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Abstract

Many real phenomena , including phase change, such as crystallization processes, tumor
growth, forest growth, etc. may be modelled as stochastic birth-and-growth processes, in
which crystals develop from points (nuclei) that are born at random both in space and
time. In this paper we revisit these processes by classical methods of survival analysis
with specific reference to the role played by the survival function and the corresponding
hazard rate with respect to capture of a point by the so called crystalline phase. General
expressions for the hazard and survival functions associated with a point are provided.
Known results for Poisson type processes follow as particular cases. Further a link between
hazard functions and contact distribution function of stochastic geometry is also obtained.
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1 Introduction and Basic Notations

A birth-and-growth process is composed of two processes, birth (nucleation) and subsequent
growth of spatial cells (crystals), which are, in general, stochastic both in time and space.
Thus, for each fixed time t, the crystallized region, denoted by Θt, is a random closed set and
so it may be studied by using tools of stochastic geometry. On the other hand the process
evolves in time; following the classical approach based on Doob-Meyer decomposition theorem,
dynamical aspects are described in terms of its compensator with respect to the natural history
of the process, which includes the (random) spatial occupation due to the growth of crystals.
The aim of this paper is to analyze these processes by the methods of survival analysis, thus
extending to the spatially heterogeneous case partial results known for homogeneous Poisson
nucleation processes (see e.g. [3],[5]). In particular, the survival function S(t, x) of a point x at
time t, representing the probability that x is not yet crystallized at time t, and its link with the
so-called hazard function h(t, x), representing the rate of capture of the point x, are analyzed
in Section 2. In Section 3 we relate the hazard function to the well known contact distribution
function of stochastic geometry (see, e.g., [14]).
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Definition 1 A marked point process (MPP) Φ on a complete separable metric space (c.s.m.s.)
X with marks in K c.s.m.s. is a point process on X ×K with the property that the marginal
process {Φ(B ×K) : B ∈ B(X )} is itself a point process. (See, e.g., [6]).

So the nucleation process can be modelled by a MPP Ψ on R+ with marks in a measurable
space K ⊂ Rd:

Ψ =
∞∑

n=1

ε(Tn,Xn),

where the random variables Xn and Tn are, respectively, the spatial location in K and the birth
time of the nth nucleus.
For any A ∈ B(R+) and B ∈ B(K) (where B is the Borel σ-algebra) we have

Ψ(A×B) =
∑

n

1A(Tn)1B(Xn)

= #{nuclei born in B during time A}.

Denoted by F = {Ft} the internal history of the process Ψ, where

Ft = σ{Ψ([0, s]×B) : 0 < s ≤ t, B ∈ B(K)},

it is possible to prove (see [9],[11]) that there exists a random measure ν on R+ × K, said
compensator of Ψ, such that ∀B ∈ B(K),

i) the process ν(t, B) = ν([0, t]×B) is Ft-predictable;

ii) the compensated process

M(t, B) = Ψ([0, t]×B)− ν([0, t]×B)

is a zero-mean martingale.

On the other hand, denoted by
ν̃(dt) = ν(dt×K)

the compensator of the marginal process Ψ̃(·) = Ψ(· ×K), there exists [11] a stochastic kernel
k from Ω× R+ to K such that

ν(dt× dx) = k(t, dx)ν̃(dt). (1)

Remark 1 In many applications it is supposed that further nuclei cannot be born in an already
crystallized zone. When we want to emphasize this, we will write

ν(dt× dx) = k(t, dx)ν̃(dt) = k0(t, dx)ν̃(dt)(1− 1Θt−(x)),

where ν0(dt×dx) = k0(t, dx)ν̃(dt) is the compensator of the process Ψ0, called the free-process,
in which nuclei can be born anywhere.
In either cases the compensator of the process, be it free or not, can be factorized as in (1), so
we will consider a generic process Ψ, unless otherwise specified.

Definition 2 The intensity measure of Ψ is the (σ-finite) measure Λ on R+ ×K given by

Λ(A×B) := E(Ψ(A×B)).
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We observe that from i) and ii) it follows that

ν(dt× dx) = E(ν(dt× dx) | Ft−)

= E(Ψ(dt× dx) | Ft−)−E(M(dt× dx) | Ft−)

= E(Ψ(dt× dx) | Ft−), (2)

and so
E(ν(dt× dx)) = E[E(Ψ(dt× dx) | Ft−)] = Λ(dt× dx); (3)

moreover, since K is a c.s.m.s. and Λ is a σ-finite measure, it is possible to factorize Λ in the
following way [11]:

Λ(dt× dx) = Λ̃(dt)Q(t, dx), (4)

where Λ̃ is the intensity measure of the marginal process Ψ̃ and, ∀t ∈ R+, Q(t, ·) is a probability
measure on K, called the mark distribution at time t.

Definition 3 A point process Φ on Rd is said simple if Φ({x}) ≤ 1 ∀x ∈ Rd.

Remark 2 If Ψ is a MPP with simple marginal process Ψ̃ and marks Xi, then, formally, by
(1) and (2) it follows that

k(t, B)ν̃(dt) = E(Ψ(dt×B)|Ft−)

= P(Ψ(dt×B) = 1|Ft−)

= P(X1 ∈ B|Ψ̃(dt) = 1,Ft−)E(Ψ̃(dt)|Ft−)

= P(X1 ∈ B|Ψ̃(dt) = 1,Ft−)ν̃(dt),

from which it is evident that k(t, dx) is in general stochastic.
Observe that by (3) and (4) we have

Q(t, dx)Λ̃(dt) = E(ν(dt× dx)) = E(k(t, dx)ν̃(dt));

so, if Ψ is a MPP with marks independent of the marginal process, then

E(k(t, dx)ν̃(dt)) = E(k(t, dx))E(ν̃(dt)) = E(k(t, dx))Λ̃(dt),

that is
Q(t, dx) = E(k(t, dx)).

In particular, if Ψ is a position-dependent Q-marking of Ψ̃ (see [11]), then k(t, dx) is determin-
istic and coincides with Q(t, dx); while if Ψ is an independent Q-marking of Ψ̃ (i.e. marks Xi

are IID random elements with distribution Q and independent of Ψ̃) we have k(dx) = Q(dx)
[8].

By hypothesis we consider birth-and-growth processes Ψ such that the marginal process
Ψ̃ is simple and the mark distribution Q(t, ·) is absolutely continuous with respect to the d-
dimensional Lebesgue measure νd on K; besides, we assume normal growth with a growth speed
G of crystals continuous and in general space-and-time dependent such that G(t, x) ≥ G0 > 0
for all t ∈ R <+, x ∈ K.

Denote by Θt
s(x) the crystal born at time s and point x and grown to time t. Then the

occupied region at time t is given by

Θt =
⋃

j:Tj≤t

Θt
Tj

(Xj).
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Definition 4 The survival function of a point x at time t is the probability that the point x is
not yet covered (”captured”) by any crystal at time t:

S(t, x) := P(x 6∈ Θt).

2 Survival and Hazard Functions

In order to study the survival function of a point x, it is useful to introduce the nonnegative
r.v. Tx representing the capture time of x; in this way we can relate it all to a typical problem
of survival analysis and then study it in terms of MPP Ψ taking the geometric aspects of the
crystallization process into account.

In fact, let T be a nonnegative r.v. with cumulative density function F ; then T may be
considered as a random failure time, the function S(t) := P(T > t) is called the survival
function of T and

P(T ∈ [t, t + ∆t) |T ≥ t) =
P(t ≤ T < t + ∆t)

P(T ≥ t)
=

F (t + ∆t−)− F (t−)
1− F (t−)

.

If T is a continuous r.v. with pdf f , then the following limit

h(t) := lim
∆t↓0

P(T ∈ [t, t + ∆t) |T ≥ t)
∆t

(5)

(with 0/0 := 0) exists and h(t) = f(t)
1−F (t) , i.e. h(t) = − d

dt ln S(t).

Definition 5 h(t) is called the hazard function of T , while

H(t) := −
∫ t

0

S(ds)
S(s−)

is known as the cumulative (or integrated) hazard function of T .

Remark 3 If T is a continuous r.v., then H(ds) = h(s)ds.
If T is a discrete r.v. we can define a discrete hazard function h(t) := P(T = t |T ≥ t), from
which it follows H(t) =

∑
s≤t h(s).

We introduce now the so-called product-integral and its relation with hazard and survival
functions. (For a complete and elementary treatment of the basic theory of the product-integral
see [7] and [1]).

Definition 6 Let X : [0,∞) → R be a cadlag function of locally bounded variation. We define

Y (t) =
∏

(1 + X(ds))

the product-integral of X over intervals of the form [0, t], as the following function:

Y (t) =
∏

s∈[0,t]

(1 + X(ds)) := lim
max |ti−ti−1|→0

∏

i

(1−X(ti)−X(ti−1)),

where 0 = t0 < t1 < · · · < tn = t is a partition of [0, t].
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If X is a step-function, the product-integral becomes a finite product over the jump times of
X, thus

Y =
∏

(1 + ∆X)

where ∆X = X −X−; if X is continuous, the product-integral is just the ordinary exponential∏
(1 + dX) = eX .

Theorem 1 [1] Y =
∏

(1 + dX) exists and is a cadlag function of locally bounded variation.
It is the unique solution to the integral equation

Y (t) = 1 +
∫

s∈[0,t]

Y (s−)X(ds).

From Definition 5 and Theorem 1, we have that, for a r.v. T ≥ 0,

S(t) =
∏

[0,t]

(1− dH).

Let us now consider the capture time Tx of point x and observe that

P(Tx > t) = P(x 6∈ Θt) = S(t, x).

So S(·, x) is the survival function of the r.v. Tx and, in order to apply what we just said in
terms of the MPP Ψ, we must go back to the ”causes” of capture of point x. To this end we
need to introduce the concept of causal cone (see e.g.[3],[10]).

Definition 7 The causal cone C(t, x) of a point x at time t is the space-time region in which
at least one nucleation has to take place so that the point x is covered by crystals at time t:

C(t, x) := {(s, y) ∈ [0, t]×K : x ∈ Θt
s(y)}.

We denote by Sx(s, t) the section of the causal cone C(t, x) at time s < t,

Sx(s, t) := {y ∈ K : (s, y) ∈ C(t, x)} = {y ∈ K : x ∈ Θt
s(y)}.

Under the assumption that the growth model is deterministic and for all t′ > t is Θt
s(x) ⊂ Θt′

s (x),
we suppose further that the causal cone C(t, x) is well-defined for any x, t, and that the sections
Sx(s, t) are such that dim ∂Sx(s, t) < d for any x, s, t.

Remark 4 From the definition of C(t, x) it easily follows that

S(t, x) = P(Ψ(C(t, x)) = 0).

Moreover, from the simplicity of the marginal process Ψ̃, we have, formally,

Q(t, B)Λ̃(dt) = Λ(dt×B)

= E(Ψ(dt×B))

= P(Ψ(dt×B) = 1)

= P(X1 ∈ B | Ψ̃(dt) = 1)P(Ψ̃(dt) = 1)

= P(X1 ∈ B | Ψ̃(dt) = 1)Λ̃(dt)
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Therefore the mark distribution Q(t, B) represents the probability that a nucleus X1 ∈ B, given
that it was born during [t, t+dt). The hypothesis of absolute continuity of Q implies that nuclei
cannot be born in a set B with dimB < d; in particular Q(s, ∂Sx(s, t)) = 0 ∀s < t and so Tx

is a continuous r.v..
In fact, by absurd let Tx not be a continuous r.v.; then there exists t ∈ R+ such that P(Tx =
t) > 0. Observe that

P(Tx = t) > 0 ⇔ P(Ψ(∂C(t, x)) 6= 0) > 0 ⇔ E(Ψ(∂C(t, x))) > 0.

But,

E(Ψ(∂C(t, x))) =
∫ t

0

∫

∂Sx(s,t)

Q(s, dy)Λ̃(ds) = 0.

Since in the continuous case the product-integral coincides with the ordinary exponential,
we have

S(t, x) = exp
{
−

∫ t

0

h(s, x)ds

}
,

where

h(t, x) = lim
∆t↓0

P(Tx ∈ [t, t + ∆t) |Tx ≥ t)
∆t

is the hazard function of Tx, as defined by (5).
By the continuity of Tx,

h(t, x) = lim
∆t↓0

P(Tx ∈ (t, t + ∆t] |Tx > t)
∆t

= lim
∆t↓0

P(x ∈ (Θt+∆t \Θt) |x 6∈ Θt)
∆t

= lim
∆t↓0

P(x ∈ Θt+∆t |x 6∈ Θt)
∆t

.

Definition 8 For all x ∈ K, the function h(·, x) given by

h(t, x) := lim
∆t↓0

P(x ∈ Θt+∆t |x 6∈ Θt)
∆t

is called the hazard function associated with point x.

Note now that, formally,

H(ds, x) = h(s, x)ds = P(x ∈ Θs+ds |x 6∈ Θs)

= P(Ψ[C(s + ds, x) \ C(s, x)] > 0 |Ψ(C(s, x)) = 0). (6)

Unfortunately, Eq. (6) does not provide an explicit dependence of h upon the kinetic parameters
of the process.
In fact, since C(s + ds, x) \ C(s, x) 6⊆ (s, s + ds]×K, it is not possible simplify (6) by using the
hypothesis of simplicity of Ψ̃.

We show now that, by defining a suitable r.v., it is possible to write again the survival
function as a product-integral for any fixed t, but so that the properties of Ψ are taken into
account.
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Definition 9 For any fixed t ∈ R+, let Nt,x be the positive r.v. defined in the following way:

Nt,x :=
{

s if the first nucleus in C(t, x) was born at time s
+∞ if no nucleus was born in C(t, x)

We observe that:

• since Nt,x is the birth time of the first nucleus in C(t, x), it is well defined also for processes
where new nuclei cannot be born in an already crystallized zone;

• Nt,x is a discrete r.v. ⇐⇒ the intensity measure Λ̃ of Ψ̃ is discrete.

In fact, P(Nt,x = s) 6= 0 if and only if

P({Ψ({s} × Sx(s, t)) = 1} ∩ {Ψ(C(s−,Sx(s−, t)) = 0}).
By observing that

1 ≥ Ψ̃({s}) = Ψ({s} ×K) ≥ Ψ({s} × Sx(s, t)),

we can use the hypothesis that Ψ̃ is simple and write

P(Ψ({s} × Sx(s, t)) = 1) = Λ̃({s})Q(s,Sx(s, t)).

Thus, by assuming Q(s,Sx(s, t)) 6= 0, it follows that Λ̃({s}) 6= 0.
As a consequence, if Λ̃ is continuous, then Nt,x is continuous on [0, t].

Since S(t, x) = P(Ψ(C(t, x)) = 0) = P(Nt,x = +∞) = P(Nt,x > t), we have that, for any
fixed t ∈ R+,

S(t, x) =
∏

s∈[0,t]

(1−HNt,x(ds, x)),

where HNt,x(ds, x)) is the cumulative hazard function of Nt,x.
Now we distinguish between Λ̃ discrete and continuous.

1. Let Λ̃ be discrete, and so also ν̃. Then

P(Nt,x > t) =
∏

s∈[0,t]

[1−P(Nt,x = s |Nt,x ≥ s)]. (7)

In terms of the nucleation process Ψ,

P(Nt,x = s |N ≥ s) = P(Ψ[{s} × Sx(s, t)] = 1 |Ψ[C(s−,Sx(s−, t))] = 0) (8)

= E(Ψ[{s} × Sx(s, t)] |Ψ[C(s−,Sx(s−, t))] = 0)

= E(ν[{s} × Sx(s, t)] |Ψ[C(s−,Sx(s−, t))] = 0).

Therefore,

S(t, x) =
∏

s∈[0,t]

[1−E(ν̃({s})k(s,Sx(s, t)) |Ψ[C(s−,Sx(s−, t))] = 0)]. (9)

Remark 5 If Ψ is a process with independent increments with respect to its history, then
the behavior of Ψ in an interval (s, t] does not depend on what happened up to time s for all
s, t ∈ R+ with s < t. So the expression (8) is equal to P(Ψ[{s} × Sx(s, t)] = 1) and we obtain

S(t, x) =
∏

s∈[0,t]

[1− Λ̃({s})Q(s,Sx(s, t))].
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2. Let Λ̃ be continuous, and so also ν̃. Then

P(Nt,x > t) =
∏

[0,t]

[1−P(s ≤ Nt,x < s + ds |Nt,x ≥ s)] (10)

=
∏

[0,t]

[1−P(s < Nt,x ≤ s + ds |Nt,x > s)]

=
∏

[0,t]

[1−P(Ψ[(s, s + ds]× Sx(s, t)] > 0 |Ψ[C(s,Sx(s, t))] = 0)]

=
∏

[0,t]

[1−E(Ψ[(s, s + ds]× Sx(s, t)] |Ψ[C(s,Sx(s, t))] = 0)]

=
∏

[0,t]

[1−E(ν̃(ds)k(s,Sx(s, t)) |Ψ[C(s,Sx(s, t))] = 0)].

Since Nt,x is continuous on [0, t], we obtain that, for any fixed t,

S(t, x) = exp
{
−

∫ t

0

E(ν̃(ds)k(s,Sx(s, t)) |Ψ[C(s,Sx(s, t))] = 0)
}

. (11)

Remark 6 Let us suppose that the compensator ν of Ψ is of the form (see Remark 1)

ν(dt× dx) = k0(t, dx)ν̃(dt)(1− 1Θt−(x)).

It is clear that the probabilities in (7) and (10) are the same probabilities we have when we
consider the free process Ψ0 with compensator ν0(dt × dx) = k0(t, dx)ν̃(dt). So, there is no
distinction between Ψ and Ψ0 in computing the survival function.
Please note that ν0(dt× dx) is still assumed in general to be Ft−-measurable (see Remark 2).

Therefore expressions (9) and (11) represent the survival function of a point x at time t in
the case of a nucleation process with a compensator that in general can be stochastic.

If additional we assume that the (free) process Φ has independent increments and Λ̃ is
continuous, by (11) it follows that

S(t, x) = e−
∫ t
0 Λ̃(ds)Q(Sx(s,t)) = e−Λ(C(t,x)) (12)

and, consequently,

h(t, x) =
∂

∂t
Λ(C(t, x)), (13)

if the derivative exists.
So we obtain the same results as when Ψ is a nucleation process of the Poisson type (see
[5],[12],[13]). In fact [11], the independence of increments implies that the compensator of
Ψ is deterministic and coincides with the intensity measure Λ. Since a point process with a
deterministic and continuous compensator is a Poisson process, then Ψ is a marked Poisson
process.

Note that, in this case, Eq. (12) could be obtained as a direct consequence of the following
theorem [11]:

8



Theorem 2 Assume that (X,X ) is a c.s.m.s. and let Λ be a measure on R+ ×X such that
Λ(· ×X) is continuous and locally bounded. Suppose that Φ is a marked Poisson process with
mark space X and intensity measure Λ. Then Φ (considered as a random measure on R+×X)
is a Poisson process with intensity measure Λ.

We now introduce the concept of individual hazard function and show that it coincides with
the hazard function h(t, x) when the free process Ψ0 is a marked Poisson process. This result
was already proved in [4]; here we give a more immediate proof by using the theorem above.

Definition 10 The individual hazard function h1(t, x) is the capture rate of point x at time t

by a single crystal, i.e.

h1(t, x) := lim
∆t↓0

P(∃!j ∈ N : x ∈ (Θt+∆t
j \Θt) |x 6∈ Θt)

∆t
.

Proposition 1 Let Ψ be a nucleation process such that Ψ0 is a marked Poisson process with
intensity measure Λ. Then

h(t, x) = h1(t, x)

for all x ∈ K and for all t ∈ R+.

Proof. Let h0(t, x) and h0,1(t, x) be respectively the hazard function and the individual hazard
function associated with the free process Ψ0. Since (C(t + dt, x) \ C(t, x)) ∩ C(t, x) = ∅ and Ψ0

(Poisson process on R+ ×K) has independent increments, we have

h(t, x)dt = h0(t, x)dt

= 1−P(Ψ0[C(t + dt, x) \ C(t, x)] = 0 |Ψ0(C(t, x)) = 0)

= 1−P(Ψ0[C(t + dt, x) \ C(t, x)] = 0)

= 1− e−Λ(C(t+dt,x)\C(t,x))

= Λ(C(t + dt, x) \ C(t, x)),

as in (13).
Denote by hk(t, x) and h0,k(t, x) the capture rate (for Ψ and Ψ0 respectively) of x at time t by
exactly k crystals. Thus we have

h0,k(t, x)dt = P(Ψ0[C(t + dt, x) \ C(t, x)] = k |Ψ0(C(t, x)) = 0)

= P(Ψ0[C(t + dt, x) \ C(t, x)] = k)

=
[Λ(C(t + dt, x) \ C(t, x))]k

k!
e−Λ(C(t+dt,x)\C(t,x))

=
[h(t, x)dt]k

k!
(1− h(t, x)dt) = O(h(t, x)dt)k

Observe that:
for k = 1,

P(Ψ[C(t+dt, x)\C(t, x)] = 0 |Ψ(C(t, x)) = 0) = P(Ψ0[C(t+dt, x)\C(t, x)] = 0 |Ψ0(C(t, x)) = 0),

since the first nucleus is free to be born in C(t + dt, x) \ C(t, x). So

h1(t, x) = h0,1(t, x) = lim
dt↓0

h(t, x)dt

dt
− h(t, x)2dt2

dt
= h(t, x);
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for k ≥ 2,

{ω : Ψ[C(t + dt, x) \ C(t, x)] = k)} ⊆ {ω : Ψ0[C(t + dt, x) \ C(t, x)] = k)}.

So, hk(t, x) ≤ h0,k(t, x) = 0. ¤

3 A Relation between the Hazard Function and the Local
Spherical Contact Distribution Function

In the previous section we saw that the survival function S(t, x) can be obtained by the knowl-
edge of the hazard function h(t, x) of capture time Tx of a point x.

From the survival analysis theory, we know that a natural estimator of the survival function
is the Kaplan-Meier estimator, and it turns out to be the product-integral of the empirical
cumulative hazard function (known as Nelson-Aalen estimator). So, if Tx,1, . . . , Tx,n is an IID
sample of Tx, the Kaplan-Meier estimator Ŝ =

∏
(1− dĤ) of S(t, x) is given by

Ŝ(x, t) =
∏

s≤t

(
1− #{i : Tx,i = s}

#{i : Tx,i ≥ s}
)

.

Observe that if we have got n realizations of Ψ, and so of Θ, then each Tx,i is the capture time
of the point x in the ith realization Θi. Thus Tx,1, . . . , Tx,n are IID as Tx.
Problems arise when we have only one realization of Θ. In fact, even if S does not depend
on x (spatial homogeneity), we can not consider n random points x1, . . . , xn in the space and
their respective life time T1, . . . , Tn, because the independence of these should be lost. For
example, let d be the distance between two points x1 and x2, and suppose that the growth
speed G of crystals is radial and constant. If we observe that x1 is covered at time t̄, then
P(T2 ≤ t̄ + d/G) = 1, since at time t̄ + d/G the point x2 is certainly captured by the crystal in
x1 at time t̄ (for a similar discussion see [2]).

As we already said, for any fixed t, Θt is a random closed set. From stochastic geometry
we know that contact distributions are important tools to describe certain aspects of random
closed sets and can be easily estimated. Now we show how the hazard function is related to
local spherical contact distribution function [8].

Definition 11 The local spherical contact distribution function HS of an inhomogeneous ran-
dom set Ξ is given by

HS(r, x) := P(x ∈ Ξ⊕ b(0, r) |x 6∈ Ξ),

where ⊕ is Minkowski addition and b(0, r) is a d-dimensional ball of radius r centered at the
origin.

Proposition 2 Let Ψ a nucleation process as in hypotheses on page 3 and K such that dimK ≥
2. Assume that the growth speed G of crystals is radial and constant, and, for any t, x fixed,
denote by H̃(·, t, x) the following function

H̃(τ, t, x) := HS,Θt(Gτ, x),
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where HS,Θt is the local spherical contact distribution function of the random closed set Θt.
Then

h(t, x) =
∂

∂τ
H̃(τ, t, x)|τ=0 for a.e. x. (14)

Proof. Write the random set Θt+∆t as union of the set Θt grown up to time t + ∆t and the
crystals born during the interval (t, t + ∆t]:

Θt+∆t =
⋃

j
Tj≤t+∆t

Θt+∆t
Tj

(Xj)

=
⋃

j
Tj≤t

Θt+∆t
Tj

(Xj) ∪
⋃

j
t<Tj≤t+∆t

Θt+∆t
Tj

(Xj)

= Θt ⊕∆tGBd ∪
⋃

j
t<Tj≤t+∆t

Θt+∆t
Tj

(Xj),

where Bd = b(0, 1).
Let C̃x(t, t + ∆t) be the subset of the causal cone C(t, x) given by

C̃x(t, t + ∆t) := {(s, y) ∈ (t, t + ∆t]×K |x ∈ Θt+∆t
s (y)}.

By this definition it follows that

νd+1(C̃x(t, t + ∆t)) =
∫ t+∆t

t

(∫

b(x,(t+∆t−s)G)

dy

)
ds = O(∆t)d+1

(where νd+1 is the d + 1-dimensional Lebesgue measure) and

P(Ψ(C̃x(t, t + ∆t)) > 0 |Ψ(C(t, x)) = 0) = E(Ψ(C̃x(t, t + ∆t)) |Ψ(C(t, x)) = 0).

So we have

P(x ∈ Θt+∆t |x 6∈ Θt) = 1−P(x 6∈ (Θt ⊕∆tGBd ∪
⋃

j
t<Tj≤t+∆t

Θt+∆t
Tj

(Xj)) |x 6∈ Θt)

= 1−P({x 6∈ Θt ⊕∆tGBd} ∩ {x 6∈
⋃

j
t<Tj≤t+∆t

Θt+∆t
Tj

(Xj)} |x 6∈ Θt)

= 1−P(x 6∈ (Θt ⊕∆tGBd) |x 6∈ Θt)P(x 6∈
⋃

j
t<Tj≤t+∆t

Θt+∆t
Tj

(Xj) |x 6∈ Θt)

= 1− [1−HS,Θt(G∆t, x)](P(Ψ(C̃x(t, t + ∆t)) = 0 |Ψ(C(t, x)) = 0)

= 1− [1− H̃(∆t, t, x)][1−P(Ψ(C̃x(t, t + ∆t)) > 0 |Ψ(C(t, x)) = 0)]

= 1− [1− H̃(∆t, t, x)][1−E(Ψ(C̃x(t, t + ∆t)) |Ψ(C(t, x)) = 0)].

By replacing in the definition of h(t, x), we obtain

h(t, x) = lim
∆t↓0

1
∆t
{1− [1− H̃(∆t, t, x)] · [1−E(Ψ(C̃x(t, t + ∆t)) |Ψ(C(t, x)) = 0)]}. (15)

Now observe that:

11



• lim
∆t↓0

H̃(∆t, t, x)
∆t

= lim
∆t↓0

H̃(∆t, t, x)− H̃(0, t, x)
∆t

=
∂

∂τ
H̃(τ, t, x)|τ=0 .

• since Ψ(C̃x(t, t + ∆t)) is a nonnegative r.v.,

lim
∆t↓0

E(Ψ(C̃x(t, t + ∆t)) |Ψ(C(t, x)) = 0)
∆t

= lim
∆t↓0

1
∆t

E(Ψ(C̃x(t, t + ∆t))1{Ψ(C(t, x)) = 0})
P(Ψ(C(t, x)) = 0)

= ≤ 1
P(Ψ(C(t, x)) = 0)

lim
∆t↓0

E[Ψ(C̃x(t, t + ∆t))]
∆t

=
1

P(Ψ(C(t, x)) = 0)
lim
∆t↓0

Λ(C̃x(t, t + ∆t))
∆t

.

We know that Λ(ds × dy) = Q(s, dy)Λ̃(ds) , where Λ̃ is the intensity measure of the marginal
process and Q is a stochastic kernel from R+ to K. Since for all s ∈ R+, Q(s, ·) is absolutely
continuous with respect to the d-dimensional Lebesgue measure, then, for a.e. x ∈ K,

Λ(C̃x(t, t + ∆t)) =
∫ t+∆t

t

∫

b(x,(t+∆t−s)G)

Q(s, dy)Λ̃(ds) = O(∆t)d

∫ t+∆t

t

Λ̃(ds).

(From now on it is understood that x ∈ K a.s.).
Since certainly

∫ t+∆t

t
Λ̃(ds) < ∞, we have that Λ(C̃x(t, t + ∆t)) = O(∆t)d.

Therefore, ∀d ≥ 2

lim
∆t↓0

Λ(C̃x(t, t + ∆t))
∆t

= 0.

By (15) we obtain

h(t, x) =
∂

∂τ
H̃(τ, t, x)|τ=0

¤

Remark 7 1. Expression (14) may be intuitively explained in this way: capture of point x

during interval (t, t + ∆t] can be determined both by the growth of Θt and by the birth
of new crystals. These two causes are conditionally independent and the second one has
a negligible weight because of the simplicity of Ψ̃ and the absolute continuity of mark
distribution.

2. If Λ ¿ νd+1, i.e. Λ̃ absolutely continuous, then Λ(C̃x(t, t + ∆t)) = O(∆t)d+1 and (14) is
true also for dimK = 1.

3. We give now a simple example about the validity of Eq.(14).
Let us suppose that nuclei are born in time in accordance with a homogeneous Poisson
point process with intensity µ and uniformly in space. So, the mark distribution Q is the
uniform distribution on K which we assume has finite measure K. Consequently,

ν(dt× dx) = Λ(dt× dx) =
µ

K
dtdx,

and the survival function, independent of x, is given by

S(t) = exp
{
− µ

K

∫ t

0

bd(t− s)dGdds

}
,

12



where bd is the volume of the unit ball in Rd. Thus,

h(t) = − d

dt
ln S(t) =

µ

K

∫ t

0

dbdG
d(t− s)d−1ds. (16)

Observe now that, for every fixed t, Θt is a homogeneous Boolean model with intensity

λ = mean number of nuclei for unit of volume

= ν([0, t]× [0, 1]d) = µtQ([0, 1]d) = µt
1
K

and typical grain Z0 = b(0, G(t− U)) with U ∼ U([0, t]).
Since the spherical contact distribution function of a homogeneous Boolean model is given
by

HS(r) = 1− exp



−λ

d∑

j=1

bjr
jE(Vd−j(Z0))



 ,

where bj is the volume of the unit ball in Rj and Vj(Z0) is the jth intrinsic volume of Z0,
we have that

H̃(τ, t) = 1− exp



−

µt

K

d∑

j=1

bj(Gτ)jE(Vd−j(Z0))



 .

Since b1 = 2 and E(Vd−1(Z0)) =
1
2

∫ t

0

dbdG
d−1(t− s)d−1 1

t
ds, it follows that

h(t) =
∂

∂τ
H̃(τ, t, x)|τ=0 =

µ

K

∫ t

0

dbdG
d(t− s)d−1ds,

which coincides with the hazard function (16) obtained from the survival function.

4. Let us suppose that G time dependent. In this case H̃ is given by

H̃(τ, t, x) := HS,Θt

(∫ t+τ

t

G(s)ds, x

)
,

and Sx(s, t + ∆t) = b(x,
∫ t+∆t

s
G(u)du).

Again Λ(C̃x(t, t + ∆t)) = O(∆t)d, so

h(t, x) =
∂

∂τ
H̃(τ, t, x)|τ=0 = G(t)

∂

∂r
HS,Θt(r, x)|r=0 .

5. If G is space-and-time dependent, we can not define a function H̃ similarly as in the
previous cases, because Θt does not grow in a homogeneous way during a time interval
(t, t+τ ]. But, as follows by the proof, the hazard function h(t, x) coincides with the capture
rate of x determined by the growth of Θt. In fact, also in this case Λ(C̃x(t, t + ∆t)) =
O(∆t)d, since certainly Sx(s, t + ∆t) ⊆ b(x, (t + ∆t − s)GM ), where GM = max G(u, y)
for (u, y) ∈ [s, t + ∆t] × Sx(s, t + ∆t). So, if we denote by Θ(t + ∆t) the random closed
set Θt grown up to time t + ∆t, then

h(t, x) = lim
∆t↓0

P(x ∈ Θ(t + ∆t) |x 6∈ Θt)
∆t

. (17)
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By the continuity of G, for ∆t sufficiently small, during interval [t, t+∆t] we may consider
G = G(t, ·), so that it depends only on space.
Observe now that when the growth speed of crystals is dependent only on time or space
(i.e. G = G(t) or G = G(x)), then

x ∈ Θt
s(y) ⇐⇒ y ∈ Θt

s(x), (18)

while if G = G(t, x) it is not true in general.
Since every point y ∈ ∂Θt may be seen as nucleus of a crystal born at time t, then
x ∈ Θ(t + ∆t) ⇐⇒ ∃y ∈ ∂Θt such that x ∈ Θt+∆t

t (y). By (18) we have

x ∈ Θ(t + ∆t) ⇐⇒ Θt ∩Θt+∆t
t (x) 6= ∅.

Continuity of G allows to replace Θt+∆t
t (x) with b(x,G(t, x)∆t), thus

x ∈ Θ(t + ∆t) ⇐⇒ Θt ∩ b(x, G(t, x)∆t) 6= ∅,

and by (17) we obtain

h(t, x) = lim
∆t↓0

P(x ∈ Θt ⊕G(t, x)∆tBd |x 6∈ Θt)
∆t

= lim
∆t↓0

HS,Θt(G(t, x)∆t, x)
∆t

= G(t, x)
∂

∂r
HS,Θt(r, x)|r=0 .
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