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Abstract. Realistic crystal growth simulators can give information on what would
be the surface structure of a crystal grown under specific physical-chemical con-
ditions, avoiding the real growth in a laboratory. By suitable upscaling, simula-
tions can therefore be useful for industrial purposes to foresee and control the final
product. We initially present Monte-Carlo micro-scale simulations based on spatial
stochastic processes; we followed the Hartman and Perdok method for the classifi-
cation of facets, using Growth Units with cubic shape. For a better description of a
self-similar growth of a faceted surface, we propose a new mathematical micro-scale
model based on the Minkowski sum of sets and we present some results obtained
by the numerical implementations.

1 Introduction

The initial shape of a crystalline nucleus in homogeneous nucleation is the
so called Wulff Shape, i.e. an equilibrium shape [1] [2]. The Wulff shape has
been widely studied and has been described by means of various analytical
and geometrical models [12] [14]. By slight modifications of the equilibrium
conditions, the crystal can grow [3]. Hartman and Perdok [9] described a
method to classify the possible surface structures depending on the energetic
bonds available for the Growth Units close to the interface. According to the
Kossel model we firstly consider the shape of the Growth Unit being squares
(in 2D) or cubes (in 3D) and the surface of a growing crystal is classified in
one of the three structures depicted in Fig. 1.
On the macro-scale, growth rates have been studied for the three surface
structures, giving higher rates for kinked surfaces and lower rates for flat
surfaces [1]. On the atomic scale, growth is the result of three simultaneous
processes that bring Growth Units from the mother phase, that we assume
to be gaseous, to the crystal (solid) phase. Specifically, Growth Units firstly
attach to the surface of the crystal creating energetic bonds with other Units
on the interface but without being directly absorbed (adsorption). Then they
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Fig. 1. The three surface structures according to the Hartman and Perdok method;
K=Kinked, S=Stepped and F=Flat.

diffuse and collide on the surface, until they join together to form a more sta-
ble profile (surface diffusion). Finally they can possibly return to the mother
phase (desorption).
On a macroscopic scale, the different surface growth rates can be summarized
by assuming a space-time dependent growth field. Mathematical (multiple
scales) models and simulations for macroscopic growth can be found in [6] [5]
[11], with particular reference to polymer crystallization.

2 Simulation for Growth Units with cubic shape

In order to simplify the geometry of the problem we first consider Growth
Units having cubic shape.
Russo and Smereka [15] proposed a deterministic simulator for faceted crys-
tals based on Level Set methods. Gilmer and Bennema [8] implemented the
crystal growth simulations by means of Monte-Carlo techniques, modelling
only the adsorption and desorption of the Growth Units by the Ising model.
Our approach is to describe the adsorption, the surface diffusion and the des-
orption via different stochastic processes, but still using Monte-Carlo tech-
niques for simulations.

Adsorption We model the fall of the cubic Growth Units on a face of
the crystal by a spatial point process [7]. The intensity of the process is not
constant on the whole surface, but it depends on the surface free energy, i.e.
on the number n of energetic bonds available for each site. Consider only the
interactions with the nearest neighbours (according to Kossel), hence n =
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1, . . . , 5. In particular, conditional upon the knowledge of the crystal surface
at time t−, the process is simulated at any time t with a non-homogeneous
Poisson Process. Outcomes indicate the surface sites where the Growth Units
are adsorbed [13].

Surface diffusion Let (x, y) be the location on the surface of a Growth
Unit at time t, Fig. 2. The location of the Growth Unit at time t + ∆t will
be (x, y) with probability p0 or one of the four neighbouring locations with
probability p1, . . . , p4, respectively.

Fig. 2. Surface Diffusion

Probabilities p0, p1, . . . , p4 depend on the surface free energy and therefore
on the number of available energetic bonds, counted for each site at the
call of the function, and on whether the neighbouring sites on (x, y) are
free or not. For every temporal step of size ∆t, i.e. an iteration, each unit
can move up to one position; hence Growth Units diffuse with speed 1

∆t .
The probabilities p0, p1, . . . , p4 depend also on the surrounding field through
variables like temperature and supersaturation; the functional dependence
could be made explicit through experimental laws or theoretical models that
consider the mean velocity of a moving cell. For the simulation we allow the
movement on the surface only to Growth Units that belong to the upper
surface layer. Furthermore we allow the units to “fall” in case they move
sideways on a site that does not belong to the upper surface layer. Finally
we prevent the units from moving outside the study region by setting the
probability of moving out equal to 0.

Desorption Growth Units are not immediately absorbed in the crystal vol-
ume, but they are firstly adsorbed and they possibly diffuse on the surface.
Furthermore there exists a probability that the Units return to the mother
phase. Probabilities of desorption are again chosen depending on the number
of available energetic bonds for the site.
We run the simulation in 2 dimensions, Fig. 3, and 3 dimensions, Fig. 4.
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Fig. 3. 2D simulation at times t = 51, 53, 55 of an initially flat face (length=100).

Fig. 4. 3D simulation at times t = 7, 8, 9 of an initially flat square face of dimension
18x18.

In 3 dimensions we simulated the evolution of two adjacent non-coplanar
faces, Fig. 5. In this case there arise problems for keeping the edges between
adjacent facets; actually we solved the problem by a suitable interpolation
that preserves the continuity of the facet.

Fig. 5. Evolution of two adjacent facets, forming an angle of 3
4
π. One facet is

initially flat, the second has a screw dislocation.
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3 Modelling by the Minkowski sum of sets

We propose here another growth model which avoids the problems related to
the preservation of edges in a self-similar growth process.

The growth of a crystal such that its shape is maintained in time, i.e. at
every time t the crystal is similar to a fixed given set, may be modelled by
the so called Minkowski sum of sets [10].

Definition 1. Given two sets A and B in Rd, the Minkowski sum of A and
B is defined as the set:

A⊕B := {a + b : a ∈ A, b ∈ B}.

For simplicity we analyze the case when the crystal is a convex polygon
in R2, but the same arguments hold also in Rd.

We remind that two polygons are said similar if they have equal angles
and the corresponding sides are proportional.
Let Θt be the crystal at time t and θ be the “basic crystal”, i.e. the shape
of the crystal we are referring to. The set θ is similar to Θt, but in scale
small enough such that it may be used to represent the growth during an
infinitesimal time interval ∆t.
Let a and b be two sides of θ, and a′ and b′ be the two corresponding sides
of Θt. (See Fig. 6). Let O be a given point in θ (even on the boundary) and
fix it as the origin of a coordinate system in R2. We assume that Θt e θ are
equioriented.

Fig. 6. Section of a growth

It follows that the set Θt+∆t := Θt⊕θ, obtained as Minkowski sum of Θt and
θ (i.e. ”overlapping” at every point of ∂Θt, the set θ centered in O), is similar
to Θt, since the corresponding angles are, obviously, congruent, and the sides
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are proportional. In fact, if a′′ and b′′ are the two new sides corresponding to
a and b, we have that a′′ = a + a′, b′′ = b + b′, and so

a′′

a
= 1 +

a′

a
= 1 +

b′

b
=

b′′

b
.

Now, we relate this with the field of growth rates determining the growth.
CASE 1: the absolute value G of the growth rate is constant and it is

the same in each direction perpendicular to the sides (crystallographic direc-
tions).
Let v1, . . . , vn be the vectors representing such directions. Then, the basic
crystal θ is the convex polygon with n sides (if it exists), given by the inter-
sections of the halfplanes H1, . . . Hn having normal unit vectors v1, . . . , vn,
respectively, and each one with distance G∆t from the origin (see Fig. 7).

Fig. 7. An example of basic crystal obtained by the assumption of homogeneous
growth in three directions.

In other words, we obtain a polygon that can be circumscribed about a circle
with center in O; thus the distance between a new side and the corresponding
one is the same for each side, as expected by the assumption of homogeneous
growth.

Summarizing, at a some time t0 a crystal θ is born with incentrum O; at
time t1 = t0 + ∆t the crystal is given by Θ1 = θ ⊕ θ; at time tk = t0 + k∆t,
by Θk = Θk−1 ⊕ θ, and so on. Time by time, Θk is similar to θ.

CASE 2: the absolute value G of the growth rate depends only on the
growth directions.
In this case we expect that θ can not, in general, be circumscribed about a
circle centered at O (if n > 3), since the growth is not homogeneous and the
crystal expand in different way in different directions.
Hence, now, θ is given by the intersection of the halfplanes H1, . . .Hn, with
distance G1∆t, . . . , Gn∆t from the origin, respectively, where G1, . . . , Gn are
the absolute values of the growth rate in the different n crystallographic
directions (see Fig. 8).
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Fig. 8. An example of basic crystal obtained by the assumption of non homogeneous
growth in four directions.

3.1 Inhomogeneous growth

Let us consider the case when the growth rate G of a crystal (convex polygon
with n sides) does not depend any more only on the growth direction, but
is varying in time and space: G = G(x, t) x ∈ Rd, t ∈ R+. Thus, we want
now to adapt our model, by suitable Minkowski sums of sets, to more general
situations, in which the shape of the crystal may change during its growth.In
this case the crystal is not similar to a given fixed set any more, but the
number of sides might even change.
The basic idea consists of summing time by time suitable sets depending
on the growth law. If the change of shape depends only on time, then, at
every fixed time t, we have to determine the set θ that we have to sum at
every point of Θt as above. In other words, at time t′ = t + ∆t, we obtain
Θt′ = Θt ⊕ θ1; at time t′′ = t′ + ∆t, we obtain Θt′′ = Θt′ ⊕ θ2, and so on,
where the sets θi’s will have a number of sides ni having distance from the
origin depending on time

∆rj =
∫ t+∆t

t

Gj(s)ds, j = 1, . . . , ni.

Instead, if the growth rate depends also on the space location, we may not
claim any more that, at time t + ∆t, Θt+∆t = Θt ⊕ θ for some θ.
Simulations in this very general cases could be quite complicated; nevertheless
if the growth is locally homogeneous, then the model becomes more tractable,
by representing it in a double scale framework (see also [6]).
Specifically, let us assume that, at any time t, Θt can be divided into a
finite number of subsets Θt

1, . . . , Θ
t
k which grow homogeneously, in such a

way that we may apply, locally, the above models. Then, at a fixed time t,
we have to determine only k suitable sets θi, i = 1, . . . , k, and so we obtain
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Θt+∆t =
⋃k

i=1 Θt
i ⊕ θi.

Note that if the growth field G(x, t) may be controlled, then it is possible to
forecast the shape of the final produced crystals (see [4] for an application to
polymer crystallization).

Example 1. Let v1 = (1, 0), v2 = (0, 1), v3 = (−1, 0), v4 = (0,−1), and
G1 = G2 = G3 = G4 = 1. Then it follows that θ is given by the square with
side length 2∆t , center = (0, 0) and edges (−∆t,−∆t), (∆t,−∆t), (∆t,∆t),
(−∆t,∆t). Suppose that both the vi’s, and the Gi’s are constant, up to time
t̄. Thus, Θt̄ is given by the square with side length 2t̄ and edges (−t̄,−t̄),
(t̄,−t̄), (t̄, t̄), (−t̄, t̄). (See Fig. 9).
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Fig. 9. Crystal as in Example 1 at time t̄.

Suppose now that, at time t̄, the vi’s are unchanged, while

G2 = 1, G4 = 0, G1 =
{

1 ∀(x, y), x < 0
5 ∀(x, y), x ≥ 0 , G3 =

{
2 ∀(x, y), x < 0
1 ∀(x, y), x ≥ 0 .

Hence, we may divide Θt̄ into two parts, both growing homogeneously during
[t̄, t̄ + ∆t). So, at every point of ∂Θt̄ with x < 0, we sum the rectangle θ1

with edges (−2∆t, 0), (∆t, 0), (∆t, ∆t) and (−2∆t,∆t); while at the other
points of the boundary we sum the rectangle θ2 with edges (−∆t, 0), (5∆t, 0),
(5∆t,∆t) and (−∆t, ∆t). In conclusion, at time t̄ + ∆t, Θt̄+∆t is given by
the rectangle with edges (−t̄− 2∆t,−t̄), (t̄ + 5∆t,−t̄), (t̄ + 5∆t, t̄ + ∆t) and
(−t̄− 2∆t, t̄ + ∆t). (See Fig. 10).
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Fig. 10. Crystal as in Example 1 at times t̄ and t̄ + ∆t. The dotted rectangles
represent θ1 and θ2.

3.2 Simulations

We consider again the three processes of adsorption, surface diffusion and
desorption for bi-dimensional simulations. We assume that the growth starts
from a nucleus having triangular shape, which grows by deposition of tri-
angular Growth Units. The initial nucleus and the Growth Units are similar
triangles (i.e. same angles and proportional sides) and the shape can be freely
chosen by the user. Growth directions are perpendicular to the facets and the
growth is homogeneous with respect to time. Furthermore we allow to choose
the attach point of the Growth Units, so that we can simulate the growth
for a spatially non-homogeneous velocity field. Note that, due to the surface
diffusion process, some Growth Units may “jump” from a side to the neigh-
bouring one.
With this new model, angles are kept during the growth, as it can be seen in
Figs. 11, 12, 13.
We leave to subsequent papers simulations when the growth rate varies both
in space and time, according to the model of Section 3.1.



Fig. 11. Growth by only adsorption. The side on the x-axis measures 30 and the
two adjacent angles measure π/3 and π/5 respectively. The star represents the
attach point referred to the Growth Units. The number of iteration is 700.

Fig. 12. The same as before, except that only the layer of Growth Units on the
interface is depicted.

Fig. 13. Growth by adsorption, surface diffusion and desorption.
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