(t, ·) is a probability
measure on E, called the mark distribution at time t.
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We assume that the nucleation process N is such that the marginal process is simple (i.e.
N(dt × E) ≤ 1 for every infinitesimal time interval dt), and so the mark distribution Q(t, A)
represents the probability that a nucleus belongs to A, given that it is born during [t, t + dt).

In many cases we have volume crystallization, i.e. the random set Θt describing the crystal-
lized region at time t is of the same dimension d as the physical space; in this case it is usually
assumed that further nuclei cannot be born in an already crystallized zone. When we want to
emphasize this, we have

ν(dt× dx) = k(t,dx)ν̃(dt) = k0(t,dx)ν̃0(dt)(1− 1Θt−(x)),

where ν0(dt×dx) = k0(t,dx)ν̃0(dt) is the compensator of the process N0, called the free-process,
in which nuclei can be born anywhere (see also [16]). Accordingly, we denote by Λ0 the intensity
measure of N0.
In order to complete the definition of the birth-and-growth process we need to add a growth
process for each individual grain Θt

t0(x0) born at some time t0, at some location x0. Let
Θt

Tn
(Xn) be the random closed set obtained as the evolution up to time t > Tn of the germ

born at time Tn in Xn, according to some growth model; this will be the grain associated with
the germ (Tn, Xn). In other words, if Tn = s and Xn = x, then Θt

s(x) is the crystal born at
time s and point x and grown up to time t.

Definition 18 We call birth-and-growth process the family {Θt}t of random closed sets given
by

Θt =
⋃

n:Tn≤t

Θt
Tn

(Xn), t ∈ R+.

On the other hand an angiogenic process can be modelled as a birth-and-growth process at
dimension 1; i.e. as a random fibre system [8]. Now the marked counting process modelling the
birth processes, call it M, refers to the offspring of a new capillary from an already existing
vessel, i.e. from a point x belonging to an infinitesimal element dl of the stochastic fibre process
Θt−, so that the branching rate should be of the form

µ(dt× dl) = β(t,dl)ν̃(dt)1Θt−(x),

where β is a suitable (possibly deterministic) kernel. This shows the dependence of the branch-
ing rate upon the existing stochastic fibre system Θt−, and the fact that the point of birth has
to belong to its infinitesimal element dl.

With reference to a volume growth process {Θt}t, a quantity of interest is the random
variable τ(x), representing the time of capture of a given point x ∈ E, i.e.

{x ∈ Θt} = {τ(x) ≤ t},

and correspondingly the well known hazard function h(·, x) associated with point x defined as

h(t, x) := lim
∆t↓0

P(x ∈ Θt+∆t |x 6∈ Θt)
∆t

.

More in general, especially when referring to a fibre process or a fibre system, it is more
interesting to study the (random) hitting time τ(K) of a nontrivial compact K ⊂ E by Θt. The
associated survival function is then given by

SK(t) := P(τ(K) > t) = P(Θt ∩K = ∅) = 1− TΘt(K),

14



which shows the direct relationship with the hitting functional TΘt , which is known to charac-
terize the probability law of the random set Θt.
Correspondingly a hazard function h(K, t) can be defined as the hitting rate of the process Θt,
i.e.

h(K, t) = lim
∆t→0

P(Θt+∆t ∩K 6= ∅ |Θt ∩K = ∅)
∆t

.

4.1 Models of volume growth

Models of volume growth have been studied more extensively, since the pioneering work by
[30]. Here we present a theory which extends to the space inhomogeneous case previous results
known in literature [14, 36]; unfortunately nontrivial mathematical problems arise in connection
with angiogenic fibre models that, to our knowledge, remain still unsolved.

For the volume growth case we assume here the normal growth model (see, e.g., [11]),
according to which at Hd−1-almost every point of the actual grain surface at time t (i.e. at
Hd−1-almost every x ∈ ∂Θt

Tn
(Xn)), growth occurs with a given strictly positive normal velocity

υ(t, x) = G(t, x)n(t, x), (9)

where G(t, x) is a given deterministic strictly positive “growth” field, and n(t, x) is the unit
outer normal at point x ∈ ∂Θt

T0
(X0). We assume that

0 < g0 ≤ G(t, x) ≤ G0 < ∞ ∀(t, x) ∈ R+× Rd,

for some g0, G0 ∈ R, and G(t, x) is sufficient regular (in particular G has to be (globally)
Lipschitz-continuous on R+× Rd) such that the evolution problem given by (9) for the growth
front ∂Θt

t0(x), with the initial condition that at the birth time t0 the initial germ born in x0 is
described by a spherical ball of infinitesimal radius centered at x0, is well posed. (See e.g. [11];
the case of regularity of G deriving from its coupling with a deterministic underlying field has
been analyzed in [40].)

We may assume that the process {Θt}t is such that:

1. for any t ∈ R+, and any s > 0; ∂Θt ⊂ intΘt+s;

2. for any t ∈ R+, Θt is a d-regular random closed set in Rd, and ∂Θt is a (d − 1)-regular
random closed set;

3. τ(x) is a continuous random variable with probability density function pτ(x).

For the assumptions 1. and 2. we refer to [7] (see also [11]). Assumption 3. strongly depends on
the intensity of the marked point process of birth-and-growth together with sufficient regularity
of the growth rate. For instance, as shown in [16], we know that, if Q(s, ·) is absolutely
continuous with respect to νd for a.e. s ∈ R+, then τ(x) is a continuous random variable.
In particular, from the relation between τ(x) and the survival function Sx of a point x

Sx(t) = P(τ(x) > t),

we may claim that τ(x) admits a density pτ(x) if Sx is differentiable with respect to t. In [16] it
is shown that there is no distinction between N and N0 in computing the survival function, and
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expressions for Sx are given for a general class of birth-and-growth processes. In the particular
case in which the free-process N0 is a marked Poisson process, it follows that

Sx(t) = e−Λ0(C(t,x)),

where Λ0 is the intensity measure of N0, and C(t, x) is the so-called causal cone of point x at
time t, defined as the space-time region in which at least one nucleation has to take place so
that the point x is covered by grains at time t:

C(t, x) := {(s, y) ∈ [0, t]× E : x ∈ Θt
s(y)}.

In [12] it has been proven that, under the assumptions on G introduced above, if the marked
Poisson process N0 has free intensity α(t, x), then Λ0(C(t, x)) is continuously differentiable with
respect to t and

∂

∂t
Λ0(C(t, x)) = h(t, x) = G(t, x)

∫ t

0

∫

Rd

K(t0, x0; t, x)α(t0, x0) dx0 dt0,

with
K(t0, x0; t, x) :=

∫

{z∈Rd|τ(t0,x0;z)=t}
δ(z − x) dσ(z).

Here δ is the usual Dirac function, dσ(z) is a (d−1)-dimensional surface element, and τ(t0, x0; z)
is the solution of the eikonal problem

| ∂τ

∂x0
(t0, x0, x)| = 1

G(t0, x0)
∂τ

∂t0
(t0, x0, x)

|∂τ

∂x
(t0, x0, x)| = 1

G(τ(t0, x0, x), x)
,

subject to suitable boundary and initial conditions
Further we assume that G(t, x) is sufficiently regular so that, at almost any time t > 0, the

following holds (see [20])

lim
r→0

E[Hd(Θt
⊕r \Θt ∩A)]

r
= E[Hd−1(∂Θt ∩A)], (10)

for any bounded A ∈ BRd such that P(Hd−1(∂Θt ∩ ∂A) > 0) = 0.

Here we have denoted by Θt
⊕r the parallel set of Θt at distance r ≥ 0, i.e. the Minkowski

addition of Θt with the ball Br(0):

Θt
⊕r := Θt ⊕Br(0) = {x ∈ Rd : dist(x, Θt) ≤ r}.

Observe that, in terms of weak* convergence of linear functionals, (10) may be rephrased as

lim
r→0

E[δΘt
⊕r

](x)− E[δΘt ](x)

r
= E[δ∂Θt ](x).

As a consequence of assumptions 1. and 2. we have that (see [20])

∂

∂t
δΘt(x) = δτ(x)(t)
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as a functional on Cc(R+× Rd,R), i.e.
∫

R+×Rd

f(t, x)
∂

∂t
δΘt(x) dtdx =

∫

R+×Rd

f(t, x)δτ(x)(t) dtdx =
∫

Rd

f(τ(x), x) dx

for any test function f ∈ Cc(R+× Rd,R).
By the assumption 3. and Remark 6, it follows (see [18])

E
[

∂

∂t
δΘt

]
(x) = pτ(x)(t) =

∂

∂t
P(x ∈ Θt) =

∂

∂t
E[δΘt ](x).

As a consequence an evolution equation for the mean density E[δΘt ](x) has been obtained
in terms of G(t, x) and the mean density of the boundary of Θt, as follows ([20] ).

Proposition 19 Under the above assumption on the growth model, let G be sufficiently regular
so that, for any t ∈ R+,

lim
r→0

E[Hd(Θt
⊕r \Θt ∩A)]

r
= E[Hd−1(∂Θt ∩A)],

for any A ∈ BRd such that E[Hd−1(∂Θt ∩ ∂A)] = 0.
If the time of capture τ(x) is a continuous random variable with density pτ(x), the following
evolution equation holds for the mean density E[δΘt ](x) :

∂

∂t
E[δΘt ](x) = G(t, x)E[δ∂Θt ](x), (11)

to be taken, as usual, in weak form, i.e. for any bounded A ∈ BRd such that E[µ∂Θt(∂A)] = 0

∫

A

E[δΘt ](x)dx =
∫

A

E[δΘt0 ](x)dx +
∫ t

t0

∫

A

G(x, s)E[δ∂Θs ](x)dxds.

Note that when for a.e. ω ∈ Ω the evolution of the realization Θt(ω) can be described by
the following (weak) equation (e.g. [7, 11, 33, 38]):

∂

∂t
δΘt(x) = G(t, x)δ∂Θt(x), (12)

then equation (11) can be formally obtained by taking the expected value in (12), by the
linearity properties of the expectation and since G is a deterministic function.

Remark 20 By Proposition 19 and the equality pτ(x)(t) = ∂
∂tE[δΘt ](x), it follows that E[δ∂Θt ]

is the classical Radon-Nikodym derivative of E[µ∂Θt ]. Assumption 2 guarantees that Θt belongs
to the class R for any t ∈ R+. Thus, by Definition 9, we may claim that Θt is an absolutely
continuous random closed set.

5 Approximation of mean densities

In many real applications, several problems are related to the estimation of the local mean
density E[δΘn ] of a lower dimensional random closed set such as a fibre process of dimension
n = 1 in a space of dimension d > 1 (see e.g. [8] and [39]).

17



For facing the problem of the zero ν2-measure for points or lines in R2 it is natural to make
use of a 2-D box approximation of points or lines. As a matter of fact, a computer graphic
representation of them is anyway provided in terms of pixels, which can only offer a 2-D box
approximation of points in R2.
This is the motivation of this section, which aims to suggest unbiased estimators for densities
of random sets of lower dimensions in a given d-dimensional space [1].

Given a random closed set Θn with Hausdorff dimension n, we consider the enlarged set
Θn⊕r

, which is now of dimension d, and hence of nontrivial νd-measure.
Observe that P(x ∈ Θn⊕r

) = TΘn
(Br(x)).

Proposition 21 [1] Let Θn be a random closed set with Hausdorff dimension n, and A ∈ BRd

such that P(Hn(Θn ∩ ∂A) > 0) = 0. If

lim
r→0

E[νd(Θn⊕r
∩A)]

bd−nrd−n
= E[Hn(Θn ∩A)], (13)

then

E[Hn(Θn ∩A)] = lim
r→0

∫

A

TΘn(Br(x))
bd−nrd−n

dx.

Sufficient conditions for (13) have been given in [1].
As a consequence of the proposition above, if we denote by µ⊕r the measure on BRd defined

by

µ⊕r(A) :=
∫

A

TΘn(Br(x))
bd−nrd−n

dx,

then it follows that µ⊕r weakly* converges to E[µΘn ].
For every fixed r > 0, the measure µ⊕r is absolutely continuous with respect to the d-
dimensional Lebesgue measure with density

δ⊕r
n (x) :=

TΘn(Br(x))
bd−nrd−n

.

Such a function defines a linear functional, say δ⊕r
n , associated with the measure µ⊕r as follows

(δ⊕r
n , f) :=

∫

Rd

f(x)µ⊕r(dx).

Note that many kinds of random closed sets satisfy the proposition above, like fibre processes,
line and segment processes, Boolean models, etc. (see [1]). As a consequence, estimating the
probability that the random set Θn intersects the ball Br(x) may suggest (global) estimators
of E[µΘn ], and possibly (local) estimators of the mean density E[δΘn ] (see e.g. [8]).

If Θn is absolutely continuous, then there exists an integrable function λΘn (the Radon-
Nikodym derivative) such that, for all A ∈ BRd ,

E[Hn(Θn ∩A)] =
∫

A

λΘn(x) dx.

So, in this case, we have that

lim
r→0

∫

A

TΘn(Br(x))
bd−nrd−n

dx =
∫

A

λΘn(x) dx. (14)
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If Θn is a stationary random closed set, then δ⊕r
n (x) is independent of x and the expected

measure E[µΘn ] is motion invariant, i.e. it is absolutely continuous with density λΘn(x) = λ̄ ∈
R+ for νd-a.e. x ∈ Rd. It follows that

lim
r→0

∫

A

TΘn
(Br(x))

bd−nrd−n
dx = lim

r→0

TΘn
(Br(0))

bd−nrd−n
νd(A),

and ∫

A

λ(x) dx = λ̄νd(A);

and so, by (14),

lim
r→0

TΘn
(Br(0))

bd−nrd−n
= λ̄.

Remark 22 When it is possible to exchange limit and integral in (14), by Proposition 21 we
may claim that

lim
r→0

TΘn
(Br(x))

bd−nrd−n
= λΘn(x) νd-a.e. x ∈ Rd.

In the particular case n = d, we know that the measure E[µΘd
] is always absolutely continuous

with density λΘd
(x) = P(x ∈ Θd). We may notice that δ⊕r

d = TΘn(Br(x)) and by Monotone
Convergence Theorem we can exchange limit and integral, and so we have, as expected,

lim
r→0

TΘd
(Br(x)) = P(x ∈ Θd) = λΘd

(x).

Further, for n = 0, if Θ0 = X is a random point in Rd, we have E[H0(X ∩ ·)] = P(X ∈ ·). So,
if X is absolutely continuous with probability density function f , we know that E[µX ] = PX is
absolutely continuous with density f . In this case it can be shown that (13) holds, so that the
sequence {δ⊕r(x)} converges to f(x), as expected, which leads to the usual histogram estimation
of f(x) [1].

Example As an additional example of applicability of the results above, let us consider the
case in which Θn is given by a random union of absolutely continuous random closed sets of
dimension n < d:

Θn =
Φ⋃

i=1

Ei,

where Φ is a nonnegative discrete random variable with E[Φ] < ∞, and the Ei’s are IID as E

and independent of Φ. Then it follows that [1]

lim
r→0

TΘn(Br(x))
bd−nrd−n

= E[Φ] lim
r→0

TE(Br(x))
bd−nrd−n

,

provided that at least one of the two limits exists.
As a consequence, whenever it is possible to exchange limit and integral in (14), and so in
particular when E is a stationary random closed set (which implies Θn stationary as well), we
have

λΘn(x) = E[Φ] lim
r→0

TE(Br(x))
bd−nrd−n

= E[Φ]λE(x),

where λΘn and λE are the Radon-Nikodym derivatives of µΘn and µE , respectively.
The above model may be used as a preliminary one for angiogenesis, but also for the earthworm
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burrow system in a soil ([8],p.73).

Acknowledgements It is a pleasure to acknowledge the contribution of L. Ambrosio in
Pisa, M. Burger in Linz and A. Micheletti in Milan in the development of joint research projects
relevant for this presentation. Special thanks are due to Professor E. Dejana and her group
for figures 2 and 4, and MONTELL-Italy (in particular Dr. S. Mazzullo) for figures 1, and 6.
Discussions with D. Jeulin evidenced the PhD thesis of Matheron as a first attempt to deal
with random distributions.

References

[1] Ambrosio L, Capasso V, Villa E (2006). On the approximation of geometric densities of
random closed sets. RICAM Report 14/2006, Linz.

[2] Ambrosio L, Fusco N, Pallara D (2000). Functions of Bounded Variation and Free Discon-
tinuity Problems. Oxford: Clarendon Press.

[3] Anderson ARA (2003). Effects of cell adhesion on solid tumour geometry. In: Sekimura T
et al. eds. Morphogenesis and Pattern Formation in Biological Systems. Tokyo: Springer-
Verlag.
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