MEAN DENSITY OF INHOMOGENEOUS BOOLEAN MODELS WITH LOWER DIMENSIONAL TYPICAL GRAIN

Elena Villa

Department of Mathematics – University of Milan

GOCPS2008 - Aachen 4th March 2008

A random closed set $\Theta: (\Omega, \mathfrak{F}, \mathbb{P}) \longrightarrow (\mathbb{F}, \sigma_{\mathbb{F}})^1$ in \mathbb{R}^d with integer Hausorff dimension n may induce a random Radon measure $\mu_{\Theta}(\cdot) := \mathcal{H}^n(\Theta \cap \cdot)$ on \mathbb{R}^d , and, as a consequence, an expected measure

$$\mathbb{E}[\mu_{\Theta}](B) := \mathbb{E}[\mathcal{H}^n(\Theta \cap B)] \qquad \forall B \in \mathcal{B}_{\mathbb{R}^d}.$$

 $^{{}^{1}\}mathbb{F}$ =closed subsets in \mathbb{R}^{d} ; $\sigma_{\mathbb{F}} = \sigma$ -algebra generated by the hit-or-miss topology

A random closed set $\Theta: (\Omega, \mathfrak{F}, \mathbb{P}) \longrightarrow (\mathbb{F}, \sigma_{\mathbb{F}})^1$ in \mathbb{R}^d with integer Hausorff dimension n may induce a random Radon measure $\mu_{\Theta}(\cdot) := \mathcal{H}^n(\Theta \cap \cdot)$ on \mathbb{R}^d , and, as a consequence, an *expected measure*

$$\mathbb{E}[\mu_{\Theta}](B) := \mathbb{E}[\mathcal{H}^n(\Theta \cap B)] \qquad \forall B \in \mathcal{B}_{\mathbb{R}^d}.$$

Questions

1 Is $\mathbb{E}[\mu_{\Theta}]$ absolutely continuous w.r.t. \mathcal{H}^d ?

 $^{{}^1\}mathbb{F}$ =closed subsets in \mathbb{R}^d ; $\sigma_{\mathbb{F}}=\sigma$ -algebra generated by the hit-or-miss topology

A random closed set $\Theta: (\Omega, \mathfrak{F}, \mathbb{P}) \longrightarrow (\mathbb{F}, \sigma_{\mathbb{F}})^1$ in \mathbb{R}^d with integer Hausorff dimension n may induce a random Radon measure $\mu_{\Theta}(\cdot) := \mathcal{H}^n(\Theta \cap \cdot)$ on \mathbb{R}^d , and, as a consequence, an *expected measure*

$$\mathbb{E}[\mu_{\Theta}](B) := \mathbb{E}[\mathcal{H}^n(\Theta \cap B)] \qquad \forall B \in \mathcal{B}_{\mathbb{R}^d}.$$

Questions

- Is $\mathbb{E}[\mu_{\Theta}]$ absolutely continuous w.r.t. \mathcal{H}^d ?
- If so, which is its density?

 $^{{}^1\}mathbb{F}$ =closed subsets in \mathbb{R}^d ; $\sigma_{\mathbb{F}}=\sigma$ -algebra generated by the hit-or-miss topology

A random closed set $\Theta: (\Omega, \mathfrak{F}, \mathbb{P}) \longrightarrow (\mathbb{F}, \sigma_{\mathbb{F}})^1$ in \mathbb{R}^d with integer Hausorff dimension n may induce a random Radon measure $\mu_{\Theta}(\cdot) := \mathcal{H}^n(\Theta \cap \cdot)$ on \mathbb{R}^d , and, as a consequence, an *expected measure*

$$\mathbb{E}[\mu_{\Theta}](B) := \mathbb{E}[\mathcal{H}^n(\Theta \cap B)] \qquad \forall B \in \mathcal{B}_{\mathbb{R}^d}.$$

Questions

- **1** Is $\mathbb{E}[\mu_{\Theta}]$ absolutely continuous w.r.t. \mathcal{H}^d ?
- 2 If so, which is its density?

Notation

If $\mathbb{E}[\mu_{\Theta}] \ll \mathcal{H}^d$ we denote by λ_{Θ} its density and we call $\lambda_{\Theta}(x)$ the **mean density of** Θ at point $x \in \mathbb{R}^d$.

 $^{{}^1\}mathbb{F}$ =closed subsets in \mathbb{R}^d ; $\sigma_{\mathbb{F}}=\sigma$ -algebra generated by the hit-or-miss topology

• If n = d,

ullet If n=d, then $\mathbb{E}[\mu_{\Theta}]\ll \mathcal{H}^d$ with density

$$\lambda_{\Theta}(x) = \mathbb{P}(x \in \Theta)$$
 for \mathcal{H}^d -a.e. $x \in \mathbb{R}^d$.

(ROBBINS H.E. (1944). On the measure of a random set, Ann.Math.Statistics, 15, 70–74)

ullet If n=d, then $\mathbb{E}[\mu_{\Theta}]\ll \mathcal{H}^d$ with density

$$\lambda_{\Theta}(x) = \mathbb{P}(x \in \Theta)$$
 for \mathcal{H}^d -a.e. $x \in \mathbb{R}^d$.

(ROBBINS H.E. (1944). On the measure of a random set, Ann. Math. Statistics, 15, 70–74)

• If $\Theta = X$ random point (n = 0),

• If n=d, then $\mathbb{E}[\mu_{\Theta}]\ll \mathcal{H}^d$ with density

$$\lambda_{\Theta}(x) = \mathbb{P}(x \in \Theta)$$
 for \mathcal{H}^d -a.e. $x \in \mathbb{R}^d$.

(ROBBINS H.E. (1944). On the measure of a random set, Ann. Math. Statistics, 15, 70–74)

• If $\Theta = X$ random point (n = 0), then $\mathbb{E}[\mu_X](\cdot) = \mathbb{P}(X \in \cdot) \ll \mathcal{H}^d$ iff X admits pdf f, and $\lambda_X = f$.

• If n=d, then $\mathbb{E}[\mu_{\Theta}]\ll \mathcal{H}^d$ with density

$$\lambda_{\Theta}(x) = \mathbb{P}(x \in \Theta)$$
 for \mathcal{H}^d -a.e. $x \in \mathbb{R}^d$.

(ROBBINS H.E. (1944). On the measure of a random set, Ann. Math. Statistics, 15, 70–74)

- If $\Theta = X$ random point (n = 0), then $\mathbb{E}[\mu_X](\cdot) = \mathbb{P}(X \in \cdot) \ll \mathcal{H}^d$ iff X admits pdf f, and $\lambda_X = f$.
- If 0 < n < d

• If n=d, then $\mathbb{E}[\mu_{\Theta}]\ll \mathcal{H}^d$ with density

$$\lambda_{\Theta}(x) = \mathbb{P}(x \in \Theta)$$
 for \mathcal{H}^d -a.e. $x \in \mathbb{R}^d$.

(ROBBINS H.E. (1944). On the measure of a random set, Ann. Math. Statistics, 15, 70–74)

- If $\Theta = X$ random point (n = 0), then $\mathbb{E}[\mu_X](\cdot) = \mathbb{P}(X \in \cdot) \ll \mathcal{H}^d$ iff X admits pdf f, and $\lambda_X = f$.
- ullet If 0 < n < d and Θ is stationary, then $\mathbb{E}[\mu_{\Theta}] \ll \mathcal{H}^d$ with density

$$\lambda_{\Theta}(x) = c > 0 \quad \forall x \in \mathbb{R}^d.$$

• If n=d, then $\mathbb{E}[\mu_{\Theta}]\ll \mathcal{H}^d$ with density

$$\lambda_{\Theta}(x) = \mathbb{P}(x \in \Theta)$$
 for \mathcal{H}^d -a.e. $x \in \mathbb{R}^d$.

(ROBBINS H.E. (1944). On the measure of a random set, Ann. Math. Statistics, 15, 70–74)

- If $\Theta = X$ random point (n = 0), then $\mathbb{E}[\mu_X](\cdot) = \mathbb{P}(X \in \cdot) \ll \mathcal{H}^d$ iff X admits pdf f, and $\lambda_X = f$.
- ullet If 0 < n < d and Θ is stationary, then $\mathbb{E}[\mu_{\Theta}] \ll \mathcal{H}^d$ with density

$$\lambda_{\Theta}(x) = c > 0 \quad \forall x \in \mathbb{R}^d.$$

Problem

What if 0 < n < d and Θ is NOT stationary?

Boolean model in \mathbb{R}^d

Definition

- $\Psi = \{x_i\}_{i \in \mathbb{N}}$: Poisson point process in \mathbb{R}^d with intensity f;
- $\{Z_i\}_{i\in\mathbb{N}}$: sequence of IID random compact sets in \mathbb{R}^d , which are also independent of the Poisson process Ψ ;
- Z_0 : random compact set of the same distribution as the Z_i 's.

The random closed set

$$\Theta := \bigcup_i (x_i + Z_i)$$

is said (inhomogeneous) Boolean model with intensity f and typical grain Z_0 .

It is usually assumed that

$$\mathbb{E}[\operatorname{card}\{i: (x_i + Z_i) \cap K \neq \emptyset\}] < \infty$$

 \forall compact $K \subset \mathbb{R}^d$.

We assume that the typical grain Z_0 is a lower dimensional random closed set in \mathbb{R}^d , uniquely determined by a random quantity in a suitable mark space \mathbf{K} ; i.e. $\forall s \in \mathbf{K}$

 $Z_0(s) = n$ -dimensional compact subset of \mathbb{R}^d containing the origin.

We assume that the typical grain Z_0 is a lower dimensional random closed set in \mathbb{R}^d , uniquely determined by a random quantity in a suitable mark space \mathbf{K} ; i.e. $\forall s \in \mathbf{K}$

 $Z_0(s) = n$ -dimensional compact subset of \mathbb{R}^d containing the origin.

Let us consider the Boolean model

$$\Theta(\omega) := \bigcup_{(x_i, s_i) \in \Phi(\omega)} x_i + Z_0(s_i) \qquad \forall \omega \in \Omega,$$

with Φ Poisson point process in $\mathbb{R}^d \times \mathbf{K}$ with intensity measure

$$\Lambda(\mathrm{d}y\times\mathrm{d}s)=f(y)\mathrm{d}yQ(\mathrm{d}s).$$

The main result

Under general regularity assumptions on Z_0 , related to the existence of its *Minkowski content*, and on the intensity f of the underlying Poisson point process, we can prove that

The main result

Under general regularity assumptions on Z_0 , related to the existence of its *Minkowski content*, and on the intensity f of the underlying Poisson point process, we can prove that

 $\mathbb{E}[\mu_{\Theta}] \ll \mathcal{H}^{\textit{d}}$ with density

$$\lambda_{\Theta}(x) = \int_{\mathbf{K}} \int_{\mathcal{I}^{x,s}} f(y) \mathcal{H}^n(\mathrm{d}y) \, Q(\mathrm{d}s) \qquad \text{for } \mathcal{H}^d\text{-a.e. } x \in \mathbb{R}^d,$$

where $Z^{x,s} := x - Z_0(s)$.

Rectifiability and Minkowski content

Notation:

- b_m =volume of the unit ball in \mathbb{R}^m ;
- $S_{\oplus r} := S \oplus B_r(0)$.

Definition (Minkowski content)

The *n*-dimensional Minkowski content $\mathcal{M}^n(S)$ of a closed set $S \subset \mathbb{R}^d$ is defined by

$$\mathcal{M}^n(S) := \lim_{r\downarrow 0} rac{\mathcal{H}^d(S_{\oplus r})}{b_{d-n}r^{d-n}}$$

whenever the limit exists finite.

Definition

We say that a compact set $S \subset \mathbb{R}^d$ is

• *n*-rectifiable, if there exist a compact $K \subset \mathbb{R}^n$ and a Lipschitz function $g : \mathbb{R}^n \to \mathbb{R}^d$ such that S = g(K);

Definition

We say that a compact set $S \subset \mathbb{R}^d$ is

• *n*-rectifiable, if there exist a compact $K \subset \mathbb{R}^n$ and a Lipschitz function $g : \mathbb{R}^n \to \mathbb{R}^d$ such that S = g(K);

Theorem (H.Federer (1969))

 $\mathcal{M}^n(S) = \mathcal{H}^n(S)$ for any compact n-rectifiable set $S \subset \mathbb{R}^d$.

Definition

We say that a compact set $S \subset \mathbb{R}^d$ is

- *n*-rectifiable, if there exist a compact $K \subset \mathbb{R}^n$ and a Lipschitz function $g : \mathbb{R}^n \to \mathbb{R}^d$ such that S = g(K);
- is **countably** \mathcal{H}^n -**rectifiable** if there exist countably many Lipschitz maps $g_i: \mathbb{R}^n \to \mathbb{R}^d$ such that

$$\mathcal{H}^n\Big(S\setminus\bigcup_{i=1}^\infty g_i(\mathbb{R}^n)\Big)=0.$$

Theorem (H.Federer (1969))

 $\mathcal{M}^n(S) = \mathcal{H}^n(S)$ for any compact n-rectifiable set $S \subset \mathbb{R}^d$.

Let $S \subset \mathbb{R}^d$ be a countably \mathcal{H}^n -rectifiable compact set and assume that

$$\eta(B_r(x)) \ge \gamma r^n \quad \forall x \in S \ \forall r \in (0,1)$$

holds for some $\gamma > 0$ and some Radon measure η in \mathbb{R}^d , $\eta \ll \mathcal{H}^n$. Then

$$\mathcal{M}^n(S) = \mathcal{H}^n(S).$$

Let $S \subset \mathbb{R}^d$ be a countably \mathcal{H}^n -rectifiable compact set and assume that

$$\eta(B_r(x)) \ge \gamma r^n \quad \forall x \in S \ \forall r \in (0,1)$$

holds for some $\gamma > 0$ and some Radon measure η in \mathbb{R}^d , $\eta \ll \mathcal{H}^n$. Then

$$\mathcal{M}^n(S) = \mathcal{H}^n(S).$$

Remarks:

• in many applications condition (1) is satisfied with $\eta(\cdot) = \mathcal{H}^n(\widetilde{S} \cap \cdot)$ for some closed set $\widetilde{S} \supseteq S$;

Let $S \subset \mathbb{R}^d$ be a countably \mathcal{H}^n -rectifiable compact set and assume that

$$\eta(B_r(x)) \ge \gamma r^n \quad \forall x \in S \ \forall r \in (0,1)$$

holds for some $\gamma>0$ and some Radon measure η in \mathbb{R}^d , $\eta\ll\mathcal{H}^n$. Then

$$\mathcal{M}^n(S) = \mathcal{H}^n(S)$$
.

Remarks:

- in many applications condition (1) is satisfied with $\eta(\cdot) = \mathcal{H}^n(\widetilde{S} \cap \cdot)$ for some closed set $\widetilde{S} \supseteq S$;
- ullet η can be assumed to be a probability measure;

Let $S \subset \mathbb{R}^d$ be a countably \mathcal{H}^n -rectifiable compact set and assume that

$$\eta(B_r(x)) \ge \gamma r^n \quad \forall x \in S \ \forall r \in (0,1)$$

holds for some $\gamma > 0$ and some Radon measure η in \mathbb{R}^d , $\eta \ll \mathcal{H}^n$. Then

$$\mathcal{M}^n(S) = \mathcal{H}^n(S).$$

Remarks:

- in many applications condition (1) is satisfied with $\eta(\cdot) = \mathcal{H}^n(\widetilde{S} \cap \cdot)$ for some closed set $\widetilde{S} \supseteq S$;
- ullet η can be assumed to be a probability measure;
- it can be proved that $\mathcal{H}^n(S) < \infty$ and

$$\lim_{r\downarrow 0} \frac{\mathcal{H}^d(S_{\oplus r} \cap A)}{b_{d-n}r^{d-n}} = \mathcal{H}^n(S \cap A)$$

for any $A \in \mathcal{B}_{\mathbb{R}^d}$ such that $\mathcal{H}^n(S \cap \partial A) = 0$.

Theorem (EV (2007))

Let μ be a positive measure in \mathbb{R}^d absolutely continuous w.r.t. \mathcal{H}^d with density f such that

- i) f is locally bounded (i.e. $\sup_{x \in K} f(x) < \infty$ for any compact $K \subset \mathbb{R}^d$);
- ii) the set of all discontinuity points of f is \mathcal{H}^n -negligible.

Theorem (EV (2007))

Let μ be a positive measure in \mathbb{R}^d absolutely continuous w.r.t. \mathcal{H}^d with density f such that

- i) f is locally bounded (i.e. $\sup_{x \in K} f(x) < \infty$ for any compact $K \subset \mathbb{R}^d$);
- ii) the set of all discontinuity points of f is \mathcal{H}^n -negligible.

Let $S \subset \mathbb{R}^d$ be a countably \mathcal{H}^n -rectifiable compact set as in the previous theorem.

Theorem (EV (2007))

Let μ be a positive measure in \mathbb{R}^d absolutely continuous w.r.t. \mathcal{H}^d with density f such that

- i) f is locally bounded (i.e. $\sup_{x \in K} f(x) < \infty$ for any compact $K \subset \mathbb{R}^d$);
- ii) the set of all discontinuity points of f is \mathcal{H}^n -negligible.

Let $S \subset \mathbb{R}^d$ be a countably \mathcal{H}^n -rectifiable compact set as in the previous theorem. Then

$$\lim_{r\downarrow 0} \frac{\mu(S_{\oplus r})}{b_{d-n}r^{d-n}} = \int_{S} f(x)\mathcal{H}^{n}(\mathrm{d}x).$$

Theorem (EV (2007))

Let μ be a positive measure in \mathbb{R}^d absolutely continuous w.r.t. \mathcal{H}^d with density f such that

- i) f is locally bounded (i.e. $\sup_{x \in K} f(x) < \infty$ for any compact $K \subset \mathbb{R}^d$);
- ii) the set of all discontinuity points of f is \mathcal{H}^n -negligible.

Let $S \subset \mathbb{R}^d$ be a countably \mathcal{H}^n -rectifiable compact set as in the previous theorem. Then

$$\lim_{r\downarrow 0}\frac{\mu(S_{\oplus r})}{b_{d-n}r^{d-n}}=\int_{S}f(x)\mathcal{H}^{n}(\mathrm{d}x).$$

This result applies in the proof of the formula of the mean density $\lambda_{\Theta}(x)$, with

- f = intensity of the underlying Poisson point process in \mathbb{R}^d ,
- $S = x Z_0(s), s \in \mathbf{K}$.

Assumptions

Let us consider the Boolean model Θ in \mathbb{R}^d

$$\Theta(\omega) := \bigcup_{(x_i, s_i) \in \Phi(\omega)} x_i + Z_0(s_i) \qquad \forall \omega \in \Omega,$$

with Φ Poisson point process in $\mathbb{R}^d \times \mathbf{K}$ having intensity measure

$$\Lambda(\mathrm{d} y \times \mathrm{d} s) = f(y)\mathrm{d} y Q(\mathrm{d} s)$$

such that

$$\mathbb{E}[\operatorname{card}\{i: (x_i + Z_i) \cap K \neq \emptyset\}] < \infty \qquad \forall \text{ compact } K \subset \mathbb{R}^d.$$

Assumptions

Let us consider the Boolean model Θ in \mathbb{R}^d

$$\Theta(\omega) := \bigcup_{(x_i, s_i) \in \Phi(\omega)} x_i + Z_0(s_i) \qquad \forall \omega \in \Omega,$$

with Φ Poisson point process in $\mathbb{R}^d \times \mathbf{K}$ having intensity measure

$$\Lambda(\mathrm{d} y \times \mathrm{d} s) = f(y)\mathrm{d} y Q(\mathrm{d} s)$$

such that

(IC)
$$\int_{\mathbf{K}} \int_{(-Z_0(s))_{\oplus R}} \Lambda(\mathrm{d} y \times \mathrm{d} s) < \infty \qquad \forall R > 0.$$

(A1) $Z_0(s)$ is a countably \mathcal{H}^n -rectifiable compact set for Q-a.e. $s \in \mathbf{K}$. Further there exist $\gamma > 0$ and a random closed set $\widetilde{Z}_0 \supseteq Z_0$ with $\mathbb{E}_Q[\mathcal{H}^n(\widetilde{Z}_0)] < \infty$ such that, for Q-a.e. $s \in \mathbf{K}$,

$$\mathcal{H}^n(\widetilde{Z}_0(s)\cap B_r(x))\geq \gamma r^n \qquad \forall x\in Z_0(s), \ \forall r\in (0,1).$$

(A1) $Z_0(s)$ is a countably \mathcal{H}^n -rectifiable compact set for Q-a.e. $s \in \mathbf{K}$. Further there exist $\gamma > 0$ and a random closed set $\widetilde{Z}_0 \supseteq Z_0$ with $\mathbb{E}_Q[\mathcal{H}^n(\widetilde{Z}_0)] < \infty$ such that, for Q-a.e. $s \in \mathbf{K}$,

$$\mathcal{H}^n(\widetilde{Z}_0(s)\cap B_r(x))\geq \gamma r^n \qquad \forall x\in Z_0(s), \ \forall r\in (0,1).$$

(A1) $Z_0(s)$ is a countably \mathcal{H}^n -rectifiable compact set for Q-a.e. $s \in \mathbf{K}$. Further there exist $\gamma > 0$ and a random closed set $\widetilde{Z}_0 \supseteq Z_0$ with $\mathbb{E}_Q[\mathcal{H}^n(\widetilde{Z}_0)] < \infty$ such that, for Q-a.e. $s \in \mathbf{K}$,

$$\mathcal{H}^n(\widetilde{Z}_0(s)\cap B_r(x))\geq \gamma r^n \qquad \forall x\in Z_0(s), \ \forall r\in (0,1).$$

(A2) the set of all discontinuity points of f is \mathcal{H}^n -negligible and f is locally bounded such that for any compact set $K \subset \mathbb{R}^d$

$$\sup_{y \in K_{\oplus \delta}} f(y) \le \xi_{\mathcal{K}} \qquad (\delta := \operatorname{diam} Z_0)$$

holds for some random variable ξ_K with $\mathbb{E}_{\mathcal{O}}[\mathcal{H}^n(\widetilde{Z}_0)\xi_K] < \infty$.

Main Theorem

Theorem (EV (2007))

For any Boolean model ⊖ as in Assumptions

- $\mathbb{E}[\mu_{\Theta}]$ is locally finite and absolutely continuous w.r.t. \mathcal{H}^d ;
- the mean density λ_{Θ} is given by

$$\lambda_{\Theta}(x) = \int_{\mathbf{K}} \int_{Z^{\times,s}} f(y) \mathcal{H}^n(\mathrm{d}y) \ Q(\mathrm{d}s) \qquad \text{for } \mathcal{H}^d\text{-a.e. } x \in \mathbb{R}^d,$$

where $Z^{x,s} := x - Z_0(s)$.

- Stationary case. If
 - $f \equiv c > 0$,
 - Z_0 satisfies the assumption (A1),

then the integrability condition (IC) on Λ and the assumption (A2) are satisfied

- Stationary case. If
 - $f \equiv c > 0$,
 - Z_0 satisfies the assumption (A1),

then $\mathbb{E}[\mu_{\Theta}] \ll \mathcal{H}^d$ with density

$$\lambda_{\Theta}(x) = c \mathbb{E}_{Q}[\mathcal{H}^{n}(Z_{0})] \qquad \forall x \in \mathbb{R}^{d}.$$

- Stationary case. If
 - $f \equiv c > 0$,
 - Z_0 satisfies the assumption (A1),

then $\mathbb{E}[\mu_{\Theta}] \ll \mathcal{H}^d$ with density

$$\lambda_{\Theta}(x) = c \mathbb{E}_{Q}[\mathcal{H}^{n}(Z_{0})] \qquad \forall x \in \mathbb{R}^{d}.$$

- 2 Deterministic typical grain. If
 - f is locally bounded and such that the set of all its discontinuity points is \mathcal{H}^n -negligible,
 - Z_0 is a countably \mathcal{H}^n -rectifiable compact set such that

$$\eta(B_r(x)) \ge \gamma r^n \quad \forall x \in S \ \forall r \in (0,1)$$

holds for some $\gamma>0$ and some probability measure $\eta\ll\mathcal{H}^{n}$,

- Stationary case. If
 - $f \equiv c > 0$,
 - Z_0 satisfies the assumption (A1),

then $\mathbb{E}[\mu_{\Theta}] \ll \mathcal{H}^d$ with density

$$\lambda_{\Theta}(x) = c \mathbb{E}_{Q}[\mathcal{H}^{n}(Z_{0})] \qquad \forall x \in \mathbb{R}^{d}.$$

- 2 Deterministic typical grain. If
 - f is locally bounded and such that the set of all its discontinuity points is \mathcal{H}^n -negligible,
 - Z_0 is a countably \mathcal{H}^n -rectifiable compact set such that

$$\eta(B_r(x)) \ge \gamma r^n \quad \forall x \in S \ \forall r \in (0,1)$$

holds for some $\gamma>0$ and some probability measure $\eta\ll\mathcal{H}^n$, then $\mathbb{E}[\mu_\Theta]\ll\mathcal{H}^d$ with density

$$\lambda_{\Theta}(x) = \int_{Z_0} f(x - y) \mathcal{H}^n(\mathrm{d}y)$$
 for \mathcal{H}^d -a.e. $x \in \mathbb{R}^d$.

• (IC) and (A1) implies that $\mathbb{E}[\mu_{\Theta}]$ is locally finite.

- (IC) and (A1) implies that $\mathbb{E}[\mu_{\Theta}]$ is locally finite.
- $\mathbb{E}[\mu_{\Theta}] = \lambda_{\Theta} \mathcal{H}^d$ for some integrable function λ_{Θ} on \mathbb{R}^d .

- (IC) and (A1) implies that $\mathbb{E}[\mu_{\Theta}]$ is locally finite.
- $\mathbb{E}[\mu_{\Theta}] = \lambda_{\Theta} \mathcal{H}^d$ for some integrable function λ_{Θ} on \mathbb{R}^d .
- For any bounded Borel set $A \subset \mathbb{R}^d$ with $\mathcal{H}^d(\partial A) = 0$,

$$\lim_{r\downarrow 0}\frac{\mathbb{E}[\mathcal{H}^d(\Theta_{\oplus r}\cap A)]}{b_{d-n}r^{d-n}}=\mathbb{E}[\mathcal{H}^n(\Theta\cap A)],$$

- ullet (IC) and (A1) implies that $\mathbb{E}[\mu_{\Theta}]$ is locally finite.
- $\mathbb{E}[\mu_{\Theta}] = \lambda_{\Theta} \mathcal{H}^d$ for some integrable function λ_{Θ} on \mathbb{R}^d .
- For any bounded Borel set $A \subset \mathbb{R}^d$ with $\mathcal{H}^d(\partial A) = 0$,

$$\lim_{r\downarrow 0} \frac{\mathbb{E}[\mathcal{H}^d(\Theta_{\oplus r}\cap A)]}{b_{d-n}r^{d-n}} = \mathbb{E}[\mathcal{H}^n(\Theta\cap A)],$$

i.e.

$$\lim_{r\downarrow 0} \int_{A} \frac{\mathbb{P}(x \in \Theta_{\oplus r})}{b_{d-n}r^{d-n}} dx = \int_{A} \lambda_{\Theta}(x) dx.$$

- (IC) and (A1) implies that $\mathbb{E}[\mu_{\Theta}]$ is locally finite.
- $\mathbb{E}[\mu_{\Theta}] = \lambda_{\Theta} \mathcal{H}^d$ for some integrable function λ_{Θ} on \mathbb{R}^d .
- For any bounded Borel set $A \subset \mathbb{R}^d$ with $\mathcal{H}^d(\partial A) = 0$,

$$\lim_{r\downarrow 0} \frac{\mathbb{E}[\mathcal{H}^d(\Theta_{\oplus r}\cap A)]}{b_{d-n}r^{d-n}} = \mathbb{E}[\mathcal{H}^n(\Theta\cap A)],$$

i.e.

$$\lim_{r\downarrow 0} \int_{A} \frac{\mathbb{P}(x \in \Theta_{\oplus r})}{b_{d-n}r^{d-n}} dx = \int_{A} \lambda_{\Theta}(x) dx.$$

By (A1) and (A2)

$$\lim_{r\downarrow 0} \int_A \frac{\mathbb{P}(x\in\Theta_{\oplus r})}{b_{d-n}r^{d-n}} \mathrm{d}x = \int_A \lim_{r\downarrow 0} \frac{\mathbb{P}(x\in\Theta_{\oplus r})}{b_{d-n}r^{d-n}} \mathrm{d}x.$$

$$\lambda_{\Theta}(x) = \lim_{r \downarrow 0} \frac{\mathbb{P}(x \in \Theta_{\oplus r})}{b_{d-n}r^{d-n}}$$

$$\lambda_{\Theta}(x) = \lim_{r \downarrow 0} \frac{\mathbb{P}(x \in \Theta_{\oplus r})}{b_{d-n}r^{d-n}}$$
$$= \lim_{r \downarrow 0} \int_{\mathbf{K}} \frac{\int_{Z_{\oplus r}^{x,s}} f(y) dy}{b_{d-n}r^{d-n}} Q(ds)$$

$$\lambda_{\Theta}(x) = \lim_{r \downarrow 0} \frac{\mathbb{P}(x \in \Theta_{\oplus r})}{b_{d-n}r^{d-n}}$$

$$= \lim_{r \downarrow 0} \int_{\mathbf{K}} \frac{\int_{Z_{\oplus r}^{x,s}} f(y) dy}{b_{d-n}r^{d-n}} Q(ds)$$

$$= \int_{\mathbf{K}} \lim_{r \downarrow 0} \frac{\int_{Z_{\oplus r}^{x,s}} f(y) dy}{b_{d-n}r^{d-n}} Q(ds)$$

$$\lambda_{\Theta}(x) = \lim_{r \downarrow 0} \frac{\mathbb{P}(x \in \Theta_{\oplus r})}{b_{d-n}r^{d-n}}$$

$$= \lim_{r \downarrow 0} \int_{\mathbf{K}} \frac{\int_{Z_{\oplus r}^{x,s}} f(y) dy}{b_{d-n}r^{d-n}} Q(ds)$$

$$= \int_{\mathbf{K}} \lim_{r \downarrow 0} \frac{\int_{Z_{\oplus r}^{x,s}} f(y) dy}{b_{d-n}r^{d-n}} Q(ds)$$

$$= \int_{\mathbf{K}} \int_{Z_{x,s}^{x,s}} f(y) \mathcal{H}^{n}(dy) Q(ds).$$

Estimation of the mean density

By the proof of the main theorem we get that, for any Boolean model Θ as in the Assumptions,

$$\lambda_{\Theta}(x) = \lim_{r \downarrow 0} \frac{\mathbb{P}(x \in \Theta_{\oplus r})}{b_{d-n}r^{d-n}} \in \mathbb{R}$$
 for \mathcal{H}^d -a.e. $x \in \mathbb{R}^d$

This suggest an estimator of $\lambda_{\Theta}(x)$ in terms of the empirical capacity functional of Θ :

Estimation of the mean density

By the proof of the main theorem we get that, for any Boolean model Θ as in the Assumptions,

$$\lambda_{\Theta}(x) = \lim_{r \downarrow 0} \frac{\mathbb{P}(x \in \Theta_{\oplus r})}{b_{d-n}r^{d-n}} \in \mathbb{R}$$
 for \mathcal{H}^d -a.e. $x \in \mathbb{R}^d$

This suggest an estimator of $\lambda_{\Theta}(x)$ in terms of the empirical capacity functional of Θ :

Let $\Theta_1, \ldots, \Theta_N$ be a random sample of Θ ; we define

$$\widehat{\lambda}_{\Theta}^{N}(x) := \frac{\sum_{i=1}^{N} \mathbf{1}_{\Theta_{i} \cap B_{R_{N}}(x) \neq \emptyset}}{Nb_{d-n}R_{N}^{d-n}},$$

with R_N such that $R_N \to 0$ and $NR_N^{d-n} \to \infty$ for $N \to \infty$. Then

$$\lim_{N\to\infty}\widehat{\lambda}_{\Theta}^N(x)=\lambda_{\Theta}(x)\quad\text{in probability},\quad\text{ for }\mathcal{H}^d\text{-a.e. }x\in\mathbb{R}^d.$$

Remark:

Even if the extreme case n=0 can be handle with much more elementary tools, we may notice that if $\Theta=X$ is a random variable with pdf f_X , then

•
$$\lambda_{\Theta} = f_X$$
;

Remark:

Even if the extreme case n=0 can be handle with much more elementary tools, we may notice that if $\Theta=X$ is a random variable with pdf f_X , then

- $\lambda_{\Theta} = f_X$;
- If X_1, \ldots, X_N is a random sample of X, $\hat{\lambda}_{\Theta}^N(x)$ becomes in this case

$$\widehat{f}_X^N(x) = \frac{\sum_{i=1}^N \mathbf{1}_{B_{R_N}(x)}(X_i)}{Nb_1 R_N} = \frac{\operatorname{card}\{i : X_i \in \mathcal{I}_x\}}{N|\mathcal{I}_x|},$$

where \mathcal{I}_x is the interval in \mathbb{R} centered in x with length $|\mathcal{I}_x|=2R_N$ with the usual condition

$$|\mathcal{I}_x| \longrightarrow 0$$
 and $N|\mathcal{I}_x| \longrightarrow \infty$ as $N \to \infty$.