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Definition: Let (Ω,F , P) be a probability space, and BR the Borel σ-algebra

on R.

A real-valued random variable X : (Ω,F , P) → (R,BR) is said to be

• discrete, if its probability law PX is concentrated on an at most countable subset

D of R; i.e. the set of its realizations is discrete;

PX({x}) = P(X = x) > 0, for x ∈ D, and PX(D) = 1;

• continuous if PX({x}) = P(X = x) = 0 for all x ∈ R;

• absolutely continuous if PX is absolutely continuous with respect to the usual

Lebesgue measure on R.

Let us consider a random closed set Θ in R
d:

Θ : (Ω,F , P) −→ (F, σF),

where F is the family of closed sets in R
d, and σF is the sigma algebra generated

by the hit-or-miss topology.
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Definition: We say that Θ is

• discrete if its probability law PΘ is concentrated on an at most countable

subset of F;
i.e there exists a family θ1, θ2, . . . of closed subsets of R

d, and a family of real

numbers p1, p2, . . . ∈ [0, 1] such that P(Θ = θi) = pi and
∑

i
pi = 1;
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• continuous if

P(Θ = θ) = 0, ∀θ ⊂ R
d

A = (a, 0), a ∼ U [0, 10]
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Note that:

1. The definitions given are consistent with the particular case Θ = X, random
point:
since the possible realizations of X are points in R

d, then P(X = θ) = 0 for
every subset θ of R

d that is not a point, and so we say that X is continuous if
and only if P(X = x) = 0 for any x ∈ R

d (that is the usual definition).

2. In a large number of cases the conditions

P(Θ = θ) = 0, ∀θ ⊂ R
d

and

P(∂Θ = ∂θ) = 0, ∀θ ⊂ R
d

are equivalent [1] ;

e.g.: if dim(Θ) < d, or Θ(ω) = clos(intΘ(ω)).

——————-
[1] Capasso V., Villa E.: On the continuity and absolute continuity of random closed sets. Stoch.

An. Appl., 24, 381–397 (2006).
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A Comparison with Current Literature

Definition [M-continuity] (see Matheron G. (1975). Random sets and integral geometry)
A random closed set Θ in R

d is a.s. continuous if

P(x ∈ ∂Θ) = 0 ∀x ∈ R
d.

If Θ is a.s. continuous with capacity functional TΘ, then

x = lim
n→∞

xn in R
d ⇒ TΘ({x}) = lim

n→∞
TΘ({xn})

It is easy to prove that M-continuity
=⇒
⇐=/

continuity.

MAIN DIFFERENCE between M-continuity and continuity:

to know that the random set Θ is not continuous by our definition implies that it
may assume some configuration with probability bigger than 0;
to know that the random set Θ is not M-continuous does not give this kind of
information.
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α ∼ U [0, 2π] , A, B 6= 0 =⇒ Θ is M-continuous, Θ is continuous.

α ∼ U [0, 2π], A = 0 =⇒ Θ is not M-continuous, Θ is continuous.
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a ∼ U [0, 10], A = (a, 0) =⇒ P(x ∈ ∂Θ) = 1/10
Θ is not M-continuous, Θ is continuous

A = (a, a), Θ is M-continuous, Θ is continuous
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Absolutely Continuous RACS

Definition [Absolute continuity in mean]
Let Θ be a random closed set in R

d with Hausdorff dimension n, such that its

associated expected measure

E[µΘ] := E[Hn(Θ ∩ · )]

is a Radon measure.

We say that Θ is absolutely continuous in mean if

E[µΘ] ≪ νd.

Even if this definition is consistent with the case Θ = X random point, it may
give no information on the geometric stochastic properties of Θ in R

d.
For instance:

• dimΘ = d;

• if dimΘ = n < d and Hn(Θ(ω)) = 0 P-a.s.
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It is well known that for a r.v. X

X absolutely continuous ⇒ X continuous, but not the reverse;

X discrete ⇒ X singular, but not the reverse.

Definition [R class] We say that a random closed set Θ in R
d belongs to the class

R if

dim(∂Θ) < d and P[Hdim(∂Θ)(∂Θ) > 0] = 1.
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Definition [Strong absolute continuity]
We say that a random closed set Θ is (strongly) absolutely continuous if Θ ∈ R
and

E[µ∂Θ] ≪ νd. (1)

Remarks: Let Θ ∈ R.

1. If dimΘ < d, than ∂Θ = Θ and so there is no distinction between absolute
continuity strong and in mean.

2. if dimΘ = d and dim∂Θ = d − 1, than Θ is absolutely continuous if

E[Hd−1(∂Θ ∩ · )] ≪ νd(·).

3. If Θ = X r.v., then

dimX = 0, ∂X = X and E[H0(X)] = P(X ∈ R
d) = 1,

thus X ∈ R and condition (1) is equivalent to say

E[H0(X ∩ · )] = P(X ∈ · ) ≪ νd.
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Θ is not absolutely continuous (B = [0, 11], ν2(B) = 0, E[H1(∂Θ ∩ B)] = 1)

Θ is absolutely continuous
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Question: M-continuity is equivalent to absolute continuity?

Answer: No. For instance:

X r.v. M-continuous ⇐⇒ P(X = x) = 0 ∀x ∈ R
d

But
P(X = x) = 0 ∀x ∈ R

d 6=⇒ X absolutely continuous.

Definition: We say that Θ ∈ R is singular if and only if it is not absolutely

continuous.

In terms of our definitions we may claim that:

Proposition:

Θ absolutely continuous ⇒ Θ continuous, but not the reverse;

Θ discrete ⇒ Θ singular, but not the reverse.
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Definition: Let Θ and Q be random closed sets in R
d defined on the same

probability space (Ω,F , P). We say that Q ⊆ Θ if and only if

∀ω ∈ Ω Q(ω) ⊆ Θ(ω).

In general there are no relations between Θ and its subsets; for example we may
have Θ absolutely continuous and
Q ⊂ Θ discrete, or viceversa. But it is easy to prove that

Proposition:

If dimHΘ < d and Θ is discrete

⇓

any subset Q ∈ R of Θ is singular.
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