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Abstract

Many real phenomena may be modelled as random closed sets in Rd,
of different Hausdorff dimensions. The authors have recently revisited the
concept of mean geometric densities of random closed sets Θn with Haus-
dorff dimension n ≤ d with respect to the standard Lebesgue measure
on Rd, in terms of expected values of a suitable class of linear function-
als (Delta functions à la Dirac). In many real applications such as fiber
processes, n-facets of random tessellations of dimension n ≤ d in spaces
of dimension d ≥ 1, several problems are related to the estimation of
such mean densities; in order to face such problems in the general set-
ting of spatially inhomogeneous processes, we suggest and analyze here
an approximation of mean densities for sufficiently regular random closed
sets. We will show how some known results in literature follow as par-
ticular cases. A series of examples throughout the paper are provided to
exemplify various relevant situations.
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1 Introduction

Many real phenomena may be modelled as random closed sets in Rd of different
Hausdorff dimensions (see for example [4, 6, 19, 21, 22, 23]).
We remind that a random closed set Ξ in Rd is a measurable map

Ξ : (Ω,F ,P) −→ (F, σF),

where F denotes the class of the closed subsets in Rd, and σF is the so called
hit-or-miss topology (see [17]).
Let Ξ = Θn be almost surely a set of locally finite Hausdorff n-dimensional
measure, and denote by Hn the n-dimensional Hausdorff measure on Rd. The
set Θn induces a random measure µΘn defined by

µΘn(A) := Hn(Θn ∩A), A ∈ BRd
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(for a discussion of the delicate issue of measurability of the random variables
Hn(Θn ∩A), we refer to [3, 16, 24]).

Under suitable regularity assumptions on a random closed set Θn ⊂ Rd with
Hausdorff dimension n ≤ d, in [10] the concept of mean geometric density, i.e.
the mean density of the expected measure

E[µΘn
](A) := E[Hn(Θn ∩A)], A ∈ BRd

with respect to the standard Lebesgue measure νd on Rd, has been revisited in
terms of expected values of a suitable class of linear functionals (Delta functions
à la Dirac)[10] .

It is clear that, if n < d and µΘn(ω) is a Radon measure for almost every
ω ∈ Ω, then it is singular with respect to the d-dimensional Lebesgue measure
νd. On the other hand, in dependence of the probability law of Θn, the expected
measure may be either singular or absolutely continuous with respect to νd.
Thus, it is of interest to distinguish between random closed sets which induce a
singular expected measure, and random closed sets which induce an absolutely
continuous one; in this latter case we say that a random closed set is abso-
lutely continuous in mean, and its mean density is the classical Radon-Nikodym
derivative of E[µΘn ] with respect to νd.

In many real applications such as fiber processes, n-facets of random tessel-
lations of dimension n ≤ d in spaces of dimension d ≥ 1, several problems are
related to the estimation of their mean densities (see e.g. [4, 19, 23]).
In order to face such problems in the general setting of spatially inhomogeneous
processes, we suggest and analyze here an approximation of mean densities for
sufficiently regular random closed sets Θn in Rd. We will show how some known
results in literature follow as particular cases.

Since points and lines are ν2-negligible, it is natural to make use of a 2-D
box approximation of points of them. As a matter of fact, a computer graphics
representation of them is anyway provided in terms of pixels, which can only
offer a 2-D box approximation of points in R2.
This is the motivation of this paper, which tends to suggest unbiased estimators
for densities of random sets of lower dimensions in a given d-dimensional space,
by means of their approximation in terms of their d-dimensional enlargement
by Minkowski addition.

A series of examples throughout the paper are provided to exemplify various
relevant situations.

2 Preliminaries and notations

In this section we collect some basic facts and terminology that will be useful
in the sequel.

We will call Radon measure in Rd any nonnegative and σ-additive set func-
tion µ defined on the Borel σ-algebra BRd which is finite on bounded sets.
We know that every Radon measure µ on Rd can be represented in the form

µ = µ¿ + µ⊥,

2



where µ¿ and µ⊥ are the absolutely continuous part of µ with respect to νd,
and the singular part of µ, respectively. As a consequence of the Besicovitch
Derivation Theorem (see [1], p.54), we have that the limit

δµ(x) := lim
r→0

µ(Br(x))
νd(Br(x))

exists in R for νd-a.e. x ∈ Rd, and it is a version of the Radon-Nikodym deriva-
tive of µ¿, while µ⊥ is the restriction of µ to the νd-negligible set {x ∈ Rd :
δµ(x) = ∞}.
According to Riesz theorem, Radon measures can be canonically identified with
linear and order preserving functionals on Cc(Rd), the space of continuous func-
tions with compact support in Rd. The identification is provided by the integral
operator, i.e.

(µ, f) :=
∫

Rd

f(x)µ(dx) ∀f ∈ Cc(Rd).

If µ ¿ νd, it admits, as Radon-Nikodym density, a classical function δµ defined
almost everywhere in Rd, so that

(µ, f) =
∫

Rd

f(x)δµ(x)dx ∀f ∈ Cc(Rd)

in the usual sense of Lebesgue integral.
If µ ⊥ νd, we may speak of a density δµ only in the sense of distributions (it is
almost everywhere trivial, but it is ∞ on a set of νd-measure zero), according
to the duality beween measures and smooth (or Cc(Rd)) functions. In this case
the symbol ∫

Rd

f(x)δµ(x)dx := (µ, f)

can still be adopted, provided the integral on the left hand side is understood
in a generalized sense, and not as a Lebesgue integral.
In either cases, from now on, we will denote by (δµ, f) the quantity (µ, f).
Accordingly, we say that a sequence of measures µn weakly∗ converges to a
Radon measure µ if (δµn , f) converges to (δµ, f) for any f ∈ Cc(Rd). A classical
criterion (see for instance [13] or [1]) states that µn weakly∗ converge to µ if
and only if µn(A) → µ(A) for any bounded open set A with µ(∂A) = 0.

Given an integer n ≤ d, we say that a set C ⊂ Rd is countably Hn-rectifiable
if there exist countably many Lipschitz maps fi : Rn → Rd such that

Hn

(
C \

∞⋃

i=1

fi(Rn)

)
= 0.

Rectifiable sets include piecewise C1 sets, and still have nice properties from
the measure-theoretic viewpoint (for instance, one can define a n-dimensional
tangent space to them, in an approximate sense): we refer to [1] for the basic
properties of this class of sets.

The n-dimensional Minkowski content of a closed set S ⊂ Rd is defined by

lim
r→0

νd(S⊕r)
bd−nrd−n
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whenever the limit exists. Here S⊕r is the closed r-neighborhood of S, i.e.

S⊕r :=
{
x ∈ Rd : ∃y ∈ S with |x− y| ≤ r

}
,

known also as Minkowski addition of S with the closed ball Br(0).
We quote the following result from [1], p.110:

Theorem 1 Let S ⊂ Rd be a countably Hn-rectifiable compact set and assume
that for all x ∈ S

η(Br(x)) ≥ γrn ∀r ∈ (0, 1) (1)

holds for some γ > 0 and some Radon measure η in Rd absolutely continuous
with respect to Hn. Then

lim
r→0

νd(S⊕r)
bd−nrd−n

= Hn(S).

3 Generalized densities

In the sequel we will consider a class of sufficiently regular random closed sets
in the Euclidean space Rd, of integer dimension n ≤ d. We start with the
deterministic case.

Definition 2 (n-regular sets) Given an integer n ∈ [0, d], we say that a
closed subset S of Rd is n-regular, if it satisfies the following conditions:

(i) Hn(S ∩BR(0)) < ∞ for any R > 0;

(ii) lim
r→0

Hn(S ∩Br(x))
bnrn

= 1 for Hn-a.e. x ∈ S.

Here bn is the volume of the unit ball in Rn.

Remark 3 Note that condition (ii) is related to a characterization of the count-
able Hn-rectifiability of the set S ([14], p.256, 267, [1], p.83).

To any n-regular closed subset S ⊂ Rd we associate the Radon measure

µSn(B) := Hn(Sn ∩B) B ∈ BRd .

Under the regularity assumption on S, we have

lim
r→0

µSn(Br(x))
bnrn

=
{

1 Hn-a.e. x ∈ Sn,
0 ∀x 6∈ Sn.

As a consequence (by assuming 0 · ∞ = 0), for 0 ≤ n < d we have

lim
r→0

µSn(Br(x))
bdrd

= lim
r→0

Hn(Sn ∩Br(x))
bnrn

bnrn

bdrd
=

{ ∞ Hn-a.e. x ∈ Sn,
0 ∀x 6∈ Sn.

Therefore, setting

δSn(x) := lim
r→0

Hn(Sn ∩Br(x))
bdrd

,

we have that this density takes only the values 0 and ∞, and so provides almost
no information of practical use on Sn, or even on µSn . This is not the case for
some natural approximations at the scale r of δSn , defined below.
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Definition 4 (Density at the scale r) Let r > 0 and let Sn be n-regular.
We set

δ
(r)
Sn

(x) :=
µSn

(Br(x))
bdrd

=
Hn(Sn ∩Br(x))

bdrd

and, correspondingly, the associated measures µ
(r)
Sn

= δ
(r)
Sn

νd:

µ
(r)
Sn

(B) :=
∫

B

δ
(r)
Sn

(x)dx, B ∈ BRd .

Identifying, as usual, measures with linear functionals on Cc(Rd), according
to the notations introduced in the previous section, we may consider the linear
functionals associated with the measures µ

(r)
Sn

and µSn
as follows:

(δ(r)
Sn

, f) :=
∫

Rd

f(x)µ(r)
Sn

(dx) =
∫

Rd

f(x)δ(r)
Sn

(x)dx, (δSn , f) :=
∫

Rd

f(x)µSn(dx),

for any f ∈ Cc(R).
It can be proved (see for instance [10]) that the measures µ

(r)
Sn

weakly∗ converge
to the measure µSn as r → 0; this convergence result can also be understood
noticing that δ

(r)
Sn

(x) is the convolution of the measure µSn with the kernels
(here 1E stands for the characteristic function of E)

ρr(y) :=
1

bdrd
1Br(0)(y).

In the case n = d, δSd
is a classical function, and we will also use the following

well known fact:

δ
(r)
Sd

(x) → δSd
(x) as r → 0 for νd-a.e. x ∈ Rd. (2)

Remark 5 By definition, δSn = limr→0 δ
(r)
Sn

and it can be interpreted as the
generalized density (or the generalized Radon-Nikodym derivative) of the mea-
sure µSn with respect to the d-dimensional Lebesgue measure νd, so that, with
the adopted formal integral notations,

∫

Rd

f(x)δSn(x)dx := (δSn , f);

by the weak* convergence of δ
(r)
Sn

to δSn , we have the formal exchange between
limit and integral

lim
r→0

∫

Rd

f(x)δ(r)
Sn

(x) dx =
∫

Rd

f(x)δSn(x) dx.

We consider now random closed sets.

Definition 6 (Random n-regular sets) Given an integer n, with 0 ≤ n ≤ d,
we say that a random closed set Θn in Rd is n-regular, if it satisfies the following
conditions:

(i) for almost all ω ∈ Ω, Θn(ω) is an n-regular closed set in Rd;
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(ii) E[Hn(Θn ∩BR(0))] < ∞ for any R > 0.

If Θn is a random n-regular closed set in Rd, by condition (ii) the random
measure

µΘn
(·) := Hn(Θn ∩ ·)

is almost surely a Radon measure, and now δΘn(x) is a random distribution; by
the equivalence between measures and linear functionals on Cc(Rd), µΘn

can be
viewed as a random linear functional (i.e. (δΘn

, f) is a real random variable for
any test function f ∈ Cc(Rd)).

Definition 7 (Expected linear functionals and measures) By extending
the definition of expected value of a random operator à la Pettis (or Gelfand-
Pettis, [2, 5]), we may define the expected linear functional E[δΘn

] associated
with δΘn as follows:

(E[δΘn
], f) := E[(δΘn

, f)], f ∈ Cc(Rd).

By the Riesz duality between continuous functions and Radon measures, the
linear functional E[δΘn ] corresponds to a Radon measure, that we denote by
E[µΘn ], and call expected measure. It satisfies

E[(δΘn , f)] =
∫

Rd

fE[µΘn ](dx) ∀f ∈ Cc(Rd). (3)

Remark 8 By approximating characteristic functions of bounded open sets by
Cc functions, from (3), we get

E[Hn(Θn ∩A)] = E[µΘn ](A)

for any bounded open set A. A simple application of Dynkin’s lemma then
gives that the identity above holds for all bounded Borel sets A, and provides an
alternative possible definition of the expected measure.

For any lower dimensional random n-regular closed set Θn in Rd, while
it is clear that µΘn(ω) is a singular measure, it may well happen (e.g. when
the process Θn is stationary) that the expected measure E[µΘn ] is absolutely
continuous with respect to νd, and so the Radon-Nikodym theorem ensures the
existence of a density of this measure with respect to νd. In this case it is
interesting to try to find explicit formulas for the computation of the “mean
density” λΘn := E[δΘn ].

Definition 9 (Absolutely continuous processes and mean densities) Let
Θn be a random n-regular closed set in Rd. We say that Θn is absolutely con-
tinuous in mean if the expected measure E[µΘn ] is absolutely continuous with
respect to νd. In this case we call mean density of Θn, and denote by λΘn , the
Radon-Nikodym derivative of E[µΘn ] with respect to νd.

It is easy to check that the definition above is consistent with the case when
Θ is a real random variable or a random point in Rd, corresponding to n = 0:
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Remark 10 (The 0-dimensional and d-dimensional cases) If n = 0 and
Θ0(ω) = {X(ω)} is a random point, then E[H0(Θ0∩ · )] = P(X ∈ · ). Therefore
Θ0 is absolutely continuous in mean if and only if the law of X is absolutely
continuous, and λΘ0 coincides with the pdf of X.

On the other hand, any random d-regular set is absolutely continuous: it
suffices to apply Fubini’s theorem (in Ω×Rd, with the product measure P× νd)
to obtain

E[µΘd
(B)] = E

[∫

B

δΘd
(x)dx

]
=

∫

B

E[δΘd
(x)]dx =

∫

B

P(x ∈ Θd)dx ∀B ∈ BRd .

Therefore

λΘd
(x) = E[δΘd

(x)] = P(x ∈ Θd) for νd-a.e. x ∈ Rd. (4)

Remark 11 We have seen that any random d-dimensional closed set is abso-
lutely continuous in mean. However, a stronger definition of absolute continuity
in mean of a random closed set has been given in [9], in terms of the expected
measure of its boundary.

We can now provide approximations of mean densities at the scale r, as in
the deterministic case. We define

E[δ(r)
Θn

](x) :=
E[Hn(Θn ∩Br(x))]

bdrd
, (5)

and, using Fubini’s theorem, we find:
∫

Rd

E[δ(r)
Θn

](x)f(x) dx = E
[∫

Rd

δ
(r)
Θn

(x)f(x)dx

]
∀f ∈ Cc(Rd). (6)

Now, the deterministic case tells us that for all f ∈ Cc(Rd) we have (δ(r)
Θn

, f) →
(δΘn , f) as r → 0 almost surely (whenever µΘn is a Radon measure), and this
convergence is easily seen to be dominated, by condition (ii) in Definition 6.
Therefore (6) gives

lim
r→0

(E[δ(r)
Θn

], f) = lim
r→0

E[(δ(r)
Θn

, f)] = E[ lim
r→0

(δ(r)
Θn

, f)] = E[(δΘn , f)] = (E[δΘn ], f)

for any f ∈ Cc(Rd). Therefore E[δ(r)
Θn

]νd weakly∗ converge to E[µΘn ] as r → 0.

Remark 12 (The d-dimensional case) In the d-dimensional case a point-
wise convergence result holds, namely E[δ(r)

Θd
] converge to λΘd

νd-a.e. (and in
L1

loc(Rd), by dominated convergence). Indeed, by (2), we have

δ
(r)
Θd(ω)(x) → δΘd(ω)(x) for νd-a.e. x ∈ Rd

for any ω (because µΘd(ω) is a Radon measure). By Fubini’s theorem, we can
find a νd-negligible set N ⊂ Rd such that

δ
(r)
Θd(ω)(x) → δΘd(ω)(x) for P-almost every ω

for all x ∈ Rd \N . As these functions are less than 1, we can take expectations
in both sides and use (4) to obtain the convergence of E[δ(r)

Θd
](x) to λΘd

(x) for
all x ∈ Rd \N .
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4 Approximation of mean densities

Let us notice that if n = 0, so that Θ0 = {X} is a random point, then Br(X)
is the “enlargement” of the random point Θ0 by Minkowski addition, so that

H0(Θ0 ∩Br(x))
bdrd

=
1Br(x)(X)

bdrd
=

1x⊕r
(X)

bdrd
=

1Θ0⊕r
(x)

bdrd
.

In the case d = 1 we have in particular that

E[δ(r)
Θ0

](x) =
P(X ∈ [x− r, x + r])

2r
; (7)

if X is a random variable with absolutely continuous law and pdf pX , we have
(see Remark 10) that E[δΘ0 ] = pX , so that (7) leads to the usual histogram
estimation of probability densities (see [20], § VII.13).
Given an n-regular random closed set Θn, even if a natural sequence of approx-
imating functions of the expected measure E[µΘn

] is given by E[δ(r)
Θn

] defined
by (5), problems might arise in the estimation of E[Hn(Θn ∩ Br(x))], as the
computation of the Hausdorff measure is typically non-trivial even in the deter-
ministic case. Therefore we are led to consider a new approximation, based on
the Lebesgue measure (much more robust and computable) of the enlargement
of the random set. This procedure is obviously consistent with (7). A crucial
result is given in the following proposition.

Proposition 13 Let Θn be a random n-regular set, and let A ∈ B. If

lim
r→0

E[νd(Θn⊕r ∩A)]
bd−nrd−n

= E[Hn(Θn ∩A)], (8)

then

lim
r→0

∫

A

P(x ∈ Θn⊕r )
bd−nrd−n

dx = E[Hn(Θn ∩A)]. (9)

Proof. For a random closed set Ξ in Rd, Fubini’s theorem gives

E[νd(Ξ ∩A)] =
∫

A

P(x ∈ Ξ)dx.

Therefore, the following chain of equalities holds:

lim
r→0

∫

A

P(x ∈ Θn⊕r )
bd−nrd−n

dx = lim
r→0

E[νd(Θn⊕r ∩A)]
bd−nrd−n

(8)
= E[Hn(Θn ∩A)].

¤

Motivated by the previous proposition, we define

δ⊕r
n (x) :=

P(x ∈ Θn⊕r )
bd−nrd−n

and, accordingly, the absolutely continuous Radon measures µ⊕r = δ⊕r
n νd, i.e.

µ⊕r(B) :=
∫

B

P(x ∈ Θn⊕r )
bd−nrd−n

dx ∀B ∈ BRd .
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We may notice that

P(x ∈ Θn⊕r
) = P(Θn ∩Br(x) 6= ∅) = TΘn

(Br(x)),

thus making explicit the reference to TΘn , the capacity functional characterizing
the probability law of the random set Θn [17].

Corollary 14 Let Θn be a random n-regular set, and assume that (8) holds
for any bounded open set A such that E[µΘn ](∂A) = 0. Then the measures µ⊕r

weakly∗ converge to the expected measure E[µΘn
] as r → 0.

Note that, if Θn is absolutely continuous, we have

E[Hn(Θn ∩A)] =
∫

A

λΘn
(x)dx,

where λΘn is the density of the expected measure E[µΘn ]. So, in this case, we
can rephrase (9) as

lim
r→0

∫

A

P(x ∈ Θn⊕r )
bd−nrd−n

dx =
∫

A

λΘn(x)dx. (10)

In particular, if Θn is a stationary random closed set, then δ⊕r
n (x) is independent

of x and the expected measure E[µΘn ] is motion invariant, i.e. λΘn(x) = L ∈ R+

for νd-a.e. x ∈ Rd. It follows that

lim
r→0

∫

A

P(x ∈ Θn⊕r )
bd−nrd−n

dx = lim
r→0

P(x0 ∈ Θn⊕r )
bd−nrd−n

νd(A)

for any x0 ∈ Rd, and so by (10) we infer

lim
r→0

P(x0 ∈ Θn⊕r )
bd−nrd−n

= L ∀x0 ∈ Rd. (11)

Recall that all these conclusions hold under the assumption, made in Propo-
sition 13, that (8) holds. So, the main problem is to find conditions on Θn

ensuring that this condition holds. If Θn is such that almost every realization
Θn(ω) has Minkowski content equal to the Hausdorff measure, i.e.

lim
r→0

νd(Θn⊕r (ω))
bd−nrd−n

= Hn(Θn(ω)), (12)

then it is clear that, taking the expected values on both sides, (8) is strictly
related to the possibility of exchanging limit and expectation. So we ask whether
(12) implies a similar result when we consider the intersection of Θn⊕r (ω) with
an open set A in Rd, and for which kind of random closed sets the convergence
above is dominated, so that exchanging limit and expectation is allowed.

The following result is a local version of Theorem 1.

Lemma 15 Let S be a compact subset of Rd satisfying the hypotheses of The-
orem 1. Then, for any A ∈ BRd such that

Hn(S ∩ ∂A) = 0, (13)
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the following holds

lim
r→0

νd(S⊕r ∩A)
bd−nrd−n

= Hn(S ∩A). (14)

Proof. If n = d, then equality (14) is easily verified. Thus, let n < d.
We may notice that, by the definition of rectifiability, if C ⊂ Rd is closed, then
the compact set S ∩ C is still countably Hn-rectifiable; besides (1) holds for
all point x ∈ S ∩ C (since it holds for any point x ∈ S). As a consequence,
by Theorem 1, we may claim that for any closed subset C of Rd, the following
holds

lim
r→0

νd((S ∩ C)⊕r)
bd−nrd−n

= Hn(S ∩ C). (15)

Let A be as in the assumption.
• Let ε > 0 be fixed. We may observe that the following holds:

S⊕r ∩A ⊂ (S ∩ closA)⊕r ∪ (S ∩ closA⊕ε \ intA)⊕r ∀r < ε.

Indeed, if x ∈ S⊕r ∩ A then there exists y ∈ S with |x − y| ≤ r, and y ∈
closA⊕ε. Then, if x /∈ (S ∩ closA)⊕r, we must have y ∈ S \ closA, hence
y ∈ S ∩ closA⊕ε \ closA.

By (15), since closA and closA⊕ε \ intA are closed, we have

lim
r→0

νd((S ∩ closA)⊕r)
bd−nrd−n

= Hn(S ∩ closA)
(13)
= Hn(S ∩A), (16)

lim
r→0

νd(S ∩ closA⊕ε \ intA)⊕r

bd−nrd−n
= Hn(S ∩ closA⊕ε \ intA). (17)

Thus,

lim sup
r→0

νd(S⊕r ∩A)
bd−nrd−n

≤ lim sup
r→0

νd((S ∩ closA)⊕r ∪ (S ∩ closA⊕ε \ intA)⊕r)
bd−nrd−n

≤ lim sup
r→0

νd((S ∩ closA)⊕r) + νd((S ∩ closA⊕ε \ intA)⊕r)
bd−nrd−n

(16),(17)
= Hn(S ∩A) +Hn(S ∩ closA⊕ε \ intA);

by taking the limit as ε tends to 0 we obtain

lim sup
r→0

νd(Ir(S) ∩A)
bd−nrd−n

≤ Hn(S ∩A) +Hn(S ∩ ∂A)︸ ︷︷ ︸
=0

= Hn(S ∩A).

• Now, let B be a closed set well contained in A, i.e. dist(A,B) > 0. Then
there exists r̃ > 0 such that B⊕r ⊂ A, ∀r < r̃. So,

Hn(S ∩B)
(15)
= lim inf

r→0

νd((S ∩B)⊕r)
bd−nrd−n

≤ lim inf
r→0

νd(S⊕r ∩B⊕r)
bd−nrd−n

≤ lim inf
r→0

νd(S⊕r ∩A)
bd−nrd−n

.
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Let us consider an increasing sequence of closed sets {Bn}n∈N well contained in
A such that Bn ↗ intA. By taking the limit as n tends to ∞, we obtain that

lim inf
r→0

νd(S⊕r ∩A)
bd−nrd−n

≥ lim
n→∞

Hn(S ∩Bn) = Hn(S ∩ intA)
(13)
= Hn(S ∩A).

We summarize,

Hn(S ∩A) ≤ lim inf
r→0

νd(S⊕r ∩A)
bd−nrd−n

≤ lim sup
r→0

νd(S⊕r ∩A)
bd−nrd−n

≤ Hn(S ∩A),

and so the thesis follows. ¤

If we consider the sequence of random variables
νd(Θn⊕r

∩A)

bd−nrd−n , for r going to 0,
we ask which conditions have to be satisfied by a random set Θn, so that they
are dominated by an integrable random variable. In this way we could apply the
Dominated Convergence Theorem in order to exchange limit and expectation
in (14).

Lemma 16 Let K be a compact subset of Rd and assume that for all x ∈ K

η(Br(x)) ≥ γrn ∀r ∈ (0, 1) (18)

holds for some γ > 0 and some probability measure η in Rd.
Then, for all r < 2,

νd(K⊕r)
bd−nrd−n

≤ 1
γ

2n4d bd

bd−n
.

Proof. Since K⊕r is compact, then it is possible to cover it with a finite number
p of closed balls B3r(xi), with xi ∈ K⊕r, such that

|xi − xj | > 3r i 6= j. (19)

(A first ball is taken off K⊕r, and so on until the empty set is obtained).
As a consequence, there exist y1, . . . yp such that

• yi ∈ K, i = 1, . . . , p,

• |yi − yj | > r, i 6= j,

• K⊕r ⊆
p⋃

i=1

B4r(yi).

In fact, if xi ∈ K, then we choose yi = xi; if xi ∈ K⊕r \ K, then we choose
yi ∈ Br(xi)∩K. As a consequence, |yi − xi| ≤ r and B4r(yi) ⊇ B3r(xi) for any
i = 1, . . . , p. So

p⋃

i=1

B4r(yi) ⊇
p⋃

i=1

B3r(xi) ⊇ K⊕r,

and

3r ≤ |xi − xj | ≤ |xi − yi|+ |yi − yj |+ |yj − xj | ≤ 2r + |yi − yj | i 6= j.

11



For r < 2, Br/2(yi) ∩ Br/2(yj) = ∅. Since by hypothesis η is a probability
measure satisfying (18), we have that

1 ≥ η

(
p⋃

i=1

Br/2(yi)

)
=

p∑

i=1

η(Br/2(yi))
(18)

≥ pγ
(r

2

)n

,

and so
p ≤ 1

γ

2n

rn
.

In conclusion,

νd(K⊕r)
bd−nrd−n

≤ νd(
⋃p

i=1 B4r(yi))
bd−nrd−n

≤ pbd(4r)d

bd−nrd−n
≤ 1

γ
2n4d bd

bd−n
.

¤

In the following theorem we consider n ∈ {0, 1, . . . , d − 1}, since the particular
case n = d is trivial.

Theorem 17 Let Θn be a countably Hn-rectifiable random closed set in Rd

(i.e., for P-a.e. ω ∈ Ω, Θn(ω) ⊆ Rd is a countably Hn-rectifiable closed set),
such that E[µΘn ] is a Radon measure. Let W ⊂ Rd be a compact set and let
ΓW : Ω −→ R be the function so defined:

ΓW (ω) := max
{
γ ≥ 0 : ∃ a probability measure η ¿ Hn such that

η(Br(x)) ≥ γrn ∀x ∈ Θn(ω) ∩W⊕1, r ∈ (0, 1)
}
.

If there exists a random variable Y with E[Y ] < ∞, such that 1/ΓW (ω) ≤ Y (ω)
for P-a.e. ω ∈ Ω, then, for all A ∈ BRd such that

A ⊂ intW⊕1 and E[Hn(Θn ∩ ∂A)] = 0, (20)

we have

lim
r→0

E[νd(Θn⊕r ∩A)]
bd−nrd−n

= E[Hn(Θn ∩A)].

Proof. Since E[Y ] < ∞, then Y (ω) < ∞ for P-a.e. ω ∈ Ω.
Let A ∈ BRd be satisfying (20). Let us define

ΩA := {ω ∈ Ω : Hn(Θn(ω) ∩ ∂A) = 0},
ΩT := {ω ∈ Ω : Θn(ω) is countably Hn-rectifiable and closed},
ΩY := {ω ∈ Ω : Y (ω) < ∞},
ΩΓ := {ω ∈ Ω : 1

ΓW (ω) ≤ Y (ω)};
by hypothesis P(ΩA) = P(ΩT ) = P(ΩY ) = P(ΩΓ) = 1.
Thus, if Ω′ := ΩA ∩ ΩT ∩ ΩY ∩ ΩΓ, it follows that P(Ω′) = 1.

Let ω ∈ Ω′ be fixed. Then

• ΓW (ω) > 0, i.e. a probability measure η ¿ Hk exists such that

η(Br(x)) ≥ ΓW (ω)rn ∀x ∈ Θn(ω) ∩W⊕1, r ∈ (0, 1),

• Hn(Θn(ω) ∩ ∂A) = 0,

12



so, by applying Lemma 15 to Θn ∩W⊕1, we get

lim
r→0

νd(Θn⊕r (ω) ∩A)
bd−nrd−n

= Hn(Θn(ω) ∩A);

i.e. we may claim that

lim
r→0

νd(Θn⊕r
∩A)

bd−nrd−n
= Hn(Θn ∩A) almost surely.

Further, for all ω ∈ Ω′, Θn(ω)∩W⊕1 satisfies the hypotheses of Lemma 16, and
so

νd(Θn⊕r (ω) ∩A)
bd−nrd−n

=
νd((Θn(ω) ∩W⊕1)⊕r ∩A)

bd−nrd−n
≤ νd((Θn(ω) ∩W⊕1)⊕r)

bd−nrd−n

≤ 1
ΓW (ω)

2n4d bd

bd−n
≤ Y (ω)2n4d bd

bd−n
∈ R.

Let Z be the random variable so defined:

Z(ω) := Y (ω)2n4d bd

bd−n
, ω ∈ Ω′.

By assumption E[Z] < ∞, so that the Dominated Convergence Theorem gives

lim
r→0

E
[
νd(Θn⊕r ∩A)

bd−nrd−n

]
= E[Hn(Θn ∩A)].

¤

Notice that in the statement of Theorem 17 we introduced the auxiliary
function Y (ω) in order to avoid the non-trivial issue of the measurability of
ΓW (ω); as a matter of fact, in all examples, one can estimate 1/ΓW (ω) from
above in a measurable way.

Notice also that if Θn satisfies the assumption of the theorem for some
closed W , then it satisfies the assumption for all closed W ′ ⊂ W ; analogously,
any random n-regular closed set Θ′n contained almost surely in Θn still satisfies
the assumption of the theorem.

Remark 18 (The case n = 0) Let us consider the well-known and studied case
of a random point {X} in Rd, and see how it is consistent with our framework
(of course, the special cases n = 0 and n = d can be handled with much more
elementary tools). Thus, we are in the particular case in which n = 0 and
Θ0(ω) = {X(ω)}.
First of all it is immediate to check that X satisfies the hypotheses of Theorem
17 with η := H0(Θ0(ω)∩·) (i.e. the unit Dirac mass on X(ω)) and Γ(ω) = 1 for
all ω ∈ Ω. In particular, for any bounded Borel set A such that E[µΘ0 ](∂A) = 0
we have

lim
r→0

E[νd(Θ0⊕r ∩A)]
bdrd

= E[H0(Θ0 ∩A)].

13



Theorem 19 (Main result) Let Θn be a random n-regular closed set in Rd

and let E[µΘn ] be its expected measure. Assume that Θn satisfies the density
lower bound assumption of Theorem 17 for any compact set W ⊂ Rd. Then

lim
r→0

∫

A

P(x ∈ Θn⊕r)
bd−nrd−n

dx = E[µΘn
](A)

for any bounded Borel set A ⊂ Rd such that

E[µΘn
](∂A) = 0. (21)

In particular, if Θn is absolutely continuous in mean, we have

lim
r→0

∫

A

P(x ∈ Θn⊕r)
bd−nrd−n

dx =
∫

A

λΘn
(x)dx (22)

for any bounded Borel set A ⊂ Rd with νd(∂A) = 0, where λΘn is the mean
density of Θn. Finally, if Θn is stationary we have

lim
r→0

P(x0 ∈ Θn⊕r)
bd−nrd−n

= λΘn ∀x0 ∈ Rd. (23)

Proof. The first statement follows by (9) in Proposition 13: indeed, the as-
sumption (8) of that proposition is fulfilled, thanks to Theorem 17. The second
statement is a direct consequence of the first one. Finally, in the stationary case
(23) follows directly by (22), as explained after Corollary 14. ¤

Finally, notice that condition (21), when restricted to bounded open sets A,
is “generically satisfied” in the following sense: given any family of bounded
open sets {At}t∈R with closAs ⊆ At for s < t, the set

T := {t ∈ R : E[µΘn ](∂At) > 0}
is at most countable. This is due to the fact that the sets {∂At}t∈T are pairwise
disjoint, and all with strictly positive E[µΘn ]-measure.

Remark 20 (Mean density as a pointwise limit) It is tempting to try to
exchange limit and integral in (22), to obtain

lim
r→0

P(x ∈ Θn⊕r)
bd−nrd−n

= λΘn(x), (24)

at least for νd-a.e. x ∈ Rd. The proof of the validity of this formula for abso-
lutely continuous (in mean) processes seems to be a quite delicate problem, with
the only exception of stationary processes. However, in the extreme cases n = d

and n = 0 it is not hard to prove it.
In the case n = d we know from Remark 10 that λΘd

(x) = P(x ∈ Θd) for
νd-a.e. x, and obviously P(x ∈ Θd⊕r) converges to P(x ∈ Θd) for all x.
In the case n = 0, let Θ0 = {X}, with X absolutely continuous random point in
Rd with pdf pX , and notice that

P(x ∈ Θ0⊕r)
bdrd

=
P(X ∈ Br(x))

bdrd
=

1
bdrd

∫

Br(x)

pX(y)dy.

Therefore (24) with λΘ0 = pX holds at any Lebesgue point of pX , and therefore
for νd-a.e. x ∈ Rd.
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5 Applications

In many real applications Θn is given by a random collection of geometrical
objects, so that it may be described as the union of a family of n-regular random
closed sets Ei in Rd:

Θn =
⋃

i

Ei. (25)

Here we don’t make any specific assumption regarding the stochastic dependence
among the Ei. In fact, if Θn is known to be absolutely continuous in mean, a
problem of interest is to determine its mean density λΘn

, and Theorem 17 seems
to require sufficient regularity of the Ei’s, rather than stringent assumptions
about their probability law. As a simple example, consider the case in which,
for any i, Ei is a random segment in Rd such that the mean number of segments
which hit a bounded region is finite; then we will show in the sequel that Θ1

satisfies Proposition 13, without any other assumption on the probability law
of the Ei’s (e.g. the law of the point process associated with the centers of the
segments).

Note also that geometric processes like segment-, line-, or surface- processes
may be described by the so called union set of a particle process (see, for exam-
ple, [4, 23]):

Θn =
⋃

K∈Ψ

K,

where Ψ is a point process on the state space of Hn-rectifiable closed sets. It
is known that the stationarity of Θn depends on the stationarity of the point
process Ψ.

Other random closed sets represented by unions, as in (25), are given by

Θn =
Φ⋃

i=1

Ei, (26)

where Φ is a positive integer valued random variable, representing the random
number of geometrical objects Ei.
This kind of representation may be used to model a class of time dependent
geometric processes, too. For example, at any fixed time t ∈ R+, let Θt be
given by

Θt =
Φt⋃

i=1

Ei,

where Φt is a counting process in R+; e.g., if Φt is a Poisson counting process
with intensity λ, then at any time t the number of random objects Ei is given
by a random variable distributed as Po(λt); in this case the process {Θt} is
additionally determined by a marked point process Φ̃ in R+, with marks in a
suitable space: the marginal process is given by the counting process Φt, while
the marks are given by a family of random closed sets Ei.

In literature, many geometric processes like this are investigated, as point-,
line-, segment-, or plane processes, random mosaics, grain processes,...
Note that Θn may be unbounded, given by an infinite union of random sets Ei
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(e.g. as in (25) with Ei random line). In such a case, when we consider the
restriction of Θn to a bounded window W ⊂ Rd, by the usual assumption that
the mean number of Ei’s hitting a bounded region is finite, we may represent

Θn ∩W =
Φ⋃

i=1

EW
i ,

with EW
i = Ei ∩W , the union above being finite almost surely.

We give now some significant simple examples of random sets of this kind,
to which the results of the previous sections apply.

Example 1. A class of random sets satisfying hypotheses of Theorem 17 is
given by all sets Θn which are random union of random closed sets of dimension
n < d in Rd as in (26), such that

(i) E[Φ] < ∞,

(ii) E1, E2, . . . are IID as E and independent of Φ,

(iii) E[Hn(E)] = C < ∞ and ∃γ > 0 such that for any ω ∈ Ω,

Hn(E(ω) ∩Br(x)) ≥ γrn ∀x ∈ E(ω), r ∈ (0, 1). (27)

We can choose η(·) :=
Hn(Θn(ω) ∩ ·)
Hn(Θn(ω))

for any fixed ω ∈ Ω. As a consequence,

η is a probability measure absolutely continuous with respect to Hn, and such
that

η(Br(x)) ≥ γ

Hn(Θ(ω))
rn ∀x ∈ Θn(ω), r ∈ (0, 1).

In fact, if x ∈ Θn(ω), then there exists an ı̄ such that x ∈ Eı̄(ω); since Θn(ω) =⋃Φ(ω)
i=1 Ei(ω), we have

η(Br(x)) =
Hn(Θn(ω) ∩Br(x))

Hn(Θn(ω))
≥ Hn(Eı̄(ω) ∩Br(x))

Hn(Θn(ω))
≥ γ

Hn(Θ(ω))
rn.

As a result, the function Γ defined as in Theorem 17 is such that

1
Γ(ω)

≤ Hn(Θn(ω))
γ

=: Y (ω),

and so it remains to verify only that E[Hn(Θn)] < ∞:

E[Hn(Θn)] = E[E[Hn(Θn) |Φ]]

=
∞∑

k=1

E[Hn(
k⋃

i=1

Ei) |Φ = k]P(Φ = k)

(ii)

≤
∞∑

k=1

k∑

i=1

E[Hn(Ei)]P(Φ = k)

(iii)
=

∞∑

k=1

CkP(Φ = k)

= CE[Φ]
(i)
< ∞.
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Note that we have not made any particular assumption on the probability laws
of Φ and E. Further, it is clear that the same proof holds even in the case in
which the Ei’s are not IID, provided that E[Hn(Ei)] ≤ C, ∀i, and (27) is true
for any Ei (with γ independent of ω and i).

By keeping the general assumption that Φ is an integrable positive, integer
valued random variable, we may write the probability that a point x belongs to
the set Θn⊕r

in terms of the mean number of Ei which intersect the ball Br(x).
We prove the following proposition.

Proposition 21 Let n < d, let Φ be a positive integer valued random variable
with E[Φ] < ∞, and let {Ei} be a collection of random closed sets with dimension
n. Let Θn be the random closed set so defined:

Θn =
Φ⋃

i=1

Ei.

If E1, E2, . . . are IID as E and independent of Φ, then, for any x ∈ Rd such
that P(x ∈ E) = 0,

lim
r→0

P(x ∈ Θn⊕r )
bd−nrd−n

= lim
r→0

E[#{Ei : x ∈ Ei⊕r}]
bd−nrd−n

,

provided that at least one of the two limits exist.

Proof. The following chain of equalities holds:

P(x ∈ Θn⊕r ) = P(x ∈
Φ⋃

i=1

Ei⊕r )

= 1− P(x 6∈
Φ⋃

i=1

Ei⊕r )

= 1− P(
Φ⋂

i=1

{x 6∈ Ei⊕r})

= 1−
∞∑

k=1

P(
k⋂

i=1

{x 6∈ Ei⊕r}) |Φ = k)P(Φ = k);

since the Ei’s are IID and independent of Φ,

= 1−
∞∑

k=1

[P(x 6∈ E⊕r)]kP(Φ = k)

= 1− E[(P(x 6∈ E⊕r))Φ]

= 1−G(P(x 6∈ E⊕r)), (28)

where G is the probability generating function of the random variable Φ.
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Now, let us observe that

E[#{Ei : x ∈ Ei⊕r}] =
∞∑

k=1

E[
k∑

i=0

1Ei⊕r
(x) |Φ = k]P(Φ = k)

=
∞∑

k=1

kP(x ∈ E⊕r)P(Φ = k)

= P(x ∈ E⊕r)
∞∑

k=1

kP(Φ = k)

= E[Φ]P(x ∈ E⊕r). (29)

We remind that E[Φ] = G′(1) and 1 = G(1).
In order to simplify the notation, let s(r) := P(x ∈ E⊕r). By hypothesis we
know that s(r) → 0 as r → 0; thus by (28) and (29) we have

lim
r→0

P(x ∈ Θn⊕r
)

E[#{Ei : x ∈ Ei⊕r}]
= lim

r→0

G(1)−G(1− s(r))
G′(1)s(r)

=
1

G′(1)
lim
r→0

G(1− s(r))−G(1)
−s(r)

=
1

G′(1)
G′(1) = 1. (30)

In conclusion we obtain

lim
r→0

P(x ∈ Θn⊕r )
bd−nrd−n

= lim
r→0

P(x ∈ Θn⊕r )
E[#{Ei : x ∈ Ei⊕r}]

E[#{Ei : x ∈ Ei⊕r}]
bd−nrd−n

(30)
= lim

r→0

E[#{Ei : x ∈ Ei⊕r}]
bd−nrd−n

. (31)

¤

Corollary 22 Under the same assumptions of Proposition 21, (29) and (31)
yield

lim
r→0

P(x ∈ Θn⊕r )
bd−nrd−n

= E[Φ] lim
r→0

P(x ∈ E⊕r)
bd−nrd−n

(32)

for any x ∈ Rd where at least one of the two limits exists.

Remark 23 1. Whenever it is possible to exchange limit and integral in (10),
we can use the fact that A is arbitrary to obtain

λΘn(x) = E[Φ] lim
r→0

P(x ∈ E⊕r)
bd−nrd−n

= E[Φ]λE(x),

for νd-a.e. x ∈ Rd, where λΘn and λE are the mean densities of µΘn and µE,
respectively. In particular, when E is stationary (which implies Θn stationary
as well), λΘn(x) ≡ LΘn ∈ R+ and λE(x) ≡ LE ∈ R+, so that

LΘn = E[Φ] lim
r→0

P(x0 ∈ E⊕r)
bd−nrd−n

= E[Φ]LE .
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2. Let Θn be a random closed set as in Proposition 21. By (32) we infer
that the probability that a point x belongs to the intersection of two or more
enlarged sets Ei is an infinitesimal faster than rd−n. In fact, denoting by Fr(x)
this event and by χG : Ω → {0, 1} the characteristic function of an event G, we
have

χFr(x) ≤
∑

i

χ{x∈Ei⊕r} − χ{x∈Θn⊕r},

so that, as (29) gives

E[
∑

i

χ{x∈Ei⊕r}] = E[Φ]P(x ∈ E⊕r),

taking expectations in both sides and dividing by rd−n we get that P(Fr(x))/rd−n →
0 as r → 0.

Example 2. (Poisson line process.)
Now, we recall the definition of a Poisson line process, given in [23] as a simple
example of applicability of the above arguments. We shall obtain the same re-
sult for the mean density of the random length measure.
Line processes are the simplest examples of fibre processes. Such random pat-
terns can be treated directly as random sets; however, they can also be con-
sidered as point processes with constituent “points” lying not in the Euclidean
space, but in the space of lines in the plane, which can be parameterized as a
cylinder C∗ in R3 (see [23], Ch. 8):

C∗ = {(cos α, sin α, p) : p ∈ R, α ∈ (0, π]},
where p is the signed perpendicular distance of the line l from the origin 0 (the
sign is positive if 0 lies to the left of l and negative if it lies to the right), and α

is the angle between l and the x-axis, measured in an anti-clockwise direction.
“A line process is a random collection of lines in the plane which is locally
finite, i.e. only finitely many lines hit each compact planar set. Formally it
is defined as a random subset of the representation space C∗. The process is
locally finite exactly when the representing random subset is a random locally
finite subset, hence a point process, on C∗. Such point processes are particular
cases of point processes on R2, because, as suggested by the parametrization
(p, α), the cylinder can be cut and embedded as the subset R × (0, 2π] of R2”
([23], p.248).
A line process Θ1 = {l1, l2, . . .}, when regarded as a point process on C∗, yields
an intensity measure Λ on C∗:

Λ(A) = E[#{l : l ∈ Θ1 ∩A}]
for each Borel subset A of C∗.
A Poisson line process Ξ is the line process produced by a Poisson process
on C∗. Consequently it is characterized completely by its intensity measure Λ.
Under the assumption of stationarity of Ξ, it follows that there exists a constant
LΞ > 0 such that the intensity measure Λ of Ξ is given by

Λ(d(p, α)) = LΞ · dp · dα

2π
;
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besides, it is clear that the measure E[H1(Ξ∩ ·)] is motion invariant on R2, and
so there exists a constant c such that

E[H1(Ξ ∩A)] = cν2(A)

for any A ∈ BR2 .
Such a constant c can be calculated using the cylinder representation of Ξ; it is
shown that c = LΞ (see [23], p.249).

We show now that the same statement can be obtained as a consequence of
(9).
As a matter of fact, by stationarity we know that

cν2(A) = lim
r→0

P(0 ∈ Ξ⊕r)
2r

ν2(A) (33)

holds for any Borel set A which satisfies condition (8), so that it is sufficient to
prove that

lim
r→0

E[ν2(Ξ⊕r ∩A)]
2r

= E[H1(Ξ ∩A)]

holds for a particular fixed A. Let us choose a closed square W in R2 with edges
P1, P2, P3, P4, and side length h.
Note that Θ1 := Ξ∩W⊕1 is a countably H1-rectifiable and compact random set
and, by the absolute continuity of the expected measure, E[H1(Ξ∩∂W ] = 0 (so
that P(H1(Ξ ∩ ∂W ) > 0) = 0).
For any ω ∈ Ω let us define

η(·) :=
H1(Θ1(ω) ∩ · )
H1(Θ1(ω))

.

Then η is a probability measure absolutely continuous with respect to H1 such
that

η(Br(x)) ≥ 1
H1(Θ1)

r ∀x ∈ Θ1(ω), r ∈ (0, 1),

and we may notice that H1(li(ω)∩W⊕1) ≤ (h + 2)
√

2 for any ω ∈ Ω, for any i.
Let I := {i : li ∩W⊕1 6= ∅}, and ΦW := card(I); we know that E[ΦW ] < ∞, so

E[H1(Θ1)] = E[
∑

i∈I

H1(li ∩W⊕1)] ≤ (h + 2)
√

2E[ΦW ] < ∞.

The hypotheses of Theorem 17 are satisfied with A = W and Y = H1(Θ1), thus
we obtain

lim
r→0

E[ν2(Ξ⊕r ∩W )]
2r

= E[H1(Ξ ∩W )].

In conclusion, remembering that the number Nr of lines of Ξ hitting the ball
Br(0) is a Poisson random variable with mean 2rLΞ ([23], p.250), by (33) we
obtain

c = lim
r→0

P(0 ∈ Ξ⊕r)
2r

= lim
r→0

P(Ξ ∩Br(0) 6= ∅)
2r

= lim
r→0

P(Nr ≥ 1)
2r

= lim
r→0

1− e−2rLΞ

2r
= LΞ.
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Remark 24 In the above example we have chosen the measure η as the restric-
tion of the Hausdorff measure H1 to a suitable set containing Ξ∩W . As a matter
of fact, due to the stochasticity of the relevant random closed set Ξ, problems
may arise in identifying a measure η needed for the application of Theorem 17.
A proper choice of η can be made by referring to another suitable random set
containing Ξ. We further clarify such procedure by the following example.

Example 3. (Segment processes.)
Let Θ1 be a random closed set in R2 such that

Θ1 :=
Φ⋃

i=1

Si,

where Φ is a counting process (i.e. a positive integer valued random variable)
with E[Φ] < ∞, and S1, S2, . . ., are random segments independent of Φ, ran-
domly distributed in the plane with random lengths H1(Si) in [0,M ].

Let us consider a realization Θ1(ω) and define η(·) :=
H1(Θ1(ω) ∩ ·)
H1(Θ1(ω))

.

Let x ∈ Θ1(ω); then an ı̄ exists such that x ∈ Sı̄(ω), and so

η(Br(x)) =
H1(Θ1(ω) ∩Br(x))

H1(Θ1(ω))
≥ H1(Sı̄(ω) ∩Br(x))

H1(Θ1(ω))
.

Fixed r ∈ (0, 1), observe that, if Sı̄(ω)∩∂Br(x) 6= ∅, thenH1(Sı̄(ω)∩Br(x)) ≥ r,
while if Sı̄(ω) ⊆ Br(x), then H1(Sı̄(ω) ∩ Br(x)) = H1(Sı̄(ω)) ≥ H1(Sı̄(ω))r.
Suppose that Φ(ω) = n and define

L(ω) := min
i=1,...,n

{H1(Si(ω))}.

We have that

η(Br(x)) ≥ min{1, L(ω)}
H1(Θ1(ω))

r, ∀x ∈ Θ1(ω), r ∈ (0, 1).

Thus, Θ1(ω) satisfies the hypotheses of Theorem 1.
If we want to apply Theorem 17, the above is not a good choice for η. In fact,

1
Γ(ω)

≤ max{H1(Θ1(ω)),
H1(Θ1(ω))

L(ω)
} =: Y (ω),

and we may well have E[Y ] 6< ∞. In this case, a possible solution to the
problem is to extend all the segments with length less than 2 (the extension can
be done omothetically from the center of the segment, so that measurability of
the process is preserved). In particular, for any ω ∈ Ω, let

S̃i(ω) =
{

Si(ω) if H1(Si(ω)) ≥ 2,
Si(ω) extended to length 2 if H1(Si(ω)) < 2;

and

Θ̃1(ω) :=
Φ(ω)⋃

i=1

S̃i(ω).
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In this way, for every x ∈ Θ1(ω), there exists an ı̄ such that x ∈ S̃ı̄(ω) with
S̃ı̄(ω) ∩ ∂Br(x) 6= ∅ for any r ∈ (0, 1). If we define

η(·) :=
H1(Θ̃1(ω) ∩ ·)
H1(Θ̃1(ω))

,

then
η(Br(x)) ≥ 1

H1(Θ̃1(ω))
r ∀x ∈ Θ1(ω), r ∈ (0, 1),

and so in this case we have Y = H1(Θ̃1), and

E[Y ] = E[H1(
Φ⋃

i=1

S̃i)] = E[E[
Φ∑

i=1

H1(S̃i) |Φ]]

=
∞∑

n=1

n∑

i=1

E[H1(S̃i) |Φ = n]P(Φ = n) ≤
∞∑

n=1

n(M + 2)P(Φ = n)

= (M + 2)E[Φ] < ∞.

(The same holds whenever the Si’s are IID as S with E[H1(S)] < ∞.)
Note the peculiar role played by the geometrical properties of the random set.

A particular segment process is the well known stationary Poisson segment
process in Rd [4, 23]. In this case each segment Si is determined by its reference
point ci, length and orientation. The ci’s are given by a stationary Poisson
point process Ψ with intensity α > 0, while length, say R, and orientation are
supposed to be random and independent, with E[R] < ∞. Then the measure
E[µΘ1 ] induced by the segment process is stationary, and it can be proved (see
e.g. [4], p. 42, [23]) that its density is given by λ(x) = αE[R] =: L, for any
x ∈ Rd.
Clearly, the resulting random closed set is not compact and the mean number
of segments which intersect a fixed bounded region is finite. Using Theorem 19,
and because of stationarity, we know that

L = lim
r→0

P(0 ∈ Θ1⊕r )
bd−1rd−1

.

Let us first consider for simplicity the particular case in which orientation and
length R are both fixed. Then, denoted by K the subset of Rd such that a
segment with reference point in K hits the ball Br(0), then it is easy to see that
νd(K) = bd−1r

d−1R + bdr
d, and

P(0 ∈ Θ1⊕r ) = P(Ψ(K) > 0) = 1− e−ανd(K),

so that we obtain

lim
r→0

1− e−α(bd−1rd−1R+bdrd)

bd−1rd−1
= αR. (34)

Note that this does not depend on orientation, so, if now we return to consider
the case in which length and orientation are random, it easily follows that

L = αE[R],
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as we expected.

Geometric processes of great interest in applications are the so called fibre
processes. A fibre process Θ1 is a random collection of rectifiable curves. A
relevant real system which can be modelled as a fibre process is the system of
vessels in tumor driven angiogenesis. Estimation of the mean length intensity
of such system are useful for suggesting important methods of diagnosis and of
dose response in clinical treatments [7, 11, 12].

It is clear that, as in Example 3, Theorem 17 can be applied also to this
kind of H1-rectifiable random closed sets, going to consider as Θ̃1 the random
closed set given by the union of suitably extended fibres. As a consequence,
Proposition 13 holds for fibre processes, and we may obtain information about
the measure E[µΘ1 ], also under hypotheses of inhomogeneity of the process.

Example 4. (Boolean models.)
Another geometric process, well known in literature, is given by a inhomoge-
neous Boolean model of spheres (see [23]); i.e. Θd−1 turns out to be a random
union of spheres in Rd, and so it may be represented as follows

Θd−1(ω) :=
⋃

i

∂BRi(ω)(Yi(ω)),

where Yi is a random point in Rd, given by a Poisson point process in Rd, and
Ri is a positive random variable (e.g. R ∼ U [0,M ]). As a consequence, the
mean number of balls which intersect any compact set K is finite. In order to
claim that (8) holds, we proceed in an analogous way as in the previous example
for a stationary Poisson segment process; it is clear that if Theorem 17 holds
for a random closed set

Ξd−1 :=
Φ⋃

i=1

∂BRi(ω)(Yi(ω)), (35)

where Φ is a positive integer valued random variable with finite expected value,
and Yi is a random point in Rd, then the thesis follows.
Since in general 1/Hd−1(∂BRi(Yi)) has not a finite expected value, using the
same approach as in the previous example, we are going to consider a suitable
random set Ξ̃d−1 containing Ξd−1.
Let d = 2; the case d > 2 follows similarly. For any ω ∈ Ω, let

Bi(ω) =
{

BRi(ω)(Yi(ω)) if Ri(ω) ≥ 1
2 ,

BRi(ω)(Yi(ω)) ∪ lYi(ω) if Ri(ω) < 1
2 ,

where lYi(ω) is a segment centered in Yi(ω) with length 3, and

Ξ̃1(ω) :=
Φ(ω)⋃

i=1

∂Bi(ω).

In this way, for every x ∈ Ξ1(ω), there exists an ı̄ such that x ∈ ∂Bı̄(ω) with
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∂Bı̄(ω) ∩ ∂Br(x) 6= ∅ for any r ∈ (0, 1). We define

η(·) :=
H1(Ξ̃1(ω) ∩ ·)
H1(Ξ̃1(ω))

.

Let r ∈ (0, 1) be fixed and observe that, if Rı̄(ω) ≥ r
2 , then ∂Br(x)∩∂BRı̄(ω)(Yı̄(ω)) 6=

∅, and so

η(Br(x)) ≥ 2r

H1(Ξ̃1(ω))
.

On the other hand, Rı̄(ω) < r
2 < 1/2, let s := dist(x, lYı̄(ω)), and m :=

H1(lYı̄(ω) ∩Br(x)); then s2 ≤ Rı̄(ω)2 ≤ r2

4 and

η(Br(x)) ≥ m

H1(Ξ̃1(ω))
=

2
√

r2 − s2

H1(Ξ̃1(ω))
≥

√
3r

H1(Ξ̃1(ω))
.

Hence, summarizing, we have

η(Br(x)) ≥
√

3
H1(Ξ̃1(ω))

r ∀x ∈ Ξ1(ω), ∀r ∈ (0, 1),

and it is clear that E[H1(Ξ̃1)] < ∞; thus Theorem 17 holds for Ξ̃1, with W = Rd

and Y := H1(Ξ̃1)/
√

3.
Consider now the random closed set Ξ1 defined by (35), where Φ, Ri and

Xi are chosen as before. It is clear that Theorem 17 holds for Ξ1 as well, since
Ξ1 ⊆ Ξ̃1.

Example 5. (Birth-and-growth processes.)
Let {Θt} be a birth-and-growth process [8] with a nucleation process defined by
a random measure N on R+ × Rd, and a constant growth rate G > 0.

The random measure N, defining the nucleation process, is given by

N =
∞∑

n=1

εTn,Xn ,

where

• Tn is an R+-valued random variable representing the time of birth of the
n-th nucleus,

• Xn is random point in Rd representing the spatial location of the nucleus
born at time Tn,

• εt,x is the Dirac mass concentrated at (t, x).

For any fixed time t, Θt is the union of a finite and random number of random
balls in Rd:

Θt =
⋃

i:Ti≤t

BG(t−Ti)(Xi).
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As a consequence of Theorem 17 we have that Proposition 13 applies, so that

lim
r→0

E[Hd((∂Θt)⊕r ∩A))]
2r

= E[Hd−1(∂Θt ∩A)].

If the random set ∂Θt turns out to be absolutely continuous in mean, then
we have

lim
r→0

∫

A

P(x ∈ ∂Θt
⊕r)

bd−nrd−n
dx =

∫

A

SV (t, x)dx,

where SV is the so called mean surface density SV associated to the birth and
growth process.
As a simple example in which ∂Θt is absolutely continuous, but not stationary,
let us consider a nucleation process N given by an inhomogeneous Poisson point
process, with intensity α(t, x). We may prove this as follows:
By absurd, let E[Hd−1(∂Θt ∩ ·)] be not absolutely continuous with respect to
νd; then there exists A ⊂ Rd with νd(A) = 0 such that E[Hd−1(∂Θt ∩A)] > 0.
It is clear that

E[Hd−1(∂Θt ∩A)] > 0 ⇒ P(Hd−1(∂Θt ∩A) > 0) > 0,

and

P(Hd−1(∂Θt ∩A) > 0) ≤ P(∃(Tj , Xj) : Hd−1(∂BG(t−Tj)(Xj) ∩A) > 0).

As a consequence, we have

E[Hd−1(∂Θt ∩A)] > 0 ⇒ P(Φ(A) 6= 0) > 0,

where
A := {(s, y) ∈ [0, t]× Rd : Hd−1(∂BG(t−s)(y) ∩A) > 0)}.

Denoting by As := {y ∈ Rd : (s, y) ∈ A} the section of A at time s, and by
Ay := {s > 0 : (s, y) ∈ A} the section of A at y, we notice that ν1(Ay) = 0
for all y, because νd(A) = 0 (it suffices to use spherical coordinates centered
at y to obtain that ν1-a.e. ball with radius s centered at y intersects A in a
Hd−1-negligible set). Therefore we may apply Fubini’s theorem to get
∫ ∞

0

νd(As) ds =
∫ ∞

0

∫

Rd

χA dy ds =
∫

Rd

∫ ∞

0

χA ds dy =
∫

Rd

ν1(Ay) dy = 0.

It follows that νd(As) = 0 for ν1-almost every s ∈ [0, t], and so

E[Φ(A)] =
∫

A
α(s, y) dsdy =

∫ t

0

∫

As

α(s, y) dy ds = 0.

But this is an absurd, since

P(Φ(A) 6= 0) > 0 ⇒ E[Φ(A)] > 0.

Example 6. (Random Johnson-Mehl tessellations.)
In a birth-and-growth process as in the previous example, where N is a time
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inhomogeneous Poisson marked point process, one may consider the associated
random Johnson-Mehl tessellation generated by the impingement of two grains
which stop their growth at points of contact (see [18]); briefly, the system of
n-facets of a Johnson-Mehl tessellation at time t > 0 is a random finite union
of a system of random n-regular sets F

(n)
i (t), 0 ≤ n ≤ d:

Ξt
n :=

⋃

i

F
(n)
i (t).

Again, it can be shown that Proposition 13 applies, so that we may approximate
mean n-facet densities, for all 0 ≤ n ≤ d.
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