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Mean density of lower dimensional random closed sets, as well as the mean boundary density of
full dimensional random sets, and their estimation are of great interest in many real applications.
Only partial results are available so far in current literature, under the assumption that the
random set is either stationary, or it is a Boolean model, or it has convex grains. We consider
here non-stationary random closed sets (not necessarily Boolean models), whose grains have
to satisfy some general regularity conditions, extending previous results. We address the open
problem posed in (Bernoulli 15 (2009) 1222–1242) about the approximation of the mean density
of lower dimensional random sets by a pointwise limit, and to the open problem posed by
Matheron in (Random Sets and Integral Geometry (1975) Wiley) about the existence (and its
value) of the so-called specific area of full dimensional random closed sets. The relationship with
the spherical contact distribution function, as well as some examples and applications are also
discussed.

Keywords: mean density; Minkowski content; random measure; specific area; stochastic
geometry

1. Introduction

We remind that a random closed set Θ in R
d is a measurable map

Θ : (Ω,F,P)−→ (F, σF),

where F denotes the class of the closed subsets in R
d, and σF is the σ-algebra generated

by the so called Fell topology, or hit-or-miss topology, that is the topology generated by
the set system

{FG: G ∈ G} ∪ {FC : C ∈ C},

where G and C are the system of the open and compact subsets of Rd, respectively (e.g.,
see [22]). We say that a random closed set Θ : (Ω,F,P)→ (F, σF) satisfies a certain prop-
erty (e.g., Θ has Hausdorff dimension n) if Θ satisfies that property P-a.s.; throughout
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2 E. Villa

the paper we shall deal with countablyHn-rectifiable random closed sets. For a discussion
about measurability of Hn(Θ), we refer to [7, 28].
Let Θn be a set of locally finite Hn-measure; then it induces a random measure µΘn

defined by

µΘn
(A) :=Hn(Θn ∩A), A ∈ BRd ,

and the corresponding expected measure

E[µΘn
](A) := E[Hn(Θn ∩A)], A ∈ BRd .

Whenever E[µΘn
] is absolutely continuous with respect to Hd, its density (or Radon–

Nikodym derivative) with respect to Hd is called mean density of Θn, and it is denoted
by λΘn

.
The problem of the evaluation and the estimation of the mean density of lower dimen-

sional random closed sets (i.e., with Hausdorff dimension less than d), and in particular
of the mean surface density λ∂Θ for full dimensional random sets, is of great interest in
several real applications. We mention, for instance, applications in image analysis (e.g.,
[17] and reference therein), in medicine (e.g., in studying tumor growth [4]), and in ma-
terial science in phase-transition models (e.g., [27]). (See also [1, 8, 10] and references
therein.)
In particular, we recall that in the well-known seminal book by Matheron on random

closed sets [22], page 50, the so-called specific area σΘ is defined by

σΘ(x) := lim
r↓0

P(x ∈Θ⊕r \Θ)

r
, (1)

where Θ⊕r is the parallel set of Θ at distance r > 0, that is, Θ⊕r := {s ∈R
d: dist(x,Θ)≤

r}; it is introduced as a probabilistic version of the derivative at 0 of the volume function
V (r) :=Hd(Θ⊕r), and so, whenever the limit exists, as a possible approximation of what
we denote by λ∂Θ, the mean boundary density of Θ. The problem of the existence of
σΘ is left as an open problem in [22] (apart from particular cases as stationary random
closed sets).
More recently, in [1] the problem of the approximation of the mean density λΘn

of lower
dimensional non-stationary random closed sets is faced under quite general regularity
assumptions on the rectifiability of Θn. More precisely, an approximation of λΘn

in weak
form is proved in [1], Theorem 4; namely

lim
r↓0

∫

A

P(x ∈Θn⊕r
)

bd−nrd−n
dx=

∫

A

λΘn
(x) dx. (2)

The possibility of exchanging limit and integral in the above expression when Θn is not
stationary with n > 0, was left as open problem in [1], Remark 8. (The stationary and
the 0-dimensional cases are trivial.)
A first attempt to solve the above mentioned open problems (the one for σΘ posed by

Matheron, and the one for λΘn
with n < d posed in [1]), is given in [26], where explicit

results are proven for inhomogeneous Boolean models.
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The aim of the present paper is to address such open problems for more general random
closed sets. Indeed, even if Boolean models are widely studied in stochastic geometry
(e.g., see [6]), it is clear that they cannot be taken as model for many real situations in
applications. Thus, we revisit here some results in [26], addressing the two mentioned
open problems; we provide sufficient conditions on lower dimensional random sets Θn so
that

λΘn
(x) = lim

r↓0

P(x ∈Θn⊕r
)

bd−nrd−n
, Hd-a.e. x ∈R

d, (3)

and so that the specific area σΘ defined as limit in (1) exists, in the case of random
sets Θ with non-negligible Hd-measure. Such results might allow to face a wider class of
possible applications; indeed, for instance, the statistical estimator λ̂N

Θn
(x) of the mean

density λΘn
(x), introduced in [26] and which we recall here in Corollary 13, can now be

applied to very general lower dimensional random sets Θn, not only in stationary settings
or to Boolean models, and so also to non-stationary germ-grains model whose grains are
not assumed to be independent. We also mention here that the estimation of λΘn

and
σΘ might be considered as the stochastic analogous to the estimation of a non-random
unknown support, and the stochastic counterpart of boundary estimation for a given
support, respectively (see, e.g., [5, 11]); this might lead to possible further research on
this topics.
The plan of the paper is the following: preliminary notions and known results on the

so-called Minkowski content of sets and on point processes and germ-grain models are
briefly recalled in Section 2. In Section 3, we answer to the open problem posed in [1]
mentioned above, that is we prove equation (3); we also provide an explicit expression
for λΘn

(x). A natural estimator follows as a corollary. Further results and remarks are
discussed in the final part of the section; known results on the special case of Boolean
models follow here as particular case. In Section 4, random sets with non-negligible Hd-
measure are considered; by recalling recent results on the outer Minkowski content notion
we answer to the open problem posed by Matheron in [22] about the existence of the
specific area σΘ of random sets Θ which can be represented as one-grain random sets.
The relationship between σΘ, the mean boundary density λ∂Θ of Θ, and its spherical
contact distribution function is studied. Some explicit formulas for the derivative of the
contact distribution are also proved.

2. Preliminaries and notation

In this section, we recall basic definitions, notation and results on point processes and
geometric measure theory which we shall use in the following.

2.1. The Minkowski content notion and related results

Throughout the paper,Hn is the n-dimensional Hausdorffmeasure, dx stands forHd(dx),
and BX is the Borel σ-algebra of any space X . Br(x), bn and Sd−1 will denote the closed
ball with centre x and radius r ≥ 0, the volume of the unit ball in R

n and the unit
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sphere in R
d, respectively. We remind that a compact set A⊂ R

d is called n-rectifiable
(0 ≤ n≤ d− 1 integer) if it can be written as the image of a compact subset of Rn by
a Lipschitz map from R

n to R
d; more in general, a closed subset A of Rd is said to be

countably Hn-rectifiable if there exist countably many n-dimensional Lipschitz graphs
Γi ⊂ R

d such that A \
⋃

iΓi is Hn-negligible. (For definitions and basic properties of
Hausdorff measure and rectifiable sets see, e.g., [3, 13, 15].)
The notion of n-dimensional Minkowski content will play a fundamental role through-

out the paper. We recall that, given a subset A of Rd and an integer n with 0≤ n≤ d,
the n-dimensional Minkowski content of A is defined as

Mn(A) := lim
r↓0

Hd(A⊕r)

bd−nrd−n
, (4)

whenever the limit exists finite. Well known general results about the existence of the
Minkowski content of closed sets in R

d are related to rectifiability properties of the
involved sets. In particular, the following theorem is proved in [3], page 110. (We call
Radon measure in R

d any non-negative and σ-additive set function defined on BRd which
is finite on bounded sets.)

Theorem 1. Let A⊂R
d be a countably Hn-rectifiable compact set, and assume that

η(Br(x))≥ γrn ∀x ∈A, ∀r ∈ (0,1) (5)

holds for some γ > 0 and some Radon measure η≪Hn in R
d. Then Mn(A) =Hn(A).

Condition (5) is a kind of quantitative non-degeneracy condition which prevents A
from being too sparse; simple examples show that Mn(A) can be infinite, and Hn(A)
arbitrarily small, when this condition fails [2, 3]. The above theorem extends (see [3], The-
orem 2.106) the well-known Federer’s result [15], page 275, to countably Hn-rectifiable
compact sets; in particular for any n-rectifiable compact set A⊂ R

d there exists a suit-
able measure η satisfying (5) (see [2], Remark 1). As a consequence, for instance in the
case n = d − 1, the boundary of any convex body or, more in general, of a set with
positive reach, and the boundary of a set with Lipschitz boundary satisfy condition (5).
Note also that if a Radon measure η as in Theorem 1 exists, then it can be assumed
to be a probability measure, without loss of generality (e.g., see [26]); the next theorem
is proved in [26], and provides a result on the existence of the limit in (4) when the
measure Hd is replaced by a measure having density f with respect to Hd, and so it may
be seen as a generalization of the theorem above. discf denotes the set of all the points
of discontinuity of f .

Theorem 2. Let µ≪Hd be a positive measure in R
d, admitting a locally bounded density

f , and A ⊂ R
d be a countably Hn-rectifiable compact set such that condition (5) holds

for some γ > 0 and some probability measure η≪Hn in R
d. If Hn(discf) = 0, then

lim
r↓0

µ(A⊕r)

bd−nrd−n
=

∫

A

f(x)Hn(dx).



Mean densities of random sets 5

2.2. Point processes

Here we report some known facts from the theory of point processes just for establishing
notation which will be used later. For a more complete exposition of the theory of point
processes, see, for example, [12]. Roughly speaking a point process Φ̃ in R

d is a locally

finite collection {ξi}i∈N of random points in R
d. Formally, Φ̃ can be seen as a random

counting measure, that is a measurable map from a probability space (Ω,F ,P) into the

space of locally finite counting measures on R
d. Φ̃ is called simple if Φ̃({x})≤ 1 for all

x ∈R
d; we shall always consider simple point processes.

The measure Λ̃(A) := E[Φ̃(A)] on BRd is called intensity measure of Φ̃; whenever it is

absolutely continuous with respect to Hd, its density is called intensity of Φ̃. It is well
known the so-called Campbell’s formula (e.g., see [6], page 28), which states that for any
measurable function f :Rd →R the following holds

E

[∑

x∈Φ̃

f(x)

]
=

∫

Rd

f(x)Λ̃(dx).

Another important measure associated to a point process Φ̃ is the so-called second fac-
torial moment measure ν̃[2] of Φ̃; it is the measure on BR2d defined by (e.g., see [6, 24])

∫
f(x, y)ν̃[2](d(x, y)) = E

[ ∑

x,y∈Φ̃,x 6=y

f(x, y)

]

for any non-negative measurable function f on R
2d. Moreover, Φ̃ is said to have second

moment density g̃ if ν̃[2] = g̃ν2d, that is

ν̃[2](C) =

∫

C

g̃(x, y) dxdy

for any compact C ⊂ R
2d. Informally, g̃(x, y) represents the joint probability that there

are points at two specific locations x and y:

g̃(x, y) dxdy ∼ P(Φ̃(dx)> 0, Φ̃(dy)> 0).

A generalization of the above notion is the so-called marked point process. We recall
that a marked point process Φ = {ξi,Ki}i∈N on R

d with marks in a complete separable
metric space (c.s.m.s.) K is a point process on R

d × K with the property that the

unmarked process {Φ̃(B): B ∈ BRd} := {Φ(B ×K): B ∈ BRd} is a point process in R
d.

K is called mark space, while the random element Ki of K is the mark associated to the
point ξi. Φ is said to be stationary if the distribution of {ξi + x,Ki}i is independent of
x ∈R

d.
If the marks are independent and identically distributed, and independent of the un-

marked point process Φ̃, then Φ is said to be an independent marking of Φ̃.
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The intensity measure of Φ, say Λ, is a σ-finite measure on BRd×K defined as Λ(B ×
L) := E[Φ(B×L)], the mean number of points of Φ in B with marks in L. We recall that
a Campbell’s formula for marked point processes holds as well [6]:

E

[ ∑

(x,K)∈Φ

f(x,K)

]
=

∫

Rd×K

f(x,K)Λ(d(x,K)). (6)

Since K is a c.s.m.s. and Λ̃ is a σ-finite measure, it is possible to factorize Λ in the
following way [21]:

Λ(d(x,K)) = κ(x,dK)Λ̃(dx),

where Λ̃ is the intensity measure of the unmarked process Φ̃, and κ(x, ·) is a probability
measure on K for all x ∈ R

d, called the mark distribution at point x. A common as-
sumption (e.g., see [19]) is that there exist a measurable function λ :Rd ×K→R+ and
a probability measure Q on K such that

Λ(d(x,K)) = λ(x,K) dxQ(dK), (7)

this happens if and only if κ(x, ·) is absolutely continuous with respect to Q for Hd-a.e.
x ∈R

d.
If Φ is stationary, then its intensity measure is of the type Λ = λνd ⊗ Q for some

λ > 0 and Q probability measure on K. If Φ is an independent marking of Φ̃, then
Λ(d(x,K)) = Λ̃(dx)Q(dK), where Q is a probability measure on K, called distribution
of the marks.
Let (Rd ×K)2 :=R

d ×K×R
d ×K; the second factorial moment measure ν[2] of Φ is

the measure on B(Rd×K)2 so defined [24]

∫
f(x1,K1, x2,K2)ν[2](d(x1,K1, x2K2)) = E

[ ∑

(xi,Ki),(xj ,Kj)∈Φ,

xi 6=xj

f(xi,Ki, xj ,Kj)

]
(8)

for any non-negative measurable function f on (Rd ×K)2. By denoting ν̃[2] the second

factorial moment measure of the unmarked process Φ̃, for any B1,B2 ∈K the measure
ν[2](· × B1 × · × B2) is absolutely continuous with respect to ν̃[2]; moreover, if ν̃[2] is
σ-finite then

ν[2](d(x1,K1, x2,K2)) =Mx1,x2(d(K1,K2))ν̃[2](d(x1, x2)), (9)

where Mx1,x2 is a measure on K2 for any fixed x1 and x2, called two-point mark distri-
bution. Informally, ν[2](d(x1,K1, x2,K2)) represents the joint probability that there are
points at two specific locations x1 and x2 with marks K1 and K2, respectively.
Similarly to Λ, we shall assume that there exist a measurable function g : (Rd×K)2 →

R+ and a probability measure Q[2] on K2 such that

ν[2](d(x1,K1, x2,K2)) = g(x1,K1, x2,K2) dx1 dx2Q[2](d(K1,K2)). (10)
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We remind that if Φ is a marked Poisson point process with intensity measure
Λ(d(x,K)) = κ(x,dK)Λ̃(dx), then ν̃[2] = Λ̃⊗ Λ̃ and ν[2] =Λ⊗Λ, and so

Mx,y(d(s, t)) = κ(x,ds)κ(y,dt);

in particular, by the assumptions (7) and (10) it follows

g(x1,K1, x2,K2) = λ(x1,K1)λ(x2,K2),
(11)

Q[2](d(K1,K1)) =Q(dK1)Q(dK2).

We also recall that point processes can be considered on quite general metric spaces.
In particular, a point process in Cd, the class of compact subsets of Rd, is called particle
process (e.g., see [6] and references therein). It is well known that, by a center map, a
particle process can be transformed into a marked point process Φ on R

d with marks in
Cd, by representing any compact set C as a pair (x,Z), where x may be interpreted as
the “location” of C and Z :=C − x the “shape” (or “form”) of C (e.g., see [6], page 192
and [20]). In this case the marked point process Φ = {(Xi, Zi)} is also called germ-grain
model. In case of independent marking, the grains Zi’s are i.i.d. as a typical grain Z0 with
mark distribution Q, which is also called, in this case, grain distribution or distribution
of the typical grain.
Every random closed set in R

d can be represented as a germ-grain model, and so
by a suitable marked point process Φ = {Xi, Zi}. In many examples and applications
the random sets Zi are uniquely determined by suitable random parameters S ∈K. For
instance, in the very simple case of random balls, K = R+ and S is the radius of a
ball centred in the origin; in applications to birth-and-growth processes, in some models
K = R

d and S is the spatial location of the nucleus (e.g., [1], Example 2); in segment
processes in R

2, K=R+ × [0,2π] and S = (L,α) where L and α are the random length
and orientation of the segment through the origin, respectively (e.g., [26], Example 2);
etc. So, in order to use similar notation to previous works (e.g., [26, 27]), we shall consider
random sets Θ described by marked point processes Φ = {(Xi, Si)} in R

d with marks in
a suitable mark space K so that Zi = Z(Si) is a random set containing the origin:

Θ(ω) =
⋃

(xi,si)∈Φ(ω)

xi +Z(si), ω ∈Ω. (12)

We also recall that whenever Φ is a marked Poisson point process, Θ is said to be a
Boolean model.
The intensity measure Λ of Φ is commonly assumed to be such that the mean number

of grains hitting any compact subset of Rd is finite, which is equivalent to say that the
mean number of grains hitting the ball BR(0) is finite for any R> 0:

E

[ ∑

(xi,si)∈Φ

1(−Z(si))⊕R
(xi)

]
(6)
=

∫

Rd×K

1(−Z(s))⊕R
(x)Λ(d(x, s))<∞ ∀R> 0. (13)
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3. Mean densities of lower dimensional random closed
sets

3.1. Assumptions

Let Θn be a random closed set in R
d with integer Hausdorff dimension 0< n< d as in

(12), where Φ has intensity measure Λ(d(x, s)) = λ(x, s) dxQ(ds) and second factorial
moment measure ν[2](d(x, s, y, t)) = g(x, s, y, t) dxdyQ[2](d(s, t)) such that the following
assumptions are fulfilled:

(A1) for any (y, s) ∈R
d×K, y+Z(s) is a countablyHn-rectifiable and compact subset

of Rd, such that there exists a closed set Ξ(s)⊇ Z(s) such that
∫
K
Hn(Ξ(s))Q(ds)<∞

and

Hn(Ξ(s) ∩Br(x))≥ γrn ∀x ∈Z(s),∀r ∈ (0,1) (14)

for some γ > 0 independent of y and s;
(A2) for any s ∈K, Hn(disc(λ(·, s))) = 0 and λ(·, s) is locally bounded such that for

any compact K ⊂R
d

sup
x∈K⊕diam(Z(s))

λ(x, s)≤ ξ̃K(s) (15)

for some ξ̃K(s) with
∫
K
Hn(Ξ(s))ξ̃K (s)Q(ds)<∞;

(A3) for any (s, y, t) ∈K×R
d ×K, Hn(disc(g(·, s, y, t))) = 0 and g(·, s, y, t) is locally

bounded such that for any compact K ⊂R
d and a ∈R

d,

1(a−Z(t))⊕1
(y) sup

x∈K⊕diam(Z(s))

g(x, s, y, t)≤ ξa,K(s, y, t) (16)

for some ξa,K(s, y, t) with
∫
Rd×K2 H

n(Ξ(s))ξa,K(s, y, t) dyQ[2](ds,dt)<∞.

Before stating our main results, we briefly discuss the above assumptions. As mentioned
in the Introduction, we want to find sufficient conditions such that equation (3) holds for
a general class of random closed sets Θn, so answering to the open problem stated in [1],
Remark 8. We point out that such a result has been proved recently in [26] for Boolean
models with position-independent grains, and so only in the case in which Φ is a Poisson
point process with intensity measure Λ of the type Λ(d((x, s))) = λ(x) dxQ(ds). In that
work, the assumption that Φ was a marked Poisson point process allowed to apply the
explicit expression of the capacity functional of Θn, both in proving the exchange between
limit and integral in (2), and in providing an explicit formula for the mean density λΘn

of Θn in terms of its intensity measure Λ. Actually, in order to prove equation (3), the
knowledge of the capacity functional of Θn is not necessary, by making use of Campbell’s
formula. Nevertheless, for a general random set Θn as in the above assumptions, and so
without the further assumption that Φ is a marked Poisson process, we need to introduce
also the second factorial moment measure of Φ, and the related assumption (A3). Of
course, considering here a generic random set Θn (point process Φ), it obvious that the
above assumptions are similar to (actually, they generalize) those which appear in [26];
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as a matter of fact (A1′) and (A2′) in [26] coincide with (A1) and (A2) above in the case
of independent marking. We also point out that in the particular case of Boolean models,
the second factorial moment measure ν[2] is given in terms of the intensity measure Λ,
and so the function g in terms of λ by (11); this is the reason why here assumption (A3)
appears, whereas it is already contained in (A1′) and (A2′) in [26], Theorem 3.13 (see
also Corollary 8 below).
We mention also that taking ν[2] of the type ν[2](d(x, s, y, t))=g(x, s, y, t) dxdyQ[2](d(s, t))

is in accordance to the assumption in [19], Proposition 4.9, where contact distributions
of general germ-grain models with compact convex grains are considered; in that paper
ν[2] is assumed to be absolutely continuous with respect to the product measure Hd⊗µ,

where µ is σ-finite measure on K×R
d ×K.

Moreover, note that the measure Hn(Ξ(s) ∩ ·) in (A1) plays the same role as the
measure η of Theorem 1; indeed (A1) might be seen as the stochastic version of (5). (See
also [26], Remark 3.6, and the examples discussed in [1].) Roughly speaking, such an
assumption tells us that each possible grain associated to any point x of the underling
point process Φ̃ is sufficiently regular, so that it admits n-dimensional Minkowski content;
this explains also why requiring the existence of a constant γ as in (A1) independent on
y and s is not too restrictive (see also the example below about this). Note that the
condition

∫
K
Hn(Ξ(s))Q(ds) <∞ means that the Hn-measure of the grains is finite in

mean. In order to clarify better the meaning of assumption (A1), let us consider the
following simple example.

Example 1. Let Θ1 be a germ grain model with segments as grains, with random length.
(As it will be clear, the orientation of the segments does not take part to the validity
of (A1).) Let us only assume that the mean length of the grain is finite. We may notice
that the introduction of the suitable random set Ξ is needed only if the length of the
segments could be indefinitely close to 0. Indeed, let us first consider the case in which
the length is bounded from below by a positive constant, for instance H1(Z(s))≥ l > 0
for any s ∈K; then

H1(Z(s)∩Br(x))≥min{l,1}r ∀x ∈Z(s), ∀r ∈ (0,1),

and so there exists γ := min{l,1} > 0, clearly independent of the position and of the
length of the particular grain considered.
Now let us consider the case in which the length is not bounded from below by a positive

constant (e.g., the length is uniformly distributed in [0, L]). In this case, l= 0 and so we
have to introduce a suitable random set Ξ satisfying (14); a possible solution is to extend
all the segments having length less than 2 (the extension can be done homothetically
from the center of the segment, so that measurability of the process is preserved). In
particular, for any s ∈K, let

Ξ(s) =

{
Z(s), if H1(Z(s))≥ 2,

Z(s) extended to length 2, if H1(Z(s))< 2;

it follows that (14) holds now with γ = 1. Since we have assumed that the mean length
of the segments is finite, it follows that

∫
K
Hn(Ξ(s))Q(ds)<∞, and so (A1) is fulfilled.
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Note that we have chosen segments as grains in order to make the example simpler,
but it is now clear that the same argument may applied to fibre processes (in order to
provide another example of a random closed set of dimension 1), or even more complicated
random sets in R

d with any integer dimension n.

The role of assumption (A2) and (A3) is more technical, and it will be clearer later in
the proofs of the next statements. Finally, it is clear that if λ and g are bounded, the
above assumptions (A2) and (A3) simplify (see also Remark 9).

3.2. Main theorem and related results

In this section, we state and prove our main theorem (Theorem 7), which provides a
pointwise limit representation of the mean density λΘn

of Θn. To this aim we need to
prove some other related results, before. We start with the following lemma, which tells us
that the grains of the random set Θn overlap only on a set having negligible Hn-measure
in mean.

Lemma 3. Let Θn be a random closed set in R
d with integer Hausdorff dimension

0 < n < d as in (12), where Φ has intensity measure Λ(d(x, s)) = λ(x, s) dxQ(ds) and
second factorial moment measure ν[2](d(x, s, y, t)) = g(x, s, y, t) dxdyQ[2](d(s, t)). Then

E

[ ∑

(yi,si),(yj ,sj)∈Φ,

yi 6=yj

Hn((yi +Z(si)) ∩ (yj +Z(sj)))

]
= 0.

Proof. The following chain of equalities hold:

E

[ ∑

(yi,si),(yj,sj)∈Φ,

yi 6=yj

Hn((yi +Z(si))∩ (yj +Z(sj)))

]

(8)
=

∫

(Rd×K)2
Hn((x+Z(s)) ∩ (y+Z(t)))ν[2](d(x, s, y, t))

=

∫

(Rd×K)2

(∫

Rd

1x+Z(s)(u)1y+Z(t)(u)H
n(du)

)
ν[2](d(x, s, y, t))

=

∫

(Rd×K)2

(∫

Rd

1u−Z(s)(x)1u−Z(t)(y)H
n(du)

)
g(x, s, y, t) dxdyQ[2](ds,dt)

=

∫

Rd

(∫

K

∫

Rd

∫

K

1u−Z(t)(y)

∫

u−Z(s)

g(x, s, y, t) dxdyQ[2](ds,dt)

)
Hn(du),

where the last equality is implied by Fubini’s theorem. The assertion follows by observing
that

∫
u−Z(s) g(x, s, y, t) dx= 0, because Hd(Z(s)) = 0, being lower dimensional. �
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In order to prove our next results, we recall that in [1] it is proved that if S ⊂R
d is a

countably Hn-rectifiable compact set such that

η(Br(x))≥ γrn ∀x ∈ S, ∀r ∈ (0,1)

holds for some γ > 0 and some finite measure η≪Hn in R
d, then

Hd(S⊕r)

bd−nrd−n
≤

η(Rd)

γ
2n4d

bd
bd−n

∀r < 2. (17)

Remark 4. By (17), and the proof of Lemma 3.14 in [26], we know that

Hd(Z(s)⊕R)≤

{
Hn(Ξ(s))γ−12n4dbdR

d−n, if R< 2,

Hn(Ξ(s))γ−12n4dbdR
n, if R≥ 2,

and so condition (13), which guarantees that the mean number of grains intersecting any
compact subset of Rd is finite, is fulfilled:

∫

Rd×K

1(−Z(s))⊕R
(x)Λ(d(x, s))

≤ 2n4dbdmax{Rd−n;Rd}

∫

K

ξ̃BR(0)H
n(Ξ(s))Q(ds)

(A2)
< ∞ ∀R> 0.

As a consequence, together with assumption (A1) which tells us that each grain has
finite Hn-measure in mean, it is easy to see that E[µΘn

] is locally bounded. Moreover,
by proceeding along the same lines of the proof of Proposition 3.8 in [26], we get that
E[Hn(Θn ∩A)] = 0 for any A⊂R

d with Hd(A) = 0, that is E[µΘn
] is absolutely contin-

uous with respect to Hd.

By following the hint given in [26], page 494 (there given for Boolean models, but here
applied to more general Θn), the following proposition, which provides an explicit formula
of the mean density λΘn

of Θn in terms of its intensity measure, is easily proved by means
of the above lemma and Campbell’s formula. (See also [18] for a similar application.)

Proposition 5. Under the hypotheses of Lemma 3,

λΘn
(y) =

∫

K

∫

y−Z(s)

λ(x, s)Hn(dx)Q(ds) for Hd-a.e. y ∈R
d. (18)

Proof. By Lemma 3, we know that the event that different grains of Θn overlap in a
subset of Rd of positive Hn-measure has null probability; then the following chain of
equalities holds for any A ∈ BRd :

E[Hn(Θn ∩A)] = E

[ ∑

(yi,si)∈Φ

Hn((yi +Z(si)) ∩A)

]
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(6)
=

∫

Rd×K

Hn(y+Z(s)∩A)Λ(d(y, s))

=

∫

Rd×K

∫

Rd

1y+Z(s)(x)1A(x)H
n(dx)Λ(d(y, s))

=

∫

Rd×K

∫

Rd

1A(ξ)1Z(s)(u)λ(ξ − u, s)Hn(du)Q(ds) dξ

=

∫

A

(∫

K

∫

Rd

1Z(s)(ξ − v)λ(v, s)Hn(dv)Q(ds)

︸ ︷︷ ︸
=:λΘn (ξ)

)
dξ

and so the assertion. �

In [1], Proposition 9, it has been proved that for a class of germ-grain models in R
d

with independent and identically distributed grains with finite Hn-measure, n < d, the
probability that a point x belongs to the intersection of two or more enlarged grains
is infinitesimally faster than rd−n. The i.i.d. assumption on the grains seems to be too
restrictive; we now extend it to more general germ-grain models as in above assumptions.
To this end, we shall make use of the assumption (A3), which provides an integrability
condition on the second factorial moment measure ν[2] of Φ, similar to the condition
given on the intensity measure Λ in (A2). Such a result will be fundamental in the proof
of the main theorem about the validity of equation (3).

Proposition 6. Under the assumptions in Section 3.1, the probability that a point x ∈R
d

belongs to the intersection of two or more enlarged grains (y+Z(s))⊕r is infinitesimally
faster than rd−n.

Proof. Let us observe that

E

[ ∑

(yi,si),(yj,sj)∈Φ,

yi 6=yj

1(yi+Z(si))⊕r∩(yj+Z(sj))⊕r
(x)

]

(8)
=

∫

(Rd×K)2
1(x−Z(s1))⊕r

(y1)1(x−Z(s2))⊕r
(y2)ν[2](dy1,ds1,dy2,ds2)

=

∫

Rd×K2

(
1(x−Z(s2))⊕r

(y2)

∫

(x−Z(s1))⊕r

g(y1, s1, y2, s2) dy1

)
dy2Q[2](ds,dy).

By Theorem 2 with µ= g(·, s, y, t)Hd, together with (A1) and (A3), it follows

lim
r↓0

1

bd−nrd−n

∫

(x−Z(s1))⊕r

g(y1, s1, y2, s2) dy1

=

∫

x−Z(s1)

g(y1, s1, y2, s2)H
n(dy1) ∀s1, s2 ∈K,∀y2 ∈R

d,
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and the limit is finite being g(·, s1, y2, s2) locally bounded by (A3), and Hn(Z(s)) <∞
for any s ∈K by (A1). As Z(s) is lower dimensional for any s ∈K, it is clear that

lim
r↓0

1(x−Z(s2))⊕r
(y2) = 0 for Hd-a.e. y2 ∈R

d ∀s2 ∈K,

thus

lim
r↓0

1

bd−nrd−n
1(x−Z(s2))⊕r

(y2)

∫

(x−Z(s1))⊕r

g(y1, s1, y2, s2) dy1 = 0

forHd-a.e. y2 ∈ R
d,∀s1, s2 ∈K. Furthermore, by (17), (A1) and (A3) it follows that for any

r ≤ 1

1(x−Z(s2))⊕r
(y2)

1

bd−nrd−n

∫

(x−Z(s1))⊕r

g(y1, s1, y2, s2) dy1

≤ 1(x−Z(s2))⊕1
(y2)

Hd(Ξ(s1)⊕r)

bd−nrd−n
sup

y1∈(x−Z(s1))⊕r

g(y1, s1, y2, s2)

≤
2n4dbd
γbd−n

Hn(Ξ(s1))ξx,B1(x)(s1, y2, s2).

By assumption (A3), we have that

∫

Rd×K2

2n4dbd
γbd−n

Hn(Ξ(s1)ξx,B1(x)(s1, y2, s2) dy2Q[2](ds,dt) <∞,

so the dominated convergence theorem implies

lim
r↓0

E[
∑

(yi,si),(yj ,sj)∈Φ,yi 6=yj
1(yi+Z(si))⊕r∩(yj+Z(sj))⊕r

(x)]

bd−nrd−n
= 0. (19)

Let Wr be the random variable counting the number of pairs of different enlarged
grains of Θn which cover the point x:

Wr := #{(i, j), i < j: x ∈ (yi +Z(si))⊕r ∩ (yj +Z(sj))⊕r}; (20)

then

Wr ≤
∑

(yi,si),(yj,sj)∈Φ,

yi 6=yj

1(yi+Z(si))⊕r∩(yj+Z(sj))⊕r
(x),

and so

0≤ lim
r↓0

P(Wr > 0)

bd−nrd−n
≤ lim

r↓0

∑∞
k=1 kP(Wr = k)

bd−nrd−n
= lim

r↓0

E[Wr ]

bd−nrd−n

(19)
≤ 0,

and so the assertion. �

We are ready now to state and prove the main result of the section.
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Theorem 7. Under the assumptions in Section 3.1,

lim
r↓0

P(x ∈Θn⊕r
)

bd−nrd−n
= λΘn

(x), Hd-a.e. x ∈R
d. (21)

Proof. Let Yr be the random variable counting the number of enlarged grains which
cover the point x:

Yr :=
∑

(yi,si)∈Φ

1(yi+Z(si))⊕r
(x),

and Wr be the random variable defined in (20). By the proof of Proposition 6, we know
that

P(Wr > 0) = o(rd−n) and E[Wr ] = o(rd−n);

thus, noticing now that

Wr =





0, if Y = 0,1,

1, if Y = 2,(
Yr

2

)
, if Y ≥ 3,

we get

P(Yr = 2) = P(Wr = 1)≤ P(Wr > 0) = o(rd−n)

and

0≤ E[Yr;Yr ≥ 3]≤ E[Wr;Yr ≥ 3]≤ E[Wr] = o(rd−n),

which imply

lim
r↓0

P(x ∈Θn⊕r
)

bd−nrd−n
= lim

r↓0

P(Yr > 0)

bd−nrd−n
= lim

r↓0

P(Yr = 1)+ o(rd−n)

bd−nrd−n
= lim

r↓0

E[Yr ]

bd−nrd−n

(22)
(6)
= lim

r↓0

1

bd−nrd−n

∫

K

∫

(x−Z(s))⊕r

λ(y, s) dyQ(ds).

By Theorem 2 with µ(dy) = λ(y, s) dy, it follows that

lim
r↓0

1

bd−nrd−n

∫

(x−Z(s))⊕r

λ(y, s) dy =

∫

x−Z(s)

λ(y, s)Hn(dy),

besides, by observing that

1

bd−nrd−n

∫

(x−Z(s))⊕r

λ(y, s) dy

≤
Hd((Z(s))⊕r)

bd−nrd−n
sup

y∈(x−Z(s))⊕r

λ(y, s)
(17),(15)

≤
2n4dbd
γbd−n

Hn(Ξ(s))ξ̃B2(x)(s) ∀r < 2,
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assumption (A2) and the dominated convergence theorem imply

lim
r↓0

1

bd−nrd−n

∫

K

∫

(x−Z(s))⊕r

λ(y, s) dyQ(ds) =

∫

K

∫

x−Z(s)

λ(y, s)Hn(dy)Q(ds),

and so, by (18),

λΘn
(x) = lim

r↓0

1

bd−nrd−n

∫

K

∫

(x−Z(s))⊕r

λ(y, s) dyQ(ds) for Hd-a.e. x ∈R
d. (23)

Finally, the assertion follows:

lim
r↓0

P(x ∈Θn⊕r
)

bd−nrd−n

(22),(23)
= λΘn

(x) for Hd-a.e. x ∈R
d.

�

3.3. Corollaries and remarks

We point out that equations (18) and (21) have been proved in [26], Theorem 3.13, for
a general class of Boolean models Θn with intensity measure Λ of the type Λ(d(x, s)) =
f(x) dxQ(ds), and so with position-independent grains and typical grain Z0, by using
the explicit form of the capacity functional of Θn. Actually, Proposition 5 and Theorem
7 generalize to Boolean models with position-dependent grains, as stated in the following
corollary, under the assumptions (A1) and (A2) only, in accordance with the above
mentioned result in [26].

Corollary 8 (Particular case: Boolean models). If Θn is a Boolean model with
intensity measure Λ(d(x, s)) = λ(x, s) dxQ(ds), then all the results stated in the above
section hold under assumptions (A1) and (A2).

Proof. It is enough to note that assumption (A3) is implied by (A1) and (A2).
Indeed, by (11) g(·, s, y, t) = λ(·, s)λ(y, t), so that g(·, s, y, t) is locally bounded and

Hn(disc(g(·, s, y, t))) = 0 by (A2), whereas (16) holds with ξa,K := ξ̃K(s)1(a−Z(t))⊕1
(y)λ(y, t),

by observing that

∫

Rd×K2

Hn(Ξ(s))ξa,K(s, y, t) dyQ[2](ds,dt)

=

∫

Rd×K

1(a−Z(t))⊕1
(y)λ(y, t) dyQ(dt)

∫

K

Hn(Ξ(s))ξ̃K(s)Q(ds),

with
∫
K
Hn(Ξ(s))ξ̃K (s)Q(ds)<∞ by (A2), and

∫

Rd×K

1(a−Z(t))⊕1
(y)λ(y, t) dyQ(dt) ≤

∫

K

Hd((a−Z(t))⊕1) sup
y∈(a−Z(t))⊕1

λ(y, t)Q(dt)
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(5),(A1)

≤

∫

K

Hn(Ξ(t))

γ
2n4dbd sup

y∈(a−Z(t))⊕1

λ(y, t)Q(dt)

(A2)

≤

∫

K

Hn(Ξ(t))

γ
2n4dbdξ̃B1(a)(t)Q(dt)

(A2)
< ∞.

�

Remark 9 (Independent marking). If the point process Φ is an independent marking

of Φ̃, then the two-point mark distribution Mx,y(ds,dt) in (9) is independent of x and
y, so that Mx,y(ds,dt) =Q[2](ds,dt) =Q(ds)Q(dt); accordingly, g(x, s, y, t) = g̃(x, y). As
a consequence, assumption (A3) simplifies by replacing g(x, s, y, t) with g̃(x, y). We also
recall that g̃(x, y) can be written in terms of the so-called pair-correlation function ρ(x, y)
in this way:

g̃(x, y) = ρ(x, y)λ(x)λ(y).

Moreover, if in particular λ and g are bounded, say by c1 and c2 in R, respectively, then
the finiteness of the integral in assumptions (A2) and (A3) is trivially satisfied by (A1),

by taking ξ̃K(s)≡ c1 in (15) and ξa,K(s, y, t) := c21(a−Z(t))⊕1
(y) in (16), and noticing that

∫

Rd×K2

Hn(Ξ(s))ξa,K(s, y, t) dyQ[2](ds,dt)

≤ c2

∫

K

Hn(Ξ(t))

γ
2n4dbdQ(dt)

∫

K

Hn(Ξ(s))Q(ds)
(A1)
< ∞.

Example 2. Simple examples of point processes Φ̃ having bounded intensity λ and
second moment density g̃, are, for instance, the binomial process ofm points in a compact
region W ⊂ R

d with Hd(W ) > 0, and the Matèrn cluster process (e.g., see [6]). We
remind that for the binomial process we have λ(x) = m/Hd(W ) and g̃(x, y) =m(m −
1)/(Hd(W ))2; whereas for a Matèrn cluster process in R

2 in which the parent process is
a uniform Poisson process with intensity α, and each cluster consists of N ∼Poisson(m)
points independently and uniformly distributed in the ball Br(x), where x is the centre
of the cluster, we have λ=mα, and g̃(x, y) = α2m2 + αm2H2(Br(x) ∩Br(y))/(π

2r4)≤
α2m2 + αm2/(πr2). Other examples of processes with bounded intensity and second
moment density are considered for instance in [23]. These, together with Example 1,
which gives an insight into the validity of assumption (A1), provide simple examples
where all the assumptions (A1)–(A3) hold.

Example 3. We mention that an important case of random sets of dimension 1 is given
by the so-called fibre processes (e.g., see [8]); they can taken as models in different fields, as
Biology (e.g., fibre systems in soils [8], Section 3.2.3) and Medicine (e.g., modelling vessels
in certain angiogenesis processes [9, 10]), and it is clear that assuming stationarity or
that the fibres are the grains of a Boolean model might be too restrictive in applications.
Now, we have results for studying also the more general case in which the fibres are not
independent of each other; note that assumptions (A1) and (A2) are generally satisfied
in applications: (A1) is trivial, since fibres are usually assumed to be rectifiable (see also
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Example 1), while (A2) and (A3) hold whenever λ are g are, for instance, bounded and
continuous, as observed in the remark above.
Moreover, Proposition 5 applies and an explicit expression for λΘ1 can be obtained

in terms of the intensity measure of the process. In particular, in order to provide an
explicit example, let us notice that in [26], Example 2, an explicit formula for λΘ1 is
given for an inhomogeneous segment Boolean model in R

2, whose segments have random
length and orientation; the same assumptions on the intensity measure also apply now
to more general segment processes, not necessarily Boolean models (e.g., with Φ̃ as in
Example 2).

Remark 10 (“one-grain” random set). It is worth noting that, as a very particular

case of point process Φ̃, we may consider the case in which Φ̃ = {X}, that is it is given by
only one random point X in R

d. Obviously, in this case g ≡ 0, and only assumptions (A1)
and (A2) have to be satisfied for the validity of all the results stated above. Even if this
case might seem trivial, actually it can be taken as a model for several real applications,
and it is of great interest, because it emerges that whenever a random closed set Θn can
be described by a random point X ∈R

d (not necessarily belonging to Θn, e.g., its centre
if Θd−1 is the surface of a ball centred in X with random radius R) and its random
“shape” Z := Θn −X , then we may provide sufficient conditions on Θn such that our
main result (21) holds. Note that in this case Λ(d(x, s)) represents the probability that the
point X is in the infinitesimal region dx with mark in ds. For instance, if the “shape”
does not depend on the position and X is uniformly distributed in a bounded region
W ⊂R

d, then Λ(d(x, s)) = dxQ(ds)/Hd(W ). Then, it emerges that the key assumption
on the random closed set Θn which implies (21) is the geometric regularity assumption
(A1) on its grains. As a matter of fact, (A1) can be seen as the stochastic version of the
condition (5) which ensures the existence of the n-dimensional Minkowski content of each
grain, whereas (A2) and (A3) are just technical assumptions; in particular (A3) allows
us to prove the statement of Proposition 6 (in the Boolean case, it is already contained
in (A1) and (A2)).

Under the above assumptions, it follows in particular that Θn admits the so-called
local mean n-dimensional Minkowski content, which has been introduced in [1]; namely
Θn is said to admit local mean n-dimensional Minkowski content if the following limit
exists finite for any A⊂R

d such that E[Hn(Θn ∩ ∂A)] = 0

lim
r↓0

E[Hd(Θn⊕r
∩A)]

bd−nrd−n
= E[Hn(Θn ∩A)].

Proposition 11. If Θn satisfies assumptions (A1) and (A2), then it admits local mean
n-dimensional Minkowski content.

Sketch of the proof. It is sufficient to prove that Θn satisfies the hypotheses of The-
orem 4 in [1].
We already observed in Remark 4 that E[µΘn

] is finite on bounded sets.
By proceeding along the same lines as in the proof of Theorem 3.9 in [26] (here, by

defining Θ̃(ω) :=
⋃

(xi,si)∈Φ(ω) xi + Ξ(si), where Ξ(si) ⊇ Z(si) as in (A1), and η(·) :=
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Hn(Θ̃(ω)∩W⊕2 ∩·)/Hn(Θ̃(ω)∩W⊕2)), it is easy to see that the hypotheses of the above

mentioned theorem are fulfilled with Y :=Hn(Θ̃∩W⊕2)/γ. �

Remark 12. By Theorem 7 and the above proposition, the following chain of equalities
holds, for any A⊂ R

d such that Hd(∂A) = 0 (which implies E[Hn(Θn ∩ ∂A)] = 0, being
E[µΘn

]≪Hd):

∫

A

lim
r↓0

P(x ∈Θn⊕r
)

bd−nrd−n
dx =

∫

A

λΘn
(x) dx= E[Hn(Θn ∩A)]

= lim
r↓0

E[Hd(Θn⊕r
∩A)]

bd−nrd−n
= lim

r↓0

∫

A

P(x ∈Θn⊕r
)

bd−nrd−n
dx

as if we might exchange limit and integral, answering to the open problem raised in [1],
Remark 8.

As mentioned in [1], several problems in real applications are related to the estimation
of the mean density of lower dimensional inhomogeneous random sets (see also [10] and
reference therein); in particular, as a computer graphics representation of lower dimen-
sional sets in R

2 is anyway provided in terms of pixels, which can offer only a 2-D box
approximation of points in R

2, it might be useful to have statistical estimators of the
mean density λΘn

based on the volume measure Hd of the Minkowski enlargement of

Θn. To this end, a consistent and asymptotically unbiased estimator λ̂Θn
(x) of λΘn

(x)
has been introduced in [26], based on equation (21), for a class of Boolean models with
typical grain Z0. Having now proved that (21) holds for more general random closed sets,
that is not only in stationary settings or for Boolean models, but also for non-stationary
germ-grains models whose grains are not assumed to be independent each other, the same
simple proof of Proposition 6.1 in [26] still applies, so that we may state the following
result.

Corollary 13. Let Θn satisfy the assumptions, and {Θi
n}i∈N be a sequence of random

closed sets i.i.d. as Θn; then the estimator λ̂N
Θn

(x) of λΘn
(x) so defined

λ̂N
Θn

(x) :=

∑N
i=1 1Θi

n∩BRN
(x) 6=∅

Nbd−nR
d−n
N

is asymptotically unbiased and weakly consistent for Hd-a.e. x ∈R
d, if RN is such that

lim
N→∞

RN = 0 and lim
N→∞

NRd−n
N =∞.

Remark 14. λ̂N
Θn

(x) can be written also in terms of the so-called empirical capacity

functional of Θn, which we recall to be defined as [16] T̂N
Θn

(K) := 1
N

∑N
i=1 1Θi

n∩K 6=∅ for

any compact K ⊂R
d:

λ̂N
Θn

(x) :=
T̂N
Θn

(BRN
(x))

bd−nR
d−n
N

.
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For a more detailed discussion on λ̂N
Θn

(x) and related open problems, we refer to [26],
Section 6.

4. Mean surface density and spherical contact
distribution

Let us now consider a random closed set Θ in R
d, with Hd(Θ)> 0. A problem of interest

is then the existence (and which is its value) of the limit

σΘ(x) := lim
r↓0

P(x ∈Θ⊕r \Θ)

r
.

The quantity σΘ(x) is usually called the specific area of Θ at point x, and it has been
introduced in [22], page 50. The name specific area comes from the fact that, under suit-
able regularity assumptions on the boundary of Θ (e.g., when Θ has Lipschitz boundary,
or it is union of convex sets, etc.), σΘ(x) might coincide with the mean density λ∂Θ(x)
of ∂Θ, that is the density of the measure E[µ∂Θ] on R

d. Moreover, it is clearly related to
the existence of the right partial derivative at r = 0 of the so-called local spherical contact
distribution function HΘ of Θ, the function from R+ ×R

d to [0,1] so defined

HΘ(r, x) := P(x ∈Θ⊕r|x /∈Θ). (24)

We refer to [26] and [27] (and reference therein) for a more detailed discussion on σΘ; we
point out that only results for Boolean models with position-independent grains has been
given there, whereas in [19] general germ-grains models are considered assuming that the
grains are convex, so that results and techniques from convex and integral geometry can
be applied. In this last mentioned paper, some formulae for contact distributions and
mean densities of inhomogeneous germ-grain models are to be taken in weak form (e.g.,
[19], Theorem 4.1), unless to add further suitable integrability assumptions (e.g., in [19],
Remark 4.4, the existence of a dominating integrable function is assumed). Nevertheless,
the assumption of convexity of the grains in [19] seems to be too restrictive in possible
real applications, and it hides the fact that σΘ may be differ from the mean boundary
density λ∂Θ of Θ, as discussed in [26]. Indeed, we remind that the value of σΘ is strictly
related to the value of the so-called mean outer Minkowski content of Θ (and so of its
grains), which depends on the Hd−1-measure of the set of the boundary points of Θ where
the d-dimensional density of Θ is 0 or 1 or 1/2 (e.g., see [25, 26] for more details on this
subject). In order to extend some results provided in [26] to general random closed sets,
we briefly recall basics on the outer Minkowski content notion.

4.1. d-dimensional densities and outer Minkowski content

Let A ∈ BRd ; the quantity SM(A) defined as (see [2])

SM(A) := lim
r↓0

Hd(A⊕r \A)

r
,
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provided that the limit exists finite, is called outer Minkowski content of A. Note that if
A is lower dimensional, then SM(A) = 2Md−1(A), whereas if A is a d-dimensional set,
closure of its interior, then A⊕r \A coincides with the outer Minkowski enlargement of
∂A at distance r.
In [25] two general classes of subsets of Rd which admit outer Minkowski content has

been introduced; in particular we remind the definition of the so-called class O and a
related result.

Definition 15 (The class O). Let O be the class of Borel sets A of Rd with countably
Hd−1-rectifiable and bounded topological boundary, such that

η(Br(x))≥ γrd−1 ∀x ∈ ∂A, ∀r ∈ (0,1)

holds for some γ > 0 and some probability measure η in R
d absolutely continuous with

respect to Hd−1.

The d-dimensional density (briefly, density) of A at a point x ∈R
d is defined by [3]

δd(A,x) := lim
r↓0

Hd(A∩Br(x))

Hd(Br(x))
,

provided that the limit exists. It is clear that δd(A,x) equals 1 for all x in the interior of
A, and 0 for all x into the interior of the complement set of A, whereas different values
can be attained at its boundary points. It is well known (e.g., see [3], Theorem 3.61) that
if Hd−1(∂A)<∞, then A has density either 0 or 1 or 1/2 at Hd−1-almost every point of
its boundary. For every t ∈ [0,1] and every Hd-measurable set A⊂R

d let

At := {x ∈R
d: δd(A,x) = t}.

The set of points ∂∗A :=R
d \ (A0∪A1) where the density of A is neither 0 nor 1 is called

essential boundary of A. It is proved (e.g., see [3]) that all the sets At are Borel sets, and
that Hd−1(∂∗A ∩B) =Hd−1(A1/2 ∩B) for all B ∈ BRd . It follows that for any A with
Hd−1(A)<∞, it holds

Hd−1(A) =Hd−1(A1/2) +Hd−1(A0 ∩ ∂A) +Hd−1(A1 ∩ ∂A). (25)

As Theorem 1 gives general sufficient conditions on the existence of the Minkowski con-
tent of a lower dimensional set, as the following theorem gives similar general sufficient
conditions for the existence of the outer Minkowski content.

Theorem 16 ([25]). The class O is stable under finite unions and any A ∈ O admits
outer Minkowski content, given by

SM(A) =Hd−1(A1/2) + 2Hd−1(∂A∩A0) =Hd−1(∂∗A) + 2Hd−1(∂A∩A0).
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Note that SM(A) =Hd−1(A) if Hd−1(∂Θ∩ (Θ0∪Θ1)) = 0. A local version of the outer
Minkowski content is given in [25], Proposition 4.13.
We also remind that Theorem 2 is a generalization of Theorem 1; similarly, the next

theorem might be seen as a generalization of Theorem 16.

Theorem 17 ([26]). Let µ be a positive measure in R
d absolutely continuous with respect

to Hd with locally bounded density f , and let A belong to O. If Hd−1(discf) = 0, then

lim
r↓0

µ(A⊕r \A)

r
=

∫

∂∗A

f(x)Hd−1(dx) + 2

∫

∂A∩A0

f(x)Hd−1(dx). (26)

4.2. Specific area and mean surface density

Let us consider a random closed set Θ in R
d with Hd(Θ) > 0, such that it might be

represented as an “one-grain” random set by giving its random shape Z and its random
location y, that is by giving a marked point process Φ = (y, s) with P(Φ(Rd×K)> 1) = 0,
so that

Θ= y+Z(s)

as discussed in Remark 10. For sake of simplicity, let Z be compact (the case in which Z is
locally compact might be handled by introducing a suitable compact window containing
the point x considered). Of course ∂Θ= x+ ∂Z , and so the regularity properties of ∂Θ
coincide with the regularity properties of ∂Z . Let Φ have intensity measure Λ(d(x, s)) =
λ(x, s) dxQ(ds) such that

(A1′) for any (y, s) ∈ R
d × K, y + ∂Z(s) is a countably Hd−1-rectifiable and com-

pact subset of R
d, such that there exists a closed set Ξ(s) ⊇ ∂Z(s) such that∫

K
Hd−1(Ξ(s))Q(ds)<∞ and

Hd−1(Ξ(s) ∩Br(x))≥ γrd−1 ∀x ∈ ∂Z(s), ∀r ∈ (0,1)

for some γ > 0 independent on y and s;
(A2′) for any s ∈K, Hd−1(disc(λ(·, s))) = 0 and λ(·, s) is locally bounded such that

for any compact K ⊂R
d

sup
x∈K⊕diam(Z(s))

λ(x, s)≤ ξ̃K(s)

for some ξ̃K(s) with
∫
K
Hd−1(Ξ(s))ξ̃K(s)Q(ds)<∞.

Note that assumption (A1′) guarantees that Z , and so Θ, belongs to the class O; in
particular it is easy to see that Θ satisfies the hypotheses of Lemma 3.10 in [26], which
implies that Θ admits local mean outer Minkowski content, that is:

lim
r↓0

E[Hd((Θ⊕r \Θ)∩A)]

r
= E[Hd−1(∂∗Θ∩A)] + 2E[Hd−1(Θ0 ∩ ∂Θ∩A)] (27)
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for any Borel set A with E[Hd−1(∂Θ ∩ ∂A)] = 0 (and so for any A with Hd(∂A) = 0,
being E[µ∂Θ]≪Hd).
The assumption (A2′) allows us to apply Theorem 17 to prove that

σΘ(x) = λ∂∗Θ(x) + 2λΘ0∩∂Θ(x), Hd-a.e. x ∈R
d,

having denoted by λ∂∗Θ and λΘ0∩∂Θ the density of the measure E[Hd−1(∂∗Θ ∩ ·)] and
E[Hd−1(Θ0 ∩ ∂Θ∩ ·)], respectively; namely, we prove the following theorem.

Theorem 18. Let Θ = y + Z be a random closed set as above, satisfying assumption
(A1′) and (A2′); then

σΘ(x) := lim
r↓0

P(x ∈Θ⊕r \Θ)

r
= λ∂∗Θ(x) + 2λΘ0∩∂Θ(x), Hd-a.e. x ∈R

d. (28)

In particular, if

∫

K

Hd−1(∂∗Z(s))Q(ds) =

∫

K

Hd−1(∂Z(s))Q(ds), (29)

then

σΘ(x) = λ∂Θ(x) =

∫

K

∫

x−∂Z(s)

λ(y, s)Hd−1(dy)Q(ds), Hd-a.e. x ∈R
d.

Proof. By applying the same arguments used in the proof of Proposition 3.8 in [26],
it follows that E[Hd−1(∂Θ ∩ ·)] is absolutely continuous with respect to Hd (and so
E[Hd−1(∂∗Θ ∩ ·)] and E[Hd−1(Θ0 ∩ ∂Θ ∩ ·)] as well, being ∂∗Θ and Θ0 ∩ ∂Θ disjoint
subsets of ∂Θ); the equation (27) is equivalent to write

lim
r↓0

∫

A

P(x ∈Θ⊕r \Θ)

r
=

∫

A

(λ∂∗Θ(x) + 2λΘ0∩∂Θ(x)) dx. (30)

We want to apply the dominated convergence theorem in order to exchange limit and
integral in the equation above.
Let us first prove that there exist the limit of P(x ∈Θ⊕r \Θ)/r for r ↓ 0:

lim
r↓0

P(x ∈Θ⊕r \Θ)

r
= lim

r↓0

P(Φ{(y, s): x ∈ (y+Z(s))⊕r \ (y+Z(s))}> 0)

r

= lim
r↓0

Λ({(y, s): y ∈ (x−Z(s))⊕r \ (x−Z(s))})

r

= lim
r↓0

1

r

∫

K

∫

(x−Z(s))⊕r\(x−Z(s))

λ(y, s) dyQ(ds).
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By applying now Theorem 17, we get

lim
r↓0

1

r

∫

(x−Z(s))⊕r\(x−Z(s))

λ(y, s) dy

(26)
=

∫

x−∂∗Z(s)

λ(y, s)Hd−1(dy)Q(ds) + 2

∫

K

∫

(x−∂Z(s))∩(x−Z0(s))

λ(y, s)Hd−1(dy),

besides we observe that

1

r

∫

(x−Z(s))⊕r\(x−Z(s))

λ(y, s) dy ≤
1

r

∫

(x−∂Z(s))⊕r

λ(y, s) dy

≤
Hd−1(Z(s))

r
sup

y∈(x−∂Z(s))⊕r

λ(y, s)

(17),(A2′)

≤ Hd−1(Ξ(s))
23d−1bd

γ
ξ̃B2(x)(s) ∀r < 2.

Therefore, assumption (A2′) and the dominated convergence theorem imply

lim
r↓0

P(x ∈Θ⊕r \Θ)

r
= lim

r↓0

1

r

∫

K

∫

(x−Z(s))⊕r\(x−Z(s))

λ(y, s) dyQ(ds)

=

∫

K

(∫

x−∂∗Z(s)

λ(y, s)Hd−1(dy)Q(ds) (31)

+ 2

∫

K

∫

(x−∂Z(s))∩(x−Z0(s))

λ(y, s)Hd−1(dy)

)
Q(ds).

Analogously, for any fixed bounded Borel set A and for any r < 2,

P(x ∈Θ⊕r \Θ)

r
≤

∫

K

Hd−1(Ξ(s))

γ
23d−1bdξ̃K(s)Q(ds)

(A2′)
= c ∈R,

where K is a compact subset of Rd containing A⊕2.
Thus we may change limit and integral in (30), and we get

lim
r↓0

∫

A

P(x ∈Θ⊕r \Θ)

r
=

∫

A

σΘ(x) dx=

∫

A

(λ∂∗Θ(x) + 2λΘ0∩∂Θ(x)) dx (32)

for any A with Hd(∂A) = 0, and so equation (28) holds.
Assumption (29) ensures that the Hd−1-measure of the boundary of Z equals the

Hd−1-measure of its essential boundary, and so E[Hd−1(∂∗Θ∩ ·)] = E[Hd−1(∂Θ ∩ ·)]; in
particular it follows that λ∂∗Ξ(x) = λ∂Ξ(x) and λ∂Ξ∩Ξ0(x) = 0 for Hd-a.e. x ∈ R

d, and
that

∫

x−∂∗Z(s)

λ(y, s)Hd−1(dy) + 2

∫

(x−∂Z(s))∩(x−Z0(s))

λ(y, s)Hd−1(dy)
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=

∫

x−∂Z(s)

λ(y, s)Hd−1(dy).

Thus, by (31) and (32) we get

σΘ(x) = λ∂Θ(x) =

∫

K

∫

x−∂Z(s)

λ(y, s)Hd−1(dy)Q(ds), Hd-a.e. x ∈R
d.

�

Remark 19. The above theorem answers also to the open problem posed by Matheron
in [22], page 50, about the equality between the specific area σΘ and the mean boundary
density λΘ for a general random set Θ. Again, such an equality strongly depends on
the geometric regularities of ∂Θ; of course the cases in which σΘ 6= λ∂Θ are, in a certain
sense, “pathological,” because condition (29) is usually fulfilled in applications.

Of course the specific area σΘ may be evaluated for germ-grain processes whose grains
have integer dimension n < d (n= 0 is trivial), but it is clear that σΘ(x)≡ 0 if n < d− 1.
In the case d − 1, that is Z(s) = ∂Z(s) for any s ∈ K, assumptions (A1) and (A2)

given in the previous section coincide with (A1′) and (A2′) above; by noticing that
∂Z(s) = Z0(s) ∩ ∂Z(s), and that P(x ∈ Θ) = 0 a.s., the results (21) and (18) proved in
Theorem 7 and Proposition 5, respectively, are in accordance with Theorem 18:

σΘ(x) = lim
r↓0

P(x ∈Θ⊕r)

r
= 2λΘ(x)

= 2

∫

K

∫

x−Z(s)

λ(y, s)Hd−1(dy)Q(ds).

We point out that it seems to be hard to find out explicit expressions for σΘ when Θ is
a general germ-grain model (i.e., non-Boolean) with Hd(Θ)> 0, in terms of its grains as
we did for λΘn

in Proposition 5 in the n-dimensional case. Indeed, due to the fact that
the interior of the grains is in general not empty, we cannot follow the same lines of the
proof of the mentioned proposition, because E[Hd−1(∂Θ∩ ·)] 6= E[

∑
(yi,si)∈ΦHd−1((yi +

∂Z(si)) ∩ ·)].
Instead, when Θ is a Boolean model, and so thanks to the independence property of

its grains and to the knowledge of the associated capacity functional, it is possible to
prove an explicit expression for its specific area, as proved in [26], Proposition 3.7, in
the case of position-independent grains. By similar arguments of the previous sections,
it is easy to extend it to the case of a general Boolean model Θ whose grains satisfy the
above assumption (A1′) and (A2′), obtaining that

σΘ(x) = P(x /∈Θ)

[∫

K

∫

x−∂∗Z(s)

λ(y, s)Hd−1(dy)Q(ds)

(33)

+ 2

∫

K

∫

(x−∂Z(s))∩(x−Z0(s))

λ(y, s)Hd−1(dy)Q(ds)

]
.
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We may notice that the above expression for σΘ applies only to Boolean models, thanks
to independence properties of the underlying point process Φ, and that it cannot be
true for different germ-grain models: it is sufficient to consider the case when Θ is an
“one-grain” random set as in Theorem 18, and observe that its specific area given in (31)
differs from (33), being P(x /∈Θ) 6= 1, in general.

4.3. The spherical contact distribution function

We are now able to give a general expression for the derivative in r = 0 of the spherical
contact distribution function HΘ, defined in (24), under the same general assumptions
on the random set Θ given in the previous section.
By noticing that P(x /∈Θ)HΘ(r, x) = P(x ∈ Θ⊕r \Θ) and HΘ(0, x)≡ 0, the following

corollary of Theorem 18 is easily proved.

Corollary 20. Let Θ be a random closed set as in Theorem 18; then

∂

∂r
HΘ(r, x)|r=0 =

σΘ(x)

P(x /∈Θ)

=
λ∂∗Θ(x) + 2λΘ0∩∂Θ(x)

P(x /∈Θ)
, Hd-a.e. x ∈R

d,

where the above derivative has to be intended the right derivative in 0.
If in particular (29) is satisfied, then

∂

∂r
HΘ(r, x)|r=0 =

λ∂Θ(x)

P(x /∈Θ)
, Hd-a.e. x ∈R

d.

Remark 21 (Boolean model and “one-grain” random set). By the corollary above
and by (33) and (31), we get the following explicit formulas in the case Θ is a Boolean
model (reobtaining [26], equation (4.1), as particular case), or Θ is an “one-grain” random
set:

∂

∂r
HΘ(r, x)|r=0

=





Boolean model∫

K

∫

x−∂∗Z(s)

λ(y, s)Hd−1(dy)Q(ds)

+ 2

∫

K

∫

(x−∂Z(s))∩(x−Z0(s))

λ(y, s)Hd−1(dy)Q(ds),

“one-grain” random set∫
K
[
∫
x−∂∗Z(s) λ(y, s)H

d−1(dy) + 2
∫
(x−∂Z(s))∩(x−Z0(s)) λ(y, s)H

d−1(dy)]Q(ds)
∫
Rd×K

(1− 1x−Z(s)(y))λ(y, s) dyQ(ds)
.
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In [26], Theorem 4.1, has been proved a result about the differentiability of HΘ with
respect to r for a quite general class of Boolean models with typical grain having positive
reach. Such a result can be easily extended for Boolean models with position dependent
grains by considering an intensity measure Λ(d(y, s)) of the type λ(y, s) dyQ(ds), instead
of the type f(y) dyQ(ds), and by modifying the assumption of the cited theorem accord-
ingly. Here we reformulate such a result also for “one-grain” random sets. In order to do
this, we briefly recall some basic definitions from geometric measure theory.
For any closed subset A of Rd, let Unp(A) := {x ∈R

d :∃!a ∈A such that dist(x,A) =
|a − x|}. The definition of Unp(A) implies the existence of a projection mapping
ξA: Unp(A) → A which assigns to x ∈ Unp(A) the unique point ξA(x) ∈ A such that
dist(x,A) = |x − ξA(x)|; then for all x ∈ Unp(A) with dist(x,A) > 0 we may define
uA(a) := (x− ξA(x))/dist(x,A). The set of all x ∈R

d \A for which ξA(x) is not defined
it is called exoskeleton of A, and it is denoted by exo(A). The normal bundle of A is the
measurable subset of ∂A× Sd−1 defined by N(A) := {(ξA(x), uA(x)): x /∈ A ∪ exo(A)}.
For any x ∈ ∂+A := {x ∈ ∂A: (x,u) ∈N(A) for some u∈ Sd−1}, we define

N(A,x) := {u∈ Sd−1: (x,u) ∈N(A)}

and

∂1A := {x ∈ ∂+A: cardN(A,x) = 1}.

Note that for any x ∈ ∂1A, the unique element of N(A,x) is the outer normal of A at x,
denoted here by nx. The reach of a compact set A is defined by (see [14])

reach(A) := inf
a∈A

sup{r > 0: Br(a)⊂Unp(A)};

for any set A ⊂ R
d with positive reach, the curvature measures Φi(A; ·) on R

d, for i =
1, . . . , d− 1, introduced in [14], are well defined.
Then, by following the same lines of Section 4 in [26], it is not difficult to prove the

following proposition for an “one-grain” random set.

Proposition 22. Let Θ be a random closed set as in Theorem 18, with reach(Z(s))>R
for some R> 0 and such that H0(N(Z(s), x)) = 1 for Hd−1-a.e. x ∈ ∂Z(s), for all s ∈K.
Moreover, we assume that

∫

K

|Φi|(Z(s))Q(ds)<∞ ∀i= 1, . . . , d− 1,

where |Φi|(Z)(s) is the total variation of the measure Φi(Z(s); ·), and that the
intensity λ(·, s) is bounded, Lipschitz with Lipschitz constant Lipf(·, s) such that∫
K
Lipf(·, s)Q(ds)<∞, and the set where λ(·, s) is not differentiable is Hd−1-negligible.

Then, for all x ∈R
d,

∂

∂r
HΘ(r, x) =

∫
K

∫
x−∂Z(s)⊕r

λ(y, s)Hd−1(dy)Q(ds)
∫
Rd×K

(1− 1x−Z(s)(y))λ(y, s) dyQ(ds)
∀r ∈ [0,R),
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∂2

∂r2
H(r, x)|r=0

=

∫
K
[2π

∫
Rd λ(y, s)Φd−2(x−Z(s); dy) +

∫
x−∂1Z(s)Dny

λ(y, s)Hd−1(dy)]Q(ds)
∫
Rd×K

(1− 1x−Z(s)(y))λ(y, s) dyQ(ds)
,

where Dny
λ(·, s) is the directional derivative of λ(·, s) along ny ∈ Sd−1.
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