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Abstract

The mean density of a random closed set Θ in Rd with Hausdorff dimension n is the Radon-
Nikodym derivative of the expected measure E[Hn(Θ ∩ · )] induced by Θ with respect to the
usual d-dimensional Lebesgue measure. Starting from an open problem posed by Matheron in
[24, p. 50-51], we consider here inhomogeneous Boolean models Ξ in Rd with integer Hausdorff
dimension n ∈ {0, . . . , d}, and we study the mean density of their boundary (which is their
mean density if n < d) and the differentiability of their spherical contact distribution function
HΞ, under general regularity assumptions on the typical grain, related to the existence of its
(outer) Minkowski content. In particular, we provide an explicit formula for ∂2HΞ(r, x)/(∂r2)
at r = 0 for a class of Boolean models, whose typical grain has positive reach; known results
for stationary Boolean models with convex grains follows then as a particular case. Examples
and statistical applications are also discussed.
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1 Introduction

As stated in [31, p. 55], a problem of interest is to have explicit formulae for local densities of
specific inhomogeneous Boolean models. In particular, about the notion of mean surface density
of a d-dimensional random closed set Θ in Rd, the concept of specific area of Θ at a point x ∈ Rd,
defined as the following limit

σΘ(x) := lim
r↓0

P(x ∈ Θ⊕r \Θ)
r

,

provided it exists, has been introduced by Matheron in [24, p. 50]. It is clearly related to the
existence of the right partial derivative at r = 0 of the so-called local spherical contact distribution
function HΘ of Θ, the function from R+× Rd to [0, 1] so defined

HΘ(r, x) := P(x ∈ Θ⊕r |x 6∈ Θ).

(Θ⊕r denotes here the parallel set of Θ at distance r, i.e. Θ⊕r := {x ∈ Rd : dist(x, Θ) ≤ r}.) The
existence of σΘ(x) might be related to the existence of the limit of E[Hd(Θ⊕r \Θ)]/r as r goes to 0,
known as mean outer Minkowski content of Θ, introduced in [2]. More precisely, a straightforward
application of Fubini’s theorem gives

lim
r↓0

E[Hd((Θ⊕r \Θ) ∩B)]
r

= lim
r↓0

∫

B

P(x ∈ Θ⊕r \Θ)
r

dx, (1.1)
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for all Borel subsets B of Rd; then it is clear that, whenever Θ is stationary, σΘ is constant and
given by

σΘ = lim
r↓0

E[[Hd((Θ⊕r \Θ) ∩ [0, 1]d)]
r

.

Therefore, if furthermore Θ is sufficiently regular to admit a (local) Steiner formula, the above
limit can be studied in terms of the quermass densities (or Minkowski functionals) associated to
Θ, and so by means of tools from integral geometry mainly (e.g, see [4, 31] and references therein).
Consequently, most of the results available so far in literature about contact distributions and
mean surface densities of grain models are proved under the assumption that Θ is stationary and
with compact convex grains (e.g., see [15, 17, 20, 21, 22, 23, 31]). The passage from stationary
to nonstationary random closed sets raises nontrivial problems; anyway, still considering random
unions of convex grains, a series of results have been proved (e.g., see [18, 19]). In particular, we
mention that the assumption of convexity of the grains plays a fundamental role in order to apply
results and techniques from convex and integral geometry in [18]; in such paper, some formulae
for contact distributions and mean densities of inhomogeneous germ-grain models are to be taken
in weak form (e.g., [18, Theorem 4.1]), unless to add further suitable assumptions or to consider
special germ-grain models which admit an explicit expression of their capacity functional. As a
matter of fact, in order to obtain pointwise convergence results, it is intuitively clear that the
exchange between limit and integral in (1.1) has to be proved. (For a more exhaustive discussion
about this, we also refer to [1], where results in weak form for the mean density of lower dimensional
random closed sets are proved.)
The main goal of the present paper is to provide explicit formulae for σΘ(x) and results concerning
the differentiability of the spherical contact distribution function of inhomogeneous germ-grain
models. To this end, concepts and recent results from geometric measure theory will play a central
role here. As stated in [4], Boolean models are usually considered basic random sets models in
stochastic geometry; thus, in order to make the presentation of our results lighter by using the
explicit simple formula of the capacity functional of Boolean models, we shall consider here such
particular germ-grain models, leaving to subsequent works applications and further generalizations
of our techniques to more general germ-grain models. (As it will emerge in the sequel, possible
extensions of our results to different germ-grain models might be done under further suitable
integrability assumptions which allow to exchange limit and integral in (1.1); a similar problem is
discussed in [18, Remark 4.4], for instance.)

The main results of this paper can be summarized as follows:

(a) In Section 3.2 we find general regularity conditions on the typical grain and on the intensity
of an inhomogeneous Boolean model Ξ in Rd such that σΞ exists finite. This answers (for
such class of random sets) to the open problem posed by Matheron in [24, p. 50-51] about
the existence of σΞ. In particular we provide an explicit formula for σΞ and we show that it
differs from the mean density λ∂Ξ of the topological boundary of Ξ (i.e., the density of the
measure E[Hd−1(∂Ξ ∩ ·)]), in general. Then we provide sufficient regularity conditions on
the typical grain ensuring σΞ = λ∂Ξ, reobtaining some known results for convex grains as a
special case.

(b) By similar techniques, in Section 3.3 we find an explicit formula for the mean density of
inhomogeneous Boolean models with lower dimensional typical grain; in particular, under
general regularity assumptions on the typical grain, of the same type as the ones which
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guarantee the existence of the Minkowski content of a closed set, we prove that if Ξ is n-
dimensional, then its mean density λΞ (i.e., the density of the measure E[Hn(Ξ∩ ·)]) is given
by

λΞ(x) = lim
r↓0

P(x ∈ Ξ⊕r)
bd−nrd−n

for Hd-a.e. x ∈ Rd. (1.2)

Such result can be regarded as the “n-dimensional counterpart” of σΞ, and it answers to an
open problem in [1] in the case of Boolean models. As a by-product, it suggests estimators
for λΞ(x) in terms of the empirical capacity functional of Ξ, which can be considered as the
generalization to the case 0 < n < d of the classical density estimation of random variables
by means of histograms, in the extreme case n = 0 (Section 6).

(c) Starting from the explicit formula for σΞ, in Section 4 we study the differentiability of the
spherical contact distribution function of inhomogeneous Boolean models with non convex
grains, and we provide a formula for the second right partial derivative of HΞ(r, x) at r = 0
for inhomogeneous Boolean models with a typical grain of positive reach.

Simple examples are discussed in Section 5; furthermore, we show how our general formulae for
the mean densities and the spherical contact distribution simplify in the special cases in which the
Boolean model is assumed to have a deterministic typical grain, or to be stationary. In this last
case links with current literature are also provided.

2 Basic notation

Throughout the paper Hn is the n-dimensional Hausdorff measure, dx stands for Hd(dx), BRd is
the Borel σ-algebra of Rd and Hn

|A denotes the restriction of Hn to a Hn-measurable set A ⊂ Rd

(i.e. Hn
|A(B) = Hn(A ∩ B) for all B ∈ BRd). Br(x), bn and Sd−1 will denote the closed ball

with centre x and radius r ≥ 0, the volume of the unit ball in Rn and the unit sphere in Rd,
respectively. We remind that a compact set A ⊂ Rd is said n-rectifiable (0 ≤ n ≤ d− 1 integer) if
it can be written as the image of a compact subset of Rn by a Lipschitz map from Rn to Rd; more
in general, a closed subset A of Rd is said to be countably Hn-rectifiable if there exist countably
many n-dimensional Lipschitz graphs Γi ⊂ Rd such that A \∪iΓi is Hn-negligible. (For definitions
and basic properties of Hausdorff measure and rectifiable sets see, e.g., [3, 10, 12].)
Let F and σF be the class of the closed subsets in Rd and the σ-algebra generated by the so-called
hit-or-miss topology [24], respectively. We say that a random closed set Θ : (Ω, F,P) → (F, σF)
satisfies a certain property (e.g., Θ has Hausdorff dimension n) if Θ satisfies that property for
P-a.e. ω ∈ Ω. Throughout the paper we shall deal with countably Hn-rectifiable random closed
sets. For a discussion about measurability of Hn(Θ) we refer to [32, 5]. We call Radon measure in
Rd any nonnegative and σ-additive set function µ defined on BRd which is finite on bounded sets,
and we write µ ¿ Hn to say that µ is absolutely continuous with respect to Hn. If a n-dimensional
random closed set Θ is such that E[Hn

|Θ] ¿ Hd, we denote by λΘ the Radon-Nikodym derivative
of E[Hn

|Θ] with respect to Hd, and we call it the mean density of Θ.
In particular, we shall consider Boolean models Ξ in Rd [4, 27] with n-dimensional typical grain
Z0 (n ≤ d, integer); for d-dimensional typical grains Z0 we assume that the topological boundary
∂Z0 has Hausdorff dimension d− 1. It is well known that Boolean models in Rd can be described
by marked Poisson point processes on Rd with marks in the space of centered compact sets. Since
in many examples and applications Z0 is uniquely determined by a random quantity in a suitable
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mark space K, (e.g., the length of the radius whenever Z0 is a random ball centred in the origin,
or length and orientation whenever Z0 is a random segment, and so on), in the sequel we shall
consider (inhomogeneous) Boolean models

Ξ(ω) =
⋃

(xi,si)∈Ψ(ω)

xi + Z0(si),

where Z0(s) is a compact subset of Rd containing the origin, for any s ∈ K, and Ψ is the marked
Poisson point process in Rd with marks in K associated to Ξ with intensity measure

Λ(d(x, s)) = f(x)dxQ(ds).

We shall denote by diam(Z0) the (random) diameter of Z0. The function f and the probability
measure Q on K are said intensity of Ξ and mark distribution, respectively; discf will denote the
set of all the points of discontinuity of f , and EQ the expectation with respect to Q.

Considering d-dimensional sets, several notions of boundary of a subset of Rd and related
concepts will be used. To this end we briefly recall basic (typically standard) definitions from
geometric measure theory and integral geometry which will be useful in the sequel. Let A be a
Hd-measurable set in Rd; the d-dimensional density (briefly, density) of A at x is defined as [3]

θd(A, x) := lim
r↓0

Hd(A ∩Br(x))
bdrd

,

whenever the limit exists. It is clear that θd(A, x) equals 1 for all x in the interior of A, and 0 for
all x in the interior of the complement set of A, whereas different values can be assumed at its
boundary points; in particular, for every t ∈ [0, 1] and every Hd-measurable set A ⊂ Rd, let

At := {x ∈ Rd : θd(A, x) = t}.

The set of points ∂∗A := Rd \ (A0∪A1) where the density of A is neither 0 nor 1 is called essential
boundary of A. It is proved that all the sets At are Borel sets, and that the Hd−1 measure of
∂∗A is closely related to the notion of perimeter. We remind that if A is a Hd-measurable subset
of Rd, the perimeter of A in an open set E ⊆ Rd, denoted by P (A,E), is defined as the total
variation |DχA| of the characteristic function χA of A in E; more generally, for any Borel set
B ⊂ E, we define P (A,B) := |DχA|(B). In the sequel we shall write P (A) instead of P (A,Rd).
(We refer to [3] for an exhaustive treatment of this subject.) A is said to have finite perimeter in
B if P (A, B) < ∞. General theorems on sets with finite perimeter (see [3, §3.5]) guarantee that
if A has finite perimeter in an open set E ⊂ Rd, then the measures |DχA| and Hd−1

|∂∗A coincide on
the Borel subsets of E; as a consequence, the perimeter measure can be computed in terms of the
Hd−1 measure, and in particular the following equalities can be proved

P (A,B) = Hd−1(∂∗A ∩B) = Hd−1(A1/2 ∩B) ∀B ∈ BRd .

Note that, being ∂∗A ⊆ ∂A, P (A) ≤ Hd−1(∂A) holds without any regularity or topological
assumptions on A. While the essential boundary of a set A ⊂ Rd is related to the density of the
set at its boundary points and to the perimeter measure, the so-called positive boundary of A is
related to the existence of outer normal vectors at points of ∂A. Namely (e.g., see [11, 20]), for
A ⊂ Rd closed let

Unp(A) := {x ∈ Rd : ∃! a ∈ A such that dist(x,A) = |a− x|}.
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The definition of Unp(A) implies the existence of a projection mapping ξA : Unp(A) → A which
assigns to x ∈ Unp(A) the unique point ξA(x) ∈ A such that dist(x,A) = |x − ξA(x)|. Then for
all x ∈ Unp(A) with dist(x,A) > 0 we may define uA(a) := (x− ξA(x))/dist(x,A). The set of all
x ∈ Rd \A for which ξA(x) is not defined it is called exoskeleton of A and it is denoted by exo(A).
The normal bundle of A is the measurable subset of ∂A× Sd−1 defined by

N(A) := {(ξA(x), uA(x)) : x 6∈ A ∪ exo(A)},

whereas the set ∂+A := {x ∈ ∂A : (x, u) ∈ N(A) for some u ∈ Sd−1} is called the positive
boundary of A. For any x ∈ ∂+A we define

N(A, x) := {u ∈ Sd−1 : (x, u) ∈ N(A)},

and
∂iA := {x ∈ ∂+A : cardN(A, x) = i} for i = 1, 2.

Note that for any x ∈ ∂1A, the unique element of N(A, x) is the outer normal of A at x; in the
sequel we shall denote it by nx.
For any closed set A ⊂ Rd there exist uniquely determined signed measures µ0(A; · ), . . . , µd−1(A; · )
on N(A), said support measures of A, which arise as coefficient measures of a local Steiner formula;
in particular the support measure µd−1(A; · ) is non-negative and it can be expressed in terms of
the (d − 1)-dimensional Hausdorff measure of ∂1A and ∂2A. (We refer to [20] for further details
and results.) In Section 4 we shall also consider a class of Boolean models with typical grain having
positive reach. We remind that the reach of a compact set A is defined by [11]

reach(A) := inf
a∈A

reach(A, a),

where reach(A, a) := sup{r > 0 : Br(a) ⊂ Unp(A)} for every a ∈ A. If reach(A) > 0, the following
relationship between the support measure µi(A; · ) and the curvature measure Φi(A; · ) associated
with A introduced in [11] holds:

µi(A; · × Sd−1) = Φi(A; · ) ∀i = 1, . . . , d− 1. (2.1)

By using Federer’s notation, Φi(A) := Φi(A;A) will be the total curvature measure of A.

3 Mean densities

Without any other specification, throughout the paper Ξ is an (inhomogeneous) Boolean model in
Rd defined as in the previous section. To lighten the notation we set Zx := x − Z0 ∀x ∈ Rd, and
for any x ∈ Rd and r ≥ 0 let Zx,r be the subset of Rd ×K so defined

Zx,r = {(y, s) ∈ Rd ×K : x ∈ (y + Z0(s))⊕r} = {(y, s) ∈ Rd ×K : y ∈ Zx
⊕r(s)}.

It is clear that Zx,r1 ⊂ Zx,r2 for all r1 < r2, and that

P(x 6∈ Ξ⊕r) = P(Ψ(Zx,r) = 0) = exp{−Λ(Zx,r)};

in particular it follows that

P(x ∈ Ξ⊕r \ Ξ) = P({Ψ(Zx,r) > 0} ∩ {Ψ(Zx,0) = 0}) = e−Λ(Zx,0)(1− e−Λ(Zx,r\Zx,0)). (3.1)
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Thus, the problem about the existence of σΞ(x) reduces to find conditions ensuring the existence
of the following limit

lim
r↓0

Λ(Zx,r \ Zx,0)
r

. (3.2)

Notice that whenever Ξ is stationary (say f ≡ c > 0) with deterministic typical grain, Λ(Zx,r \
Zx,0) = cHd(Z0⊕r \ Z0) for all x ∈ Rd, and so the above limit is independent of x, as expected,
and it exists finite if and only if the set Z0 admits outer Minkowski content. In the next section
we briefly recall basic definitions and recent results about the (outer) Minkowski content notion,
and we provide a generalization which will play a central role in the study of the limit (3.2).

3.1 A generalization of the (outer) Minkowski content of sets

We recall that the n-dimensional Minkowski content of a closed set A ⊂ Rd is the quantity

Mn(A) := lim
r↓0

Hd(A⊕r)
bd−nrd−n

whenever the limit exists finite. Well known general results about the existence of the Minkowski
content of closed sets in Rd are related to rectifiability properties of the involved sets. In particular,
the following theorem is proved in [3, p. 110].

Theorem 3.1 Let A ⊂ Rd be a countably Hn-rectifiable compact set and assume that

η(Br(x)) ≥ γrn ∀x ∈ A, ∀r ∈ (0, 1) (3.3)

holds for some γ > 0 and some Radon measure η ¿ Hn in Rd. Then Mn(A) = Hn(A).

Condition (3.3) is a kind of quantitative non-degeneracy condition which prevents A from being too
sparse; simple examples show that Mn(A) can be infinite, and Hn(A) arbitrarily small, when this
condition fails [3, 2]. The above theorem extends (see [3, Theorem 2.106]) the well-known Federer’s
result [12, p. 275] to countably Hn-rectifiable compact sets; in particular for any n-rectifiable
compact set A ⊂ Rd there exists a suitable measure η satisfying (3.3) (see [2, Remark 1]).
The right derivative at r = 0 of the volume function V (r) := Hd(A⊕r) of a Borel set A ⊂ Rd is
also named the outer Minkowski content of A, defined as [2]

SM(A) := lim
r↓0

Hd(Ar \A)
r

,

provided that the limit exists finite. Note that if A has Hausdorff dimension less than d, then
SM(A) = 2Md−1(A), whereas if A is a d-dimensional set, closure of its interior, A⊕r \A coincides
with the outer Minkowski enlargement at distance r of ∂A. It is intuitive that in many situations
(e.g., full dimensional convex bodies) SM(A) = Md−1(∂A); instead, it can be proved [29] that
the same general conditions which guarantee the existence of Md−1(∂A) imply the existence of
the outer Minkowski content of A, but SM(A) differs form Hd−1(∂A), in general. Namely, the
following class of sets has been introduced in [29]:

Definition 3.2 (The class O) Let O be the class of Borel sets A of Rd with countably Hd−1-
rectifiable and bounded topological boundary, such that

η(Br(x)) ≥ γrd−1 ∀x ∈ ∂A, ∀r ∈ (0, 1)

holds for some γ > 0 and some probability measure η ¿ Hd−1 in Rd.
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Theorem 3.3 [29] The class O is stable under finite unions and any A ∈ O admits outer
Minkowski content, given by SM(A) = P (A) + 2Hd−1(∂A ∩A0)).

Remark 3.4 (The class O′) In [29] it is also proved that the same conclusions of the above
theorem hold for a class of Borel subsets of Rd, denoted by O′, defined similarly to O by replacing
the condition of absolute continuity of η with the assumption that Md−1(∂A) = Hd−1(∂A); it
follows that O′ contains all Borel sets with (d − 1)-rectifiable boundary (and so finite unions of
sets with positive reach or with Lipschitz boundary, in particular).

Note that if a Radon measure η as in Theorem 3.1 exists, then it can be assumed to be a probability
measure, without loss of generality (it is sufficient to consider the measure η̃(·) := η(W ∩ · )/η(W ),
where W is a compact subset of Rd such that A⊕1 ⊂ W ). The next theorem may be seen as a
generalization of Theorem 3.1 and of Theorem 3.3.

Theorem 3.5 Let µ ¿ Hd be a positive measure in Rd with locally bounded density f .

(a) Let A ⊂ Rd be a countably Hn-rectifiable compact set such that condition (3.3) holds for some
γ > 0 and some probability measure η ¿ Hn in Rd. If Hn(discf) = 0, then

lim
r↓0

µ(A⊕r)
bd−nrd−n

=
∫

A

f(x)Hn(dx).

(b) Let A belong to O (or O′). If Hd−1(discf) = 0, then

lim
r↓0

µ(A⊕r \A)
r

=
∫

∂∗A

f(x)Hd−1(dx) + 2
∫

∂A∩A0
f(x)Hd−1(dx).

Proof. (a) In [1] an upper bound for the Minkowski content of compact sets in Rd and a local
version of Theorem 3.1 are proved; namely, if S ⊂ Rd is a countably Hn-rectifiable compact set
such that condition (3.3) holds for some γ > 0 and some finite measure η ¿ Hn in Rd, then

Hd(S⊕r)
bd−nrd−n

≤ η(Rd)
γ

2n4d bd

bd−n
∀r < 2, (3.4)

and

lim
r↓0

Hd(S⊕r ∩B)
bd−nrd−n

= Hn(S ∩B)

for any B ∈ BRd such that Hn(S ∩ ∂B) = 0.
It is well known that, since f ≥ 0, there exists an increasing sequence {fk}k∈N of step functions

fk(x) =
N(k)∑

j=1

c
(k)
j 1

B
(k)
j

(x), c
(k)
j ≥ 0, N(k) ∈ N,

converging to f . Being Hn(discf) = 0, the sequence {fk} can be chosen such that Hn(A∩∂B
(k)
j ) =

0 for all j, k.
Let us define gk(r) :=

∫
A⊕r

fk(x)dx/(bd−nrd−n). fk ↑ f uniformly in A⊕r for any r > 0 since f is
bounded in A⊕r; so, for all ε > 0 and k sufficiently great,

∣∣∣gk(r)−
∫

A⊕r
f(x)dx

bd−nrd−n

∣∣∣ ≤
∫

A⊕r
|fk(x)− f(x)|dx

bd−nrd−n
< ε

Hd(A⊕r)
bd−nrd−n

(3.4)

≤ ε
1
γ

2n4d bd

bd−n
∀r ∈ (0, 1).
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Therefore gk(r) uniformly converges to
∫

A⊕r
f(x)dx/(bd−nrd−n) in (0,1) as k tends to ∞.

By condition (3.3) we know that

lim sup
r↓0

η(Br(x))
bnrn

≥ γ

bn
> 0 ∀x ∈ A;

then, a direct application of Theorem 2.56 in [3] implies that Hn(A) ≤ bn/γ. Then it follows

lim
r↓0

gk(r) =
N(k)∑

j=1

c
(k)
j lim

r↓0
Hd(A⊕r ∩B

(k)
j )

bd−nrd−n
=

∫

A

fk(x)Hn(dx) ≤ sup
x∈A

f(x)Hn(A) < ∞.

This, together with the uniform convergence of gk(r) in (0,1), implies that

lim
r↓0

lim
k→∞

gk(r) = lim
k→∞

lim
r↓0

gk(r),

and we finally obtain

lim
r↓0

µ(A⊕r)
bd−nrd−n

= lim
r↓0

∫
A⊕r

f(x)dx

bd−nrd−n
= lim

r↓0
lim

k→∞
gk(r) = lim

k→∞

∫

A

fk(x)Hn(dx) =
∫

A

f(x)Hn(dx).

(b) For any A in O (or in O′) it holds [29]

lim
r↓0

Hd((A⊕r \A) ∩B)
r

= P (A,B) + 2Hd−1(∂A ∩A0 ∩B) (3.5)

for any B ∈ BRd with Hd−1(∂A ∩ ∂B) = 0.
We observe that

Hd(A⊕r \A)
r

≤ Hd((∂A)⊕r)
r

≤ γ−123d−1bd ∀r < 2,

and that P (A) + 2Hd−1(∂A∩A0) ≤ 2Hd−1(∂A). By proceeding along the same lines of point (a),
the assertion follows. ¤

3.2 Mean surface densities

In this section we consider a general class of d-dimensional Boolean models, defined by the two
following conditions on the intensity f , and on the typical grain Z0.
Assumptions: (A1) ∂Z0 is countably Hd−1-rectifiable and compact, and such that there exist
γ > 0 and a random closed set Θ ⊇ ∂Z0 with EQ[Hd−1(Θ)] < ∞ such that, for Q-a.e. s ∈ K,

Hd−1(Θ(s) ∩Br(x)) ≥ γrd−1 ∀x ∈ ∂Z0(s), ∀r ∈ (0, 1).

(A2) Hd−1(discf) = 0 and f is locally bounded such that for any compact set K ⊂ Rd

sup
y∈K⊕diam(Z0)

f(y) ≤ ξK (3.6)

for some random variable ξK with EQ[Hd−1(Θ)ξK ] < ∞.
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Remark 3.6 Condition (3.6) is trivially satisfied whenever f is bounded, or f is locally bounded
and diam(Z0) ≤ c ∈ R+ Q-a.s. Assumption (A1) is often fulfilled with Θ = ∂Z0 or Θ = ∂Z0∪Ã for
some sufficiently regular random closed set Ã; as a matter of fact, it can be seen as the stochastic
version of (3.3), which, in many applications, is satisfied with η(·) = Hn(Ã∩ · ) for some closed set
Ã ⊇ A (see [3, p. 111], [2]).

Proposition 3.7 Let Ξ be a Boolean model as in the Assumptions. Then, for all x ∈ Rd,

σΞ(x) = e−Λ(Zx,0)EQ

[ ∫

∂∗Zx

f(y)Hd−1(dy) + 2
∫

∂Zx∩(Zx)0
f(y)Hd−1(dy)

]
. (3.7)

Proof. Let us observe that
∫

Zx
⊕r\Zx(s)

f(y)dy

r
≤ Hd((∂Z0(s))⊕r)

r
sup

y∈Zx
⊕r(s)

f(y) ≤ 23d−1bd

γ
Hd−1(Θ(s))ξB2(x)(s) ∀r < 2,

where the last inequality follows by (3.4) and the assumption (3.6).
Being EQ[Hd−1(Θ)ξB2(x)] < ∞, the dominated convergence theorem and the part (b) of Theo-
rem 3.5 (with µ = fHd and A = Zx(s)) imply that

lim
r↓0

Λ(Zx,r \ Zx,0)
r

= EQ

[
lim
r↓0

∫
Zx
⊕r\Zx f(y)dy

r

]

= EQ

[ ∫

∂∗Zx

f(y)Hd−1(dy) + 2
∫

∂Zx∩(Zx)0
f(y)Hd−1(dy)

]

≤ EQ

[
2

∫

∂Zx

f(y)Hd−1(dy)
]
≤ 2EQ[Hd−1(∂Z0)ξ{x}] ∈ R+.

We conclude that limr↓0(1− e−Λ(Zx,r\Zx,0))/r exists finite and, by (3.1), the assertion follows. ¤

Dealing with Boolean models, it is commonly assumed that the mean number of grains hitting
any compact subset of Rd is finite; in terms of Λ, this is equivalent to say that

E[Ψ(Z0,R)] =
∫

K

∫

(−Z0(s))⊕R

Λ(dy × ds) < ∞ ∀R > 0. (3.8)

Proposition 3.8 For any Boolean model Ξ as in the Assumptions satisfying (3.8), E[Hd−1
|∂Ξ ] is a

Radon measure absolutely continuous with respect to Hd.

Proof. For any R > 0

E[Hd−1(∂Ξ ∩BR(0))] = E[E[Hd−1(∂Ξ ∩BR(0)) |Ψ(Z0,R)]] ≤ EQ[Hd−1(Θ)]E[Ψ(Z0,R)] < ∞,

by (3.8) and condition (A1); then E[Hd−1
|∂Ξ ] is locally finite, and so a Radon measure in Rd.

By contradiction, let E[Hd−1
|∂Ξ ] be not absolutely continuous with respect to Hd; then there

exists A ⊂ Rd with Hd(A) = 0 such that E[Hd−1(∂Ξ ∩A)] > 0. In particular,

0 < P(Hd−1(∂Ξ ∩A) > 0) ≤ P
( ∑

(xi,si)∈Ψ

Hd−1((xi + ∂Z0(si)) ∩A) > 0
)

= P(Ψ(A) > 0), (3.9)

where
A := {(y, s) ∈ Rd ×K : Hd−1((y + ∂Z0(s)) ∩A) > 0)}.
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By denoting As := {y ∈ Rd : (y, s) ∈ A} the section of A at s ∈ K, and applying Fubini’s theorem
we get ∫

As

Hd−1((y + ∂Z0(s)) ∩A)dy =
∫

∂Z0(s)

( ∫

As

1A−x(y)dy
)
Hd−1(dx) = 0,

since Hd(A) = 0. Being the function y 7→ Hd−1((y + ∂Z0(s)) ∩ A) strictly positive in As, we
conclude that Hd(As) = 0 for all s ∈ K. Then it follows

E[Ψ(A)] =
∫

K

( ∫

As

f(y)dy
)
Q(ds) = 0,

which is in contradiction with (3.9). ¤

The next theorem tells us that, without any further regularity assumption on Z0, σΞ generally
differs from λ∂Ξ.

Theorem 3.9 Let Ξ be a Boolean model as in the Assumptions satisfying (3.8). Then E[Hd−1
|∂∗Ξ]

and E[Hd−1
|∂Ξ∩Ξ0 ] are Radon measures in Rd absolutely continuous with respect to Hd, and

σΞ(x) = λ∂∗Ξ(x) + 2λ∂Ξ∩Ξ0(x) for Hd-a.e. x ∈ Rd.

The proof of the above theorem will be based on the following two main steps:

1. the limit in the left side of (1.1) gives rise (for B varying in BRd) to a Radon measure in Rd,
namely E[Hd−1

|∂∗Ξ + 2Hd−1
|∂Ξ∩Ξ0 ], absolutely continuous with respect to Hd;

2. limit and integral can be exchanged in the right side of (1.1).

A random compact set Θ in Rd admits mean outer Minkowski content if

lim
r↓0

E[Hd(Θr \Θ)]
r

exists finite. In order to exchange limit and expectation, we shall assume a uniform integrability
condition, which can be considered as the stochastic analogous of condition (3.3). In particular,
being Boolean models locally finite unions of random sets P-a.s., we also need to consider the class
Oloc of all closed sets A such that for any R > 0 there exists E ∈ O with (A∆E) ∩ BR(0) = ∅,
i.e. the sets that locally coincide with sets in O. As observed in [29, Prop. 4.13], (3.5) still holds
for any A ∈ Oloc. So, let W ⊂ Rd be a compact window and set, for Θ ∈ Oloc,

ΓW (Θ) := max
{
γ ≥ 0 : ∃ a probability measure η such that

η(Br(x)) ≥ γrd−1 ∀x ∈ ∂Θ ∩W⊕1, ∀r ∈ (0, 1)
}
.

The following lemma, which gives a local existence result for the mean outer Minkowski content (so
that a global version follows as a particular case), invokes an integrability condition on 1/ΓW (Θ)
and the assumption that the process is Oloc-valued; as in [1], to avoid the delicate problem of the
measurability of ΓW (Θ), we just assume the existence of an integrable random variable Y bounding
1/ΓW (Θ) from above (this suffices for most applications). It can be easily proven by proceeding
along the lines of the proof of Theorem 4 in [1] and Theorem 22 in [9].
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Lemma 3.10 Let W ⊂ Rd be a compact window, assume that Θ belongs to the class Oloc (or
O′loc), and that there exists a random variable Y with E[Y ] < ∞, such that 1/ΓW (Θ) ≤ Y almost
surely. Then, for any Borel set B contained in the interior of W with E[Hd−1(∂Θ ∩ ∂B)] = 0,

lim
r↓0

E[Hd((Θ⊕r \Θ) ∩B)]
r

= E[Hd−1
|∂∗Θ(B)] + 2E[Hd−1

|∂Θ∩Θ0(B)]. (3.10)

Proof of Theorem 3.9. Let us show that the hypotheses of Lemma 3.10 are fulfilled.
From assumption (A1) we know that Hd−1(Θ) is finite Q-a.s.; so the probability measure on Rd

ηs(·) := Hd−1(Θ(s) ∩ ·)/Hd−1(Θ(s))

is well-defined for Q-a.e. s ∈ K. Then we get that ∂Z0(s) belongs to the class O for Q-a.e. s ∈ K,
and so Ξ ∈ Oloc P-a.s. by (3.8).
Let W be a compact window of Rd. Denoting by Θ̃ the random closed set

Θ̃(ω) :=
⋃

(xi,si)∈Ψ(ω)

xi + Θ(si) ∀ω ∈ Ω,

let us consider the probability measure

ηW (·) := Hd−1(Θ̃(ω) ∩W⊕2 ∩ ·)/Hd−1(Θ̃(ω) ∩W⊕2).

Note that for any x ∈ ∂Ξ(ω)∩W⊕1, Br(x) ⊂ W⊕2 for all r ∈ (0, 1), and there exists (x̄, s̄) ∈ Ψ(ω)
such that x ∈ x̄ + Θ(s̄), being ∂Ξ ⊆ Θ̃; then we have

ηW (Br(x)) ≥ Hd−1(Θ(s̄) ∩Br(x− x̄))

Hd−1(Θ̃(ω) ∩W⊕2)
≥ γ

Hd−1(Θ̃(ω) ∩W⊕2)
rd−1

for all x ∈ ∂Ξ(ω) ∩W⊕1 and r ∈ (0, 1). By noticing that E[Hd−1(Θ̃ ∩W⊕2)] is finite, Lemma 3.10
applies for any compact window W ⊂ Rd with Y = Hd−1(Θ̃ ∩W⊕2)/γ. Being ∂∗Ξ and ∂Ξ ∩ Ξ0

disjoint subsets of ∂Ξ, by Proposition 3.8 it follows that E[Hd−1
|∂∗Ξ + 2Hd−1

|∂Ξ∩Ξ0 ] is a Radon measure
with density λ∂∗Ξ + 2λ∂Ξ∩Ξ0 . Thus, by Equation (3.10) and applying Fubini’s theorem, we get
that

lim
r↓0

∫

B

P(x ∈ Ξ⊕r \ Ξ)
r

dx =
∫

B

(λ∂∗Ξ(x) + 2λ∂Ξ∩Ξ0(x))dx (3.11)

for any bounded Borel set B ⊂ Rd with Hd(∂B) = 0.
Now, by observing that for all x ∈ B and r < 2

P(x ∈ Ξ⊕r \ Ξ)
r

(3.1)

≤ Λ(Zx,r \ Zx,0) ≤ EQ

[ ∫

(∂Zx)⊕r

f(y)dy
]
≤ 23d−1bd

γ
EQ[Hd−1(Θ)ξB⊕2 ] < ∞,

the dominated convergence theorem implies that limit and integral can be exchanged in (3.11) for
any bounded B ∈ BRd , which concludes the proof. ¤

By assumption (A1) we know that Z0 has finite perimeter Q-a.s.; a classical result of geometric
measure theory states that any set A ⊂ Rd of finite perimeter has density either 0 or 1 or 1/2 at
Hd−1-almost every point of its boundary (e.g., see [3, Theorem 3.61]), and so

Hd−1(∂A) = Hd−1(∂A ∩A0) + P (A) +Hd−1(∂A ∩A1). (3.12)
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As a consequence, Ξ is a random set with locally finite perimeter and λ∂Ξ = λ∂Ξ∩Ξ0+λ∂∗Ξ+λ∂Ξ∩Ξ1.

Then, it follows that σΞ(x) = λ∂Ξ(x) = λ∂∗Ξ(x) for Hd-a.e. x ∈ Rd if E[Hd−1
|∂Ξ∩(Ξ0∪Ξ1)] = 0.

We prove now that EQ[P (Z0)] = EQ[Hd−1(∂Z0)] is a sufficient condition for σΞ = λ∂Ξ. Taking
into account (3.12) and that P (A) ≤ Hd−1(∂A) ∀A ⊂ Rd, it is an easy exercise to prove the next
statement.

Lemma 3.11 Let A,B be random closed sets in Rd of finite perimeter such that E[P (A)] =
E[Hd−1(∂A)] and E[P (B)] = E[Hd−1(∂B)].
Then E[P (A ∪B)] = E[Hd−1(∂(A ∪B))] if E[Hd−1(∂A ∩ ∂B)] = 0.

Proposition 3.12 Let Ξ be a Boolean model as in the Assumptions satisfying (3.8), such that
EQ[P (Z0)] = EQ[Hd−1(∂Z0)]. Then

σΞ(x) = e−Λ(Zx,0)EQ

[ ∫

∂Zx

f(y)Hd−1(dy)
]

= λ∂Ξ(x) for Hd-a.e. x ∈ Rd. (3.13)

Proof. Let Ai be a subset of Rd with Hd−1(∂Ai) < ∞, for i = 1, 2; a straightforward application
of Fubini’s theorem implies that Hd−1((x + ∂A1)) ∩ ∂A2) = 0 for Hd-a.e. x ∈ Rd. It follows that

E
[ ∑

(x,s)∈Ψ

∑

(x,s) 6=(y,t)∈Ψ

Hd−1(∂(x + Z0(s)) ∩ ∂(y + Z0(t)))
]

=
∫
Hd−1(∂(x + Z0(s)) ∩ ∂(y + Z0(t)))Λ(dx, ds))Λ(dy, dt) = 0,

being Λ(dx, dy) = f(x)dxQ(ds) and Hd−1(∂(x + Z0(s)) ∩ ∂(y + Z0(t))) = 0 for Hd-a.e. x ∈ Rd.
Lemma 3.11 implies E[Hd−1

|∂∗Θ] = E[Hd−1
|∂Θ ], and so, in particular,

λ∂∗Ξ(x) = λ∂Ξ(x) and λ∂Ξ∩Ξ0(x) = 0, Hd-a.e. x ∈ Rd.

Similarly, EQ[P (Z0)] = EQ[Hd−1(∂Z0)] implies that Hd−1(∂∗Z0) = Hd−1(∂Z0) and Hd−1(∂Z0 ∩
Z0

0 ) = 0 Q-a.s. Thus, Theorem 3.9 and formula (3.7) give the assertion. ¤

3.3 Mean densities of lower dimensional Boolean models

In many real applications (e.g, see [8] and references therein) it is of interest to study random closed
sets at different Hausdorff dimensions and their induced random measure (Hn

|Θ, if Θ has Hausdorff
dimension n). We may notice that the expected measure induced by a d-dimensional random set
Θ in Rd is always absolutely continuous with respect to Hd, with density λΘ(x) = P(x ∈ Θ) for
Hd-a.e. x ∈ Rd, whereas whenever Θ = X is a random point in R0 (i.e. Θ is a random variable),
E[H0

|X ] is just the probability law of X, and so its mean density is given by the probability density
function of X, provided it exists. Problems arise when 0 < n < d, since it can be more demanding
to check that the induced expected measure is absolutely continuous and to evaluate and estimate
its density. In this section we observe that the same techniques introduced above also apply to the
study of the mean density of lower dimensional Boolean models. The following theorem may be
considered as the n-dimensional counterpart of Proposition 3.7 and Theorem 3.9.

Theorem 3.13 Let Ξ be a Boolean model in Rd satisfying the two following conditions on the
intensity f and the typical grain Z0:
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(A1’) Z0 is countably Hn-rectifiable and compact, and such that there exist γ > 0 and a random
closed set Θ ⊇ Z0 with EQ[Hn(Θ)] < ∞ such that, for Q-a.e. s ∈ K,

Hn(Θ(s) ∩Br(x)) ≥ γrn ∀x ∈ Z0(s), ∀r ∈ (0, 1). (3.14)

(A2’) Hn(discf) = 0 and f is locally bounded such that, for any compact set K ⊂ Rd,
supy∈K⊕diam(Z0)

f(y) ≤ ξK for some random variable ξK with EQ[Hn(Θ)ξK ] < ∞.

Then E[Hn
|Ξ] is a Radon measure in Rd absolutely continuous with respect to Hd, with density

λΞ(x) = lim
r↓0

P(x ∈ Ξ⊕r)
bd−nrd−n

= EQ

[ ∫

Zx

f(y)Hn(dy)
]

for Hd-a.e. x ∈ Rd. (3.15)

It is intuitive that λΞ is related to the existence of its mean n-dimensional Minkowski content of Z0

(note that (A1’) implies E[Mn(Z0)] = E[Hn(Z0)]). Condition (A2’) plays here the same technical
role played by condition (A2) in the previous section. Besides, contrary to the d dimensional case,
(3.8) is now implied by assumptions (A1’) and (A2’).

Lemma 3.14 Condition (3.8) holds for any Boolean model Ξ under the hypotheses of Theo-
rem 3.13.

Proof. Referring to [1] for details, we mention that the inequality in (3.4) is proved by using
covering arguments from geometric measure theory; in particular by showing that S⊕r is contained
into a finite union

⋃p
i=1 B4r(yi) of closed balls with centers in S, where p ≤ η(Rd)2nγ−1r−n. In

the case r ≥ 2, a similar argument leads to p ≤ η(Rd)2nγ−1, and so to

Hd(S⊕r) ≤ η(Rd)
γ

2n4dbdr
d.

Then, by taking S = Z0(s) and η = Hn
|Θ(s), we get that for all R > 0

E[Ψ(Z0,R)] ≤ EQ

[
sup

y∈Z0⊕R

f(y)Hd(Z0⊕R)
]
≤ 2n4dbdγ

−1 max{Rd−n; Rd}EQ[ξBR(0)Hn(Θ)]
(A2′)
≤ ∞.

¤

Remark 3.15 Condition (A1) and (A2) are not sufficient to guarantee the validity of (3.8) in the
d-dimensional case, in general. As a simple counterexample consider a stationary Boolean model Ξ
with f ≡ c > 0 and Z0 = Bρ(0), where ρ is a random variable greater than 1 such that E[ρd−1] < ∞
and E[ρd] = ∞; then it is easy to check that Ξ satisfies the Assumptions with Θ = ∂Z0 and ξK = c

for all compacts K in Rd, but E[Ψ(Z0,R)] = cbdE[(R + ρ)d] = ∞.

By noticing that Z0⊕R ⊆ (∂Z0)⊕(diam(Z0)+R), by the proof of Lemma 3.14 it easily follows that
diam(Z0) ≤ D < ∞ Q-a.s., or, more in general, E[ξBR(0)diam(Z0)dHn(Θ)] < ∞, is a sufficient
condition for the validity of (3.8), whenever Z0 has nonempty interior.

Proof of Theorem 3.13. Taking into account Lemma 3.14, and that the role of Lemma 3.10 is
played now by Theorem 4 in [1], by proceeding along the same lines of the proof of Proposition 3.8
and of Theorem 3.9 it can be proved that E[Hn

|Ξ] is a Radon measure absolutely continuous with
respect to Hd and that

E[Hn(Ξ ∩B)] = lim
r↓0

Hd(Ξ⊕r ∩B)
bd−nrd−n

= lim
r↓0

∫

B

P(x ∈ Ξ⊕r)
bd−nrd−n

dx (3.16)
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for any bounded Borel set B ⊂ Rd with Hd(∂B) = 0. Finally, the same arguments used in the
proof of Theorem 3.9 and Proposition 3.7 lead to claim that limit and integral in the last term of
the above equation can be exchanged, and that

lim
r↓0

P(x ∈ Ξ⊕r)
bd−nrd−n

=
Λ(Zx,r)

bd−nrd−n
= EQ

[ ∫

Zx

f(y)Hn(dy)
]
,

where the last equality follows by part (a) of Theorem 3.5. ¤
We point out that the equation λΞ(x) = EQ[

∫
Zx f(y)Hn(dy)] might also be obtained by means of

the well-known Campbell’s formula (e.g., see [4, p. 28], and [16] for a similar application), after
having shown that the event that different grains overlap in a subset of Rd of positive Hn-measure
has null probability for any Boolean model Ξ under the hypotheses of Theorem 3.13.
Let us also observe that Theorem 3.13 answers, in the case of Boolean models, to the open problem
posed in [1, Remark 8] about the possibility of exchanging limit and integral in (3.16), for statistical
purposes (see Section 6). Such limit representation for λΞ can be regarded as the n-dimensional
counterpart of σΞ. As a matter of fact, if Z0 is (d− 1)-dimensional, then σ = 2λΞ, as we observe
in the next Remark.

Remark 3.16 (The case n = d− 1) Let Ξ be a Boolean model satisfying the hypotheses of The-
orem 3.13, with Z0 having Hausdorff dimension d− 1. Then

λΞ(x) = EQ

[ ∫

Zx

f(y)Hd−1(dy)
]

= lim
r↓0

P(x ∈ Ξ⊕r)
2r

=
σΞ(x)

2
for Hd-a.e. x ∈ Rd.

This is in accordance with Proposition 3.7 and Theorem 3.9: it is sufficient to notice that Z0 = ∂Z0

(since Z0 has empty interior) and that Z0 has null density at any point of Rd, and so Ξ as well.

4 On the differentiability of the spherical contact distribu-
tion function with respect to r

In this section we study the first partial derivative with respect to r, and the second right partial
derivative at r = 0 of the spherical contact distribution function of Ξ. To lighten the notation, we
say that HΞ is differentiable with respect to r at r = 0 if it admits a right partial derivative at
r = 0, and we simply write ∂HΞ(r, x)/(∂r)|r=0 (analogously for the second partial derivative). It
will emerge how the differentiability of HΞ with respect to r depends on the regularity of both the
intensity f and the boundary of Z0.
As a corollary to Proposition 3.7 we have that the spherical contact distribution function HΞ of a
Boolean model Ξ satisfying the Assumptions is differentiable at r = 0 for all x ∈ Rd, and

∂

∂r
HΞ(r, x)|r=0 =

σΞ(x)
P(x 6∈ Ξ)

(3.7)
= EQ

[ ∫

∂∗Zx

f(y)Hd−1(dy) + 2
∫

∂Zx∩(Zx)0
f(y)Hd−1(dy)

]
. (4.1)

In accordance with Remark 3.16, ∂
∂r HΞ(r, x)|r=0 = 2λΞ Hd-a.e. if Z0 has Hausdorff dimension

d− 1. If EQ[P (Z0)] = EQ[Hd−1(∂Z0)], Equation (4.1) simplifies

∂

∂r
HΞ(r, x)|r=0

(3.13)
= EQ

[ ∫

∂Zx

f(y)Hd−1(dy)
]

= EQ

[ ∫

∂Z0

f(x− y)Hd−1(dy)
]
,

in accordance, for instance, with [18, Remark 4.15] in the case of convex grains.
The following theorem provides an explicit formula for the second right partial derivative of HΞ
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at r = 0 for a class of Boolean models with typical grain satisfying EQ[P (Z0)] = EQ[Hd−1(∂Z0)].
We remind that if A ⊂ Rd is a compact set with positive reach, such that

H0(N(A, x)) = 1 for Hd−1-a.e. x ∈ ∂A, (4.2)

then Hd−1(∂A) = P (A) = SM(A) = 2Φd−1(A) (see [2]).

Theorem 4.1 Let Ξ be a Boolean model with Z0 as in the assumption (A1) with reach(Z0) > R

for some R > 0 and satisfying condition (4.2). Moreover we assume that

EQ[|Φi|(Z0)] < ∞ ∀i = 1, . . . , d− 1, (4.3)

where |Φi|(Z0) is the total variation of the measure Φi(Z0; · ), and that the intensity f is bounded,
Lipschitz, and differentiable at Hd−1-a.e. x ∈ Rd. Then, for all x ∈ Rd,

∂

∂r
HΞ(r, x) =

P(x 6∈ Ξ⊕r)
P(x 6∈ Ξ)

EQ

[ ∫

∂Zx
⊕r

f(y)Hd−1(dy)
]

∀r ∈ [0, R), (4.4)

∂2

∂r2
H(r, x)|r=0 = EQ

[
2π

∫

Rd

f(y)Φd−2(Zx; dy) +
∫

∂1Zx

Dnyf(y)Hd−1(dy)
]

(4.5)

−
(
EQ

[ ∫

∂Zx

f(y)Hd−1(dy)
])2

,

where Dnyf is the directional derivative of f along ny ∈ Sd−1.

Remark 4.2 For the sake of simplicity, we assumed f bounded; actually, the assertion of the
theorem still holds with f locally bounded and satisfying a technical assumption similar to (A2),
in order to guarantee an application of the dominated convergence theorem in the proof. We may
also notice that if Z0 has a bounded diameter (i.e., diam(Z0)(s) ≤ C ∈ R for Q-a.e. s ∈ K), then
f might be taken locally bounded, and condition (4.3) is trivially satisfied (see [11, Remark 5.10]).
By (4.4) and (3.13) it follows that, for Hd−1-a.e. x ∈ Rd,

∂

∂r
HΞ(r, x) = λ∂Ξ⊕r (x)/P(x 6∈ Ξ) ∀r ∈ [0, R).

4.1 Proof of Theorem 4.1

In order to prove Theorem 4.1, we need to prove some preliminary results.

Proposition 4.3 Let A ⊂ Rd be a compact set with positive reach. If f : Rd → R is a Lipschitz
function such that the directional derivative Duf(x) of f along the vector u exists for all u ∈ Sd−1

for Hd−1-a.e. x ∈ ∂A, then

lim
r↓0

∫
Rd f(x)Φd−1(A⊕r; dx)− ∫

Rd f(x)Φd−1(A; dx)
r

= π

∫

Rd

f(x)Φd−2(A; dx) +
∫

N(A)

Duf(x)µd−1(A; d(x, u)). (4.6)

Proof. Let R := reach(A). By (2.1) and Corollary 4.4 in [20] we get that

Φd−1(A⊕r; · ) =
d−1∑

i=0

rd−1−i (d− i)bd−i

2

∫

N(A)

1{x + ru ∈ · }µi(A; d(x, u)) ∀r ∈ (0, R);

15



besides it is known that the measures Φi(A; · ) and µi(A; · ) have bounded total variation, being
A compact with positive reach (e.g., see [11, 20]). As a consequence it is not hard to see that

∫

Rd

f(x)Φd−1(A⊕r; dx) =
d−1∑

i=0

rd−1−i (d− i)bd−i

2

∫

N(A)

f(x + ru)µi(A; d(x, u))

=
∫

N(A)

f(x + ru)µd−1(A; d(x, u)) + rπ

∫

N(A)

f(x + ru)µd−2(A; d(x, u)) + o(r). (4.7)

Finally, by relation (2.1),
∫

N(A)

f(x)µi(A; d(x, u)) =
∫

∂A

∫

N(A,x)

f(x)µi(A; d(x, u)) =
∫

∂A

f(x)Φi(A; dx) ∀i = 1, . . . , d−1,

and we get that

lim
r↓0

∫
Rd f(x)Φd−1(A⊕r; dx)− ∫

Rd f(x)Φd−1(A; dx)
r

= lim
r↓0

(∫

N(A)

f(x + ru)− f(x)
r

µd−1(A; d(x, u)) + π

∫

N(A)

f(x + ru)µd−2(A; d(x, u)) +
o(r)
r

)

=
∫

N(A)

Duf(x)µd−1(A; d(x, u)) + π

∫

Rd

f(x)Φd−2(A; dx),

where the last equality follows by applying the dominated convergence theorem, as f is bounded
on compact sets and |f(x + ru)− f(x)|/r ≤ Lip(f) ∈ R+ for all (x, u) ∈ Rd× Sd−1. ¤

Corollary 4.4 Under the same assumptions of Proposition 4.3, if furthermore A satisfies condi-
tion (4.2), then

lim
r↓0

∫
∂A⊕r

f(x)Hd−1(dx)− ∫
∂A

f(x)Hd−1(dx)

r
= 2π

∫

Rd

f(x)Φd−2(A; dx)+
∫

∂1A

Dnxf(x)Hd−1(dx),

(4.8)
where nx is the outer normal of A at x.

Proof. By Proposition 4.1 in [20] we get that µd−1(A; · × Sd−1) = 1
2Hd−1

|∂1A(·) +Hd−1
|∂2A(·).

Eqn. (4.8) follows directly by (4.6), by noticing that condition (4.2) impliesHd−1(∂1A) = Hd−1(∂A),
2Φd−1(A; · ) = Hd−1

|∂A ( · ) and

∫

N(A)

Duf(x)µd−1(A; d(x, u)) =
∫

∂1A

Dnxf(x)Φd−1(A; dx).

¤

Lemma 4.5 Let Z0 be compact with reach(Z0) > R for some R > 0. Then, for any r ∈ (0, R),
there exist γ > 0 such that for Q-a.e. s ∈ Q ,

Hd−1(∂(Z0⊕r (s)) ∩Bρ(x)) ≥ γρd−1 ∀x ∈ ∂(Z0⊕r (s)),∀ρ ∈ (0, 1).
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Proof. The case d = 1 is trivial. Let d ≥ 2 and Ex be the connected component of Z0⊕r (s)
containing x ∈ ∂(Z0⊕r (s)).
If ∂Ex ∩ ∂Bρ(x) = ∅, then either Ex ⊂ Bρ(x), or Rd \ Ex ⊂ Bρ(x), and

Hd−1(∂(Z0⊕r
(s)) ∩Bρ(x)) ≥ Hd−1(∂Ex ∩Bρ(x)) = Hd−1(∂Ex) ≥ P (Ex).

By the isoperimetric inequality (e.g., [3, p. 149]) we have that

P (Ex) ≥ γ(d)(min{Hd(Ex),Hd(Rd \ Ex)})(d−1)/d

for some dimensional constant γ(d) > 0. By noticing that Hd(Ex) ≥ bdr
d > bdr

dρd−1 and
Hd(Rd \ Ex) ≥ bdR

d > bdR
dρd−1 for all ρ ∈ (0, 1), we conclude that there exists a constant

γ = γ(d,R, r) > 0 (and so independent of s) such that P (Ex) > γρd−1.
If ∂Ex∩∂Bρ(x) 6= ∅, a similar conclusion is obtained by projecting on suitable hyperplanes, taking
into account that ∂(Z0⊕r

(s)) is contained into a finite union of Lipschitz manifolds. ¤

We are now ready to prove the main Theorem of the section.
Proof of Theorem 4.1. Corollary 4.9 in [11] tells us that reach(Z0⊕r ) ≥ R−r for all r ∈ [0, R). It is
easy to see that Z0⊕r has density 1/2 at any point of its boundary, and so P (Z0⊕r ) = Hd−1(∂Z0⊕r ),
for any r ∈ (0, R). By assumption (4.2) we also have P (Z0) = Hd−1(∂Z0). We know (see [11,
Remark 5.8]) that

Φd−1(Z0⊕r ) =
d−1∑

j=0

(d− j)rd−1−jbd−jΦj(Z0)/2 ∀r ∈ [0, R).

Thus we can claim that EQ[Hd−1(∂Z0⊕r )] = 2EQ[Φd−1(Z0⊕r )] < ∞ for all r ∈ [0, R). This and
Lemma 4.5 imply that Z0⊕r satisfies the assumption (A1). Being f bounded and Lipschitz, the
assumption (A2) is easily checked. Therefore, for all r ∈ [0, R), Ξ⊕r is a Boolean model with
intensity measure Λ(dy×ds) = f(y)dyQ(y, ds) and typical grain Z0⊕r , satisfying the Assumptions
with EQ[P (Z0⊕r )] = E[Hd−1(∂Z0⊕r )]. Then we get that

∂

∂r

+

HΞ(r, x) =
σΞ⊕r

P(x 6∈ Ξ)
(3.13)
=

P(x 6∈ Ξ⊕r)
P(x 6∈ Ξ)

EQ

[ ∫

∂Zx
⊕r

f(y)Hd−1(dy)
]

∀r ∈ [0, R). (4.9)

Proposition 4.11 in [29] implies

lim
h↓0

Hd(Z0⊕r \ Z0⊕r−h
)

h
= Hd−1(∂Z0⊕r ) ∀r ∈ (0, R);

then, by proceeding along the same lines of Theorem 3.5, an analogous result holds for the “inner”
Minkowski content as well, i.e.

lim
h↓0

∫

Zx
⊕r\Zx

⊕r−h(s)

f(y)dy/h =
∫

∂Zx
⊕r(s)

f(y)Hd−1(dy).

Similarly, it can be proved that the left partial derivative of HΞ at r ∈ (0, R) exists equal to (4.9).
Since µd−1(A; · ) is a positive measure and C := sup(x,u)∈N(A) |f(x + ru)| < ∞, we have that

∣∣∣
∫

∂Zx
⊕r(s)

f(x)Hd−1(dx)− ∫
∂Zx(s)

f(x)Hd−1(dx)

r

∣∣∣
(4.7)

≤ Lip(f)Hd−1(Z0(s)) + C

d−2∑

i=0

rd−2−i(d− i)
bd−i

2
|Φi|(Z0(s)).
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The differentiability of f implies that it admits directional derivative for all u ∈ Sd−1 at Hd−1-
a.e. x ∈ ∂Z0(s) for Q-a.e. s ∈ K; thus, by Corollary 4.4 and the dominated convergence theorem,

lim
r↓0

EQ

[ ∫
∂Zx

⊕r
f(y)Hd−1(dy)

]
− EQ

[ ∫
∂Zx f(y)Hd−1(dy)

]

r

(4.8)
= EQ

[
2π

∫

Rd

f(y)Φd−2(Zx; dy) +
∫

∂1Zx

Dny
f(y)Hd−1(dy)

]
. (4.10)

Finally, the following chain of equalities holds:

∂2

∂r2
HΞ(r, x)|r=0 = lim

r↓0
1
r

(
P(x 6∈ Ξ⊕r)
P(x 6∈ Ξ)

EQ

[ ∫

∂Zx
⊕r

f(y)Hd−1(dy)
]
− EQ

[ ∫

∂Zx

f(y)Hd−1(dy)
])

= lim
r↓0

P(x 6∈ Ξ⊕r)
P(x 6∈ Ξ)

EQ

[ ∫
∂Zx

⊕r
f(y)Hd−1(dy)− ∫

∂Zx f(y)Hd−1(dy)
]

r

+ lim
r↓0

P(x 6∈ Ξ⊕r)− P(x 6∈ Ξ)
rP(x 6∈ Ξ)

EQ

[ ∫

∂Zx

f(y)Hd−1(dy)
]

(4.10)
= EQ

[
2π

∫

Rd

f(y)Φd−2(Zx; dy) +
∫

∂1Zx

Dnyf(y)Hd−1(dy)
]

−
EQ

[ ∫
∂Zx f(y)Hd−1(dy)

]

P(x 6∈ Ξ)
∂

∂r
HΞ(r, x)|r=0 = (4.5).

5 Particular cases and examples

In this section some particular cases and examples are discussed; we start showing how some of the
above results simplify whenever Θ is stationary, or the typical grain Z0 is a deterministic subset
of Rd satisfying the hypotheses of Theorem 3.1.

5.1 Deterministic typical grain

Corollary 5.1 Let Ξ be a Boolean model in Rd with locally bounded intensity f and deterministic
typical grain Z0.

(i) If Z0 is a compact set in O (or in O′) and Hd−1(discf) = 0, then the results stated in
Proposition 3.7, Proposition 3.8, Theorem 3.9 and Proposition 3.12 hold.

(ii) If Hn(discf) = 0 and Z0 is a countably Hn-rectifiable compact set such that condition (3.3)
holds for some γ > 0 and some probability measure η ¿ Hn in Rd, then the assertion of
Theorem 3.13 holds.

A proof of Corollary 5.1 (i) (point (ii) follows similarly) might be obtained by proceeding along
the same lines of the proofs given in Section 3.2, by noticing that:

• By the definition of the class O (and of O′), there exists a probability measure η in Rd such
that η(Br(x)) ≥ γrd−1 for all x ∈ Z0 and r ∈ (0, 1), which plays here the same role of
Hd−1(Θ) in the assumption (A1). Furthermore, as observed in the proof of Theorem 3.5, we
also have that Hd−1(∂Z0) < ∞.
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• diam(Z0) < ∞ since Z0 is compact; then assumption (A2) and condition (3.8) are easily
checked.

• The role of the measure ηW in the proof of Theorem 3.9 is played now by the measure

η̃W (·) :=

∑
xi∈Ψ(ω) η(· − xi)1(xi+∂Z0)∩W⊕2 6=∅

card{xi ∈ Ψ(ω) : (xi + ∂Z0) ∩W⊕2 6= ∅} .

It is easily seen that η̃W is a probability measure and that

η̃W (Br(x)) ≥ γ

card{xi ∈ Ψ(ω) : (xi + Z0) ∩W⊕2 6= ∅}rd−1 ∀x ∈ ∂Ξ(ω)∩W⊕1, ∀r ∈ (0, 1),

with E[card{xi ∈ Ψ(ω) : (xi + Z0) ∩W⊕1 6= ∅}] < ∞ by (3.8).

About the differentiability of HΞ, Theorem 4.1 simplifies as follows, by taking into account
Remark 3.4 and Remark 4.2.

Corollary 5.2 Let Ξ be a Boolean model in Rd with deterministic typical grain Z0 and intensity
f . If Z0 is a compact set with positive reach satisfying condition (4.2) and f is locally bounded,
Lipschitz and differentiable at Hd−1-a.e. x ∈ Rd, then (4.5) holds.

5.2 Stationary case

We observe now how our results simplify in the stationary case, in accordance with the available
results in current literature in the special case of convex grains. Let us notice that if Ξ is stationary
with f ≡ c > 0, then only the regularity assumption (A1) on the typical grain Z0 and the usual
condition (3.8) are required (only (A1’) in the lower dimensional case, by Lemma 3.14). Then σΞ

is now independent of x, as expected, given by

σΞ = e−cEQ[Hd(Z0)]cEQ[SM(Z0)],

(where SM(Z0) exists finite equal to P (Z0) + 2Hd−1(Z0
0 ∩ ∂Z0) as a consequence of (A1)), and so

H ′
Ξ(0) = cEQ[P (Z0) + 2Hd−1(Z0

0 ∩ ∂Z0)].

All the other results of Section 3 simplify similarly; in particular the next statement is the stationary
counterpart of Theorem 4.1. Note that the integrability condition (4.3) is here weakened.

Proposition 5.3 Let Ξ be a stationary Boolean model in Rd with intensity f ≡ c and typical grain
Z0 as in the assumption (A1), such that reach(Z0) > R for some R > 0, condition (4.2) is fulfilled,
and EQ[|Φi(Z0)|] < ∞ for all i = 1, . . . , d− 1. Then

H ′′(0) = 2πcEQ[Φd−2(Z0)]− (cEQ[Hd−1(∂Z0)])2. (5.1)

Note that (5.1) coincides with Equation (1.4) in [23], since Hd−1(∂Z0) = 2Φd−1(Z0) by (4.2).
Besides, under the assumptions of Theorem 4.1, if Hd−1(∂Z0) = 0 (e.g., Ξ segment Boolean model
in R3) Equation (4.5) gives

∂2

∂r2
HΞ(r, x)|r=0 = 2πEQ

[ ∫

Rd

f(y)Φd−2(Zx; dy)
]
;

if furthermore Ξ is stationary with f ≡ c, then H ′′(0) = 2πcE[Φd−2(Z0)] = 2πE[Φd−2(Ξ)], in
accordance with Corollary 7.3 in [20].
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5.3 Some examples

The results presented in the previous sections involve regularity properties of the boundary of the
typical grain and of the intensity measure of the Poisson process, which may apply to a great
variety of Boolean models. In the following examples we extend known results for Boolean models
of balls and of segments, often considered in literature, and discuss a couple of situations relevant
in real applications, namely, birth-and-growth processes (e.g., see [8]) and fibre processes.

Example 1 In [31, Section 6] a planar (d = 2) Boolean model Ξ of discs with intensity f and radius
distribution G is considered (with f and G sufficiently regular); in particular, in [31, Theorem 7]
it is proved that

λ∂Ξ(x) = exp
{
−

∫ ∞

0

∫

Br(0)

f(x− y)dy G(dr)
} ∫ ∞

0

( ∫

∂B1(0)

f(x− ry)H1(dy)
)
rG(dr). (5.2)

More in general, let Ξ be in Rd (d ≥ 2), then Proposition 3.12 applies (see [28, Ch. 4] for a
discussion on Assumption (A1) for this kinds of models) and (5.2) follows by (3.1), by noticing
that

Λ(Zx,0) =
∫ ∞

0

∫

Br(x)

f(y)dy G(dr) =
∫ ∞

0

∫

Br(0)

f(x− y)dy G(dr)

and

EQ

[ ∫

∂Zx

f(y)Hd−1(dy)
]

=
∫ ∞

0

∫

∂Br(x)

f(y)Hd−1(dy)G(dr)

=
∫ ∞

0

( ∫

∂B1(0)

f(x− ry)Hd−1(dy)
)
rd−1G(dr).

In [7, Remark 7(3)] a class of birth-and-growth processes with constant growth rate is considered;
the resulting time dependent random closed set turns out to be a Boolean model of balls with
random radius, and so of the same kind as in the above example. We also mention that birth-
and-growth processes such that the nucleation is site-saturated (i.e., it takes place at time t = 0),
according to an inhomogeneous spatial Poisson point process, and such that the shape of the
grains is preserved during the process, are considered in real applications (e.g., [30]); for this kind
of processes, the growing region at any fixed time t is a Boolean model, and so our results apply
in the study of the mean densities, whenever the shape of the grains is sufficiently regular.

Example 2 (Segment Boolean model) Let Ξ be a homogeneous, say f ≡ c > 0, Boolean
model of segments with random length L and orientation; then Equation (3.15) gives the well
known result λΞ(x) = cE[L] ∀x ∈ Rd (see [6, p. 42]). Such result can be generalized to the
inhomogeneous case. For the sake of simplicity we consider d = 2, but a similar example can be
done in Rd with d > 2. So, let K = R+ × [0, 2π], and for all s = (l, α) ∈ K let

Z0(s) := {(u, v) ∈ R2 : u = τ cos α, v = τ sin α, τ ∈ [0, l]}

be the segment with length l and orientation α. Let PL(dl) be the probability law of the random
length L of Z0, and let Ψ be the marked Poisson process in Rd×K having intensity measure Λ(dy×
ds) = f(y)dyQ(ds), with f(u, v) = u2 + v2 and Q(ds) = 1

2π dαPL(dl) such that
∫
R+

l3PL(dl) < ∞.
(This last assumption is sufficient to guarantee condition (A2’); of course, for different intensities
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f we might have different conditions on the moments of L.) Then, Theorem 3.13 applies and for
H2-a.e. x = (x1, x2) ∈ R2 we get

λΞ(x1, x2) =
∫ ∞

0

1
2π

∫ 2π

0

∫ l

0

f(x1 − τ cosα, x2 − τ sin α)dτ dαPL(dl) = (x2
1 + x2

2)E[L] +
1
3
E[L3].

In the above example Z0 was assumed to be a random segment, i.e. the most regular 1-dimensional
curve in R2; clearly Theorem 3.13 applies also in the case of much less regular curves. For instance,
if Z0 is a rectifiable curve in Rd, then the corresponding Boolean model is called fibre process or
system, and it is of interest in many real applications (see [6] and reference therein); general results
which extend the stationary case might be obtained as a direct application of (3.15).

6 A statistical application: estimation of the mean density
of lower dimensional Boolean models

We know that whenever Θ is a d-dimensional random closed set, then λΘ(x) = P(x ∈ Θ) for
Hd-a.e. x, and so it can be easily estimated by means of the empirical capacity functional; whereas
whenever Θ is a random point, the problem of the estimation of its mean density, which coincides
with its probability density function, has been largely solved since long in nowadays standard
literature by means of either histograms or kernel estimators. Problems arise with nontrivial
lower dimensional random sets; then, by noticing also that (3.13) tells us that λ∂Ξ(x) = (1 −
P(x ∈ Ξ)λΞ̃(x) if EQ[P (Z0)] = EQ[Hd−1(∂Z0)], where Ξ̃ is the Boolean model with the same
intensity measure but with typical grain ∂Z0, we consider in this section Boolean models with
lower dimensional typical grain.
Even if inhomogeneous random closed sets appear frequently in real applications, the problem
of the mean density estimation has been widely examined only in the stationary case (e.g., see
[6, 27] and reference therein), in which Ξ is often assumed to have unknown constant intensity
c > 0 and known mark distribution Q, so that only the parameter c has to be estimated, being
λΞ = cEQ[Hn(Z0)] in this case. results about the estimation of the intensity c of the underlying
Poisson point process associated to Ξ, related to the estimation of λΞ, can be found in [6, §3.4](see
also [25, 27]). The inhomogeneous case has been mainly faced by assuming local stationarity or
gradient structures (e.g., see [14]), so that known results in the homogeneous case might be applied
to estimate a stepwise approximation of the mean density.
Whenever it is possible to estimate the intensity f and the mark distribution Q of the typical grain
Z0, an estimation of λΞ might be obtained by the explicit formulae proved in the sections above;
actually, the estimation of f and Q as well as the evaluation of the mean density λΞ(x) at a given
point x ∈ Rd, might be fairly hard. Thus, the aim of the present section is to provide estimators
for the mean density of lower dimensional Boolean models in the general case of f and Q unknown.

Let Ξ be a Boolean model as in the assumptions of Theorem 3.13; then by (3.15) and noticing
that P(x ∈ Ξ⊕r) = TΞ(Br(x)), where TΞ is the capacity (or hitting) functional of Ξ [24], a natural
estimator of λΞ(x) can be given in terms of the empirical capacity functional of Ξ, defined as [13]

T̂N
Ξ (K) :=

1
N

N∑

i=1

1Ξi∩K 6=∅, ∀ compact K ⊂ Rd,

for any i.i.d. random sample Ξ1, . . . , ΞN of Ξ.
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Proposition 6.1 Let Ξ be a Boolean model as in the assumptions of Theorem 3.13 and {Ξi}i∈N
be a sequence of random closed sets i.i.d. as Ξ; then the estimator λN

Ξ (x) of λΞ(x) so defined

λ̂N
Ξ (x) :=

∑N
i=1 1Ξi∩BRN

(x)6=∅
Nbd−nRd−n

N

=
T̂N

Ξ (BRN
(x))

bd−nRd−n
N

, (6.1)

is asymptotically unbiased and weakly consistent for Hd-a.e. x ∈ Rd, if RN is such that

lim
N→∞

RN = 0 and lim
N→∞

NRd−n
N = ∞, (6.2)

Proof. The law of large numbers and (3.15) imply the asymptotic unbiasedness for Hd-a.e.x ∈ Rd.
Note that limN→∞ P(x ∈ Ξ⊕RN

) = P(x ∈ Ξ) = 0 for Hd-a.e. x ∈ Rd since n < d; so

lim
N→∞

var(λ̂N
Ξ (x)) = lim

N→∞
NP(x ∈ Ξ⊕RN

)(1− P(x ∈ Ξ⊕RN
))

(Nbd−nRd−n
N )2

= 0 for Hd-a.e. x ∈ Rd,

and we conclude that λ̂N
Ξ (x) converges to λΞ(x) in probability for Hd-a.e. x ∈ Rd. ¤

Then, a problem of statistical interest could be to find the optimal width RN satisfying condition
(6.2) which minimizes the mean square error of λ̂N

Ξ (x) (i.e. E[(λ̂N
Ξ (x) − λΞ(x))2]). To investigate

this problem is not the aim of the present paper and we leave this as open problem for further
developments; we point out here that Proposition 6.1 apply to any random closed set Ξ in Rd, not
necessarily a Boolean model, such that (1.2) holds, and that λ̂N

Ξ can be seen as the generalization
to the case of n-dimensional random closed sets of the well known estimator of the probability
density of a random point. Indeed, even if the particular case n = 0 can be handle with much
more elementary tools, if in particular Ξ = X is a random point in Rd with probability density
function fX , then Equation (1.2) holds with λX = fX (see also [1, Remark 8]), the assertion of
Proposition 6.1 still holds, and the estimator λ̂N

X turns out to be closely related to the well known
definition of histogram (see [26] and [28] for details): for sake of simplicity, let us consider the case
d = 1 with X random variable with density fX ; then, if {Xi}i∈N is a sequence of random variables
i.i.d. as X,

f̂X(x) := λ̂N
X(x)

(6.1)
=

∑N
i=1 1BRN

(x)(Xi)

Nb1RN
=

card{i : Xi ∈ Ix}
N |Ix| ,

where Ix is the interval in R centered in x with length |Ix| = 2RN with the usual condition

|Ix| −→ 0 and N |Ix| −→ ∞ as N →∞.
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