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Introduction

Geometric measure theory concerns the geometric structure of Borel sets and
measures in euclidean spaces in order to study their regularities (i.e. if they
possess some smoothness) or irregularities, with the aim to find criteria which
guarantee rectifiability (see, e.g., [4, 30, 32, 50]). Every set or measure can
be decomposed in its rectifiable and its non-rectifiable part and these parts
behave entirely different. From geometric measure theory follows connections
with the decomposition of a measure into absolutely continuous part, jump
part and Cantor part and so the notion of dimensional density of a set in terms
of the density of its induced measure. Roughly speaking, rectifiable sets and
measures are the largest class of sets on which an analogue of the classical
calculus on manifolds (approximation by tangent spaces, etc.) can be performed.
Thus Hausdorff measures, Hausdorff dimensions, rectifiable sets, area and coarea
formulas, Minkowski content are the basic ingredients of geometric measure
theory, and they turn to be essential tools whenever one has to deal with sets at
different Hausdorff dimensions and in several problems raised by image analysis,
solid and liquid crystals theory, continuous mechanics...

In many real applications, the need of dealing with the same kind of prob-
lems in a stochastic context emerges. Application areas include crystallization
processes (see [47, 21], and references therein; see also [66] for the crystallization
processes on sea shells); tumor growth [6] and angiogenesis [27]; spread of fires in
the woods, spread of a pollutant in the environment; etc. All quoted processes
may be described by time dependent random closed sets at different Hausdorff
dimensions (for instance, crystallization processes are modelled in general by full
dimensional growing sets, and lower dimensional interfaces, while angiogenesis
by systems of random curves).

Typical problems concern the characterization of such random objects in
terms of relevant quantities (mean densities, volume and surface expected mea-
sures,...) characterizing the geometric process. Therefore, in a stochastic set-
ting, we have to deal with tools of stochastic geometry, together with concepts
of geometric measure theory.
It is well known that if a result holds “almost surely”, in general it does not
hold “in mean”, and viceversa. Thus the application, in a stochastic context,
of methods and results which are proper of a deterministic setting (in our case,
methods and results form geometric measure theory), requires additional regu-
larity conditions on the referring random set.

In dependence of its regularity, a random closed set Θn with Hausdorff di-
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mension n (i.e. dimHΘn(ω) = n for a.e. ω ∈ Ω), may induce a random Radon
measure

µΘn
(·) := Hn(Θn ∩ · )

on Rd (Hn is the n-dimensional Hausdorff measure), and, as a consequence, an
expected measure

E[µΘn
(·)] := E[Hn(Θn ∩ · )].

In several real applications it is of interest to study the density (said mean
density) of the measure E[µΘn ] [13], and, in the dynamical case, its evolution in
time [54, 55].

The principal aim of the present thesis is to provide a framework for dealing
with random closed sets at different Hausdorff dimensions in order to describe
them in terms of their mean densities, based, whenever necessary, on concepts
and results from geometric measure theory.

It is clear that, if n < d, for a.e. ω ∈ Ω, the measure µΘn
(ω) is singular,

while its expected measure E[µΘn
] may be absolutely continuous with respect

to the usual d-dimensional Lebesgue measure νd. Thus, a first problem, is to
introduce a suitable formalism which apply both to random closed sets with
singular expected measure, and not. To this end, rectifiability conditions on
the referring random set, together with basic ideas of the theory of generalized
functions are needed. So we introduce a Delta formalism, á la Dirac, for the
description of random measures associated with random closed sets of lower
dimensions, such that the well known usual Dirac delta at a point follows as a
particular case (see, for instance, [40, 45, 67]). In this way, in the context of time
dependent growing random sets, we provide a natural framework for deriving
evolution equations for mean densities at all (integer) Hausdorff dimensions, in
terms of the relevant kinetic parameters associated with a given growth process
[26, 24].

In dealing with mean densities, a concept of absolutely continuous random
closed set arises in a natural way in terms of the expected measure; indeed, an
interesting property of a random set in Rd is whether the expected measure
induced by the random set is absolutely continuous or not with respect to the
d-dimensional Lebesgue measure νd. In classical literature on stochastic geome-
try (see, e.g., [49]) the concept of continuity of a random closed set has not been
sufficiently analyzed, and does not seem to provide sufficient insight about the
structure of the relevant random closed set, so that we have introduced defini-
tions of discrete, continuous and absolutely continuous random closed set, which
extend the standard definition of discrete, continuous and absolutely continu-
ous random variable, respectively [23, 25]. The definition of absolute continuity
is given in terms of the absolute continuity of the expected measure associated
with the random set with respect to νd, so that geometrical stochastic properties
of the random set may be related to its mean density.

In many real applications such as fibre processes, n-facets of random tes-
sellations of dimension n ≤ d in spaces of dimension d ≥ 1, several problems
are related to the estimation of such mean densities (see e.g. [13, 55, 64]). For
instance, in R2, since points and lines are ν2-negligible, it is natural to make
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use of their 2-D box approximation. As a matter of fact, a computer graphics
representation of them is anyway provided in terms of pixels, which can only
offer a 2-D box approximation of points in R2. By geometric measure theory we
know that the Hausdorff measure of a sufficiently regular set can be obtained
as limit of the Lebesgue measure (much more robust and computable) of its
enlargement by Minkowski addition. Thus, we consider a particular approxi-
mation of the mean densities for sufficiently regular random closed sets based
on a stochastic version of the existence of the Minkowski content [2]. This pro-
cedure suggests unbiased density estimators and it is consistent with the usual
histogram estimation of probability densities of a random variable, known in
literature [58].

The “enlargement” of a growing set in time may be regarded as a suitable
Minkowski enlargement; since first order Steiner formulas propose a relation
between the Hausdorff measure of the boundary of a set and the derivative in r =
0 of the volume of the enlarged set by Minkowski addition with a ball of radius
r, we ask if a mean first order Steiner formula holds for some classes of random
closed sets. To treat directly mean first order Steiner formulas is still an open
problem. Here we start by almost sure convergence (i.e. the random closed set
satisfies a first order Steiner formula P-a.s.), and we obtain the L1-convergence
(i.e. the mean first order Steiner formula) by means of uniform integrability
conditions. The most general result known in current literature is that a first
order Steiner formula holds (in the deterministic case) for unions of sets with
positive reach (see [59, 42, 37]), and it is proved by tools of integral and convex
geometry. Here we offer a different proof of this for finite unions of sets with
positive reach, which seems to be more tractable in the stochastic case, based
on elementary tools of measure theory (in particular on the inclusion-exclusion
theorem), togheter with a basic Federer’s result on sets with positive reach.
Further, through a different approach, by considering sets with finite perimeter,
we prove that a first order Steiner formula holds for sets with Lipschitz boundary,
and we give also a local version of it. Then, by applying the quoted result on the
existence of the Minkowski content in a stochastic setting (which guarantees the
exchange between limit and expectation), we obtain that a local mean first order
Steiner formula holds, under suitable regularity assumptions on the random set
[1]. This result plays a fundamental role in deriving evolution equations for the
mean densities of growing random closed sets.

Since many real phenomena may be modelled as dynamic germ-grain models,
we consider, as working example, geometric processes associated with birth-and-
growth processes driven by a marked point process N = {(Ti, Xi)}i∈N on R+

with marks in Rd, modelling births, at random times Ti ∈ R+, and related
random spatial locations Xi ∈ Rd [39, 64]. Once born, each germ generates
a grain, which is supposed to grow according with a deterministic space-time
dependent given field.
Denoted by Θt the evolving random closed set at time t, we provide a relation
between the time derivative of the mean densities of Θt and the probability
density function of the random time of capture T (x) of a point x ∈ Rd by the
growing random set. On one hand, by survival analysis [5], T (x) is strictly
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related to the hazard and survival functions of x; on the other hand, we prove
a relation between the hazard function and the spherical contact distribution
function, a well studied tool in stochastic geometry [36], which is in connection
with the mean first order Steiner formula associated with Θt, and so with the
mean density of ∂Θt.
Thus, under suitable general condition on the birth-and-growth process, we
may write evolution equations of the mean volume density associated to Θt

in terms of the growing rate and of the mean surface density (i.e. the mean
density associated to ∂Θt). Such equations turn to be the stochastic analogous
of evolution equations known in literature for deterministic growing sets [12, 17,
19, 65]; indeed they may be formally obtained taking the expected value in the
deterministic equation.

In Chapter 1 we introduce some basic definitions and results from geometric
measure theory and from stochastic geometry, which will be useful in the sequel.
In Chapter 2 we give suitable regularity conditions on random closed sets such
that it is possible to deal with densities, to be meant in a generalized sense, in
order to treat also singular measures. According to Riesz Representation Theo-
rem, we may regard such densities as (random) linear functionals and interpret
them as generalized Radon-Nikodym derivatives (in a distributional sense), of
the associated expected measured. We do this first in the deterministic case,
then in the stochastic one. In Chapter 3 we introduce definitions of discrete,
continuous and absolutely continuous random closed set. In particular we dis-
tinguish between absolute continuous in mean and strong; this last one requires
additional regularity conditions on the random set, in order to exclude some
“pathological” cases, like sets with Hausdorff dimension n, but n-dimensional
Hausdorff measure zero. For absolutely continuous random sets it follows that
the associated mean generalized density is a classical real function. Clearly, ran-
dom variables may be regarded as particular 0-dimensional random closed set;
the definitions given extend the standard definition of discrete, continuous and
absolutely continuous random variable, respectively. Further, we observe that
the well known relations between discrete, continuous and absolutely continuous
part of a Radon measure hold also for random closed sets, although in a different
context. With the aim to face real problems related to the estimation of mean
densities in the general setting of spatially inhomogeneous processes, in Chap-
ter 4 we suggest and analyze an approximation of mean densities for sufficiently
regular random closed sets, based on d-dimensional enlargements by Minkowski
addition. We show how some known results in literature follow as particular
cases, and we provide a series of examples to exemplify various relevant situa-
tions. In Chapter 5 we consider first order Steiner formulas for closed sets in
Rd. Roughly speaking, we may say that a first order Steiner formula holds for a
deterministic d-dimensional set A ⊂ Rd if there exists the derivative in r = 0 of
the volume of the enlarged set A⊕r by Minkowski addition with a ball of radius
r. When A is stochastic and we consider its expected volume, we speak of mean
first order Steiner formula. We prove that under regularity assumptions on the
random set, a local mean first order Steienr formula holds. In Chapter 6 we
apply all previous results in the context of birth-and-growth processes. The
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problem of the absolute continuity of T (x) in terms of quantities characterizing
the process is taken into account, and connections with the concepts of hazard
functions and spherical contact distribution functions, together with mean lo-
cal Steiner formulas at first order, are studied. As a result it follows that an
evolution equation (to be taken in a weak form) holds for the mean density of
the growing set. The particular case of a Poissonian nucleation process, often
taken as a model in several real applications, is also considered and compared
with other different nucleation processes in order to make clearer the crucial
property of independence of increment, typical of the Poisson process.
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Chapter 1

Preliminaries and notations

In this chapter we recall concepts and results of current literature which are
relevant for our analysis.

1.1 Measures and derivatives

We remember some basic definitions (e.g. see [4, 29, 30, 60, 61]).
A positive measure µ over a set X is a function defined on some σ-algebra S of
subsets of X and taking values in the range [0,∞] such that

(i) µ(∅) = 0,

(ii) µ(
⋃∞

j=1 Ej) =
∑∞

j=1 µ(Ej)
for every countable sequence of disjoint sets {Ej} ⊂ S.

If the property (ii) is weakened to subadditivity, µ is called outer measure; more
precisely, an outer measure µ on a set X is a function defined on all subsets of
X such that

(i) µ(∅) = 0,

(ii) µ(E) ≤ µ(E′) if E ⊂ E′,

(iii) µ(
⋃∞

j=1 Ej) ≤
∑∞

j=1 µ(Ej) for any {Ej} ⊂ X.

Outer measure are useful since there is always a σ-algebra of subsets on
which they behave as measures.
A subset E of X is called µ-measurable, or measurable with respect to the outer
measure µ if

µ(A) = µ(A ∩ E) + µ(A \ E) ∀A ⊂ X.

Theorem 1.1 ([30], p. 3) Let µ be an outer measure. The collection S of µ-
measurable sets forms a σ-algebra, and the restriction of µ to S is a measure.

Besides, all Borel sets are µ-measurable if and only if Caratheodory’s criterion
holds:
Let µ be an outer measure on the metric space X such that

dist(E, F ) > 0 =⇒ µ(E ∪ F ) = µ(E) + µ(F ) for any E, F ⊂ X;
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then the restriction of µ to the Borel sets of X is a positive measure.

Let us consider the space Rd and denote by νd the usual d-dimensional
Lebesgue measure. Note that νd is an outer measure and, according to Carathe-
odory criterion, its restriction to the Borel σ-algebra BRd of Rd is a Radon
measure.
We recall now some basic definitions:

• A measure µ on Rd is called Borel if every Borel set is µ-measurable.

• A measure µ on Rd is Borel regular if µ is Borel and for each A ⊂ Rd there
exists a Borel set B such that A ⊂ B and µ(A) = µ(B).

• A measure µ on Rd is a Radon measure if µ is Borel regular and µ(K) < ∞
for each compact set K ⊂ Rd.

Note that, given a Borel regular measure µ on Rd, we can generate a Radon
measure by restricting µ to a measurable set of finite measure.
Let us consider a positive Radon measure µ on Rd.

• µ is said to be concentrated on a set E0 if it is defined and equal to zero
on every Borel set E ⊂ Rd \ E0.

• µ is said to be continuous if it is defined and equal to zero on every set of
measure zero containing a single point (i.e. µ({x}) = 0 ∀ x ∈ Rd).

• µ is said to be absolutely continuous if it is defined and equal to zero on
every set of measure zero.

• µ is said to be singular if it is concentrated on a set E0 of measure zero.

• A singular measure µ is said to be discrete if it is concentrated on a set
E0 of measure zero containing no more than countably many points.

Beside, we remind that every measure µ can be represented in the form

µ(E) = A(E) + S(E) + D(E), (1.1)

where A(E) is absolutely continuous, S(E) is continuous and singular, and D(E)
is discrete.
We denote by µ¿ and µ⊥ the absolutely continuous part and the singular part
of µ, respectively. So, an equivalent form of (1.1) is

µ = µ¿ + µ⊥.

Remark 1.2

µ absolutely continuous ⇒ µ continuous, but not the reverse;

µ discrete ⇒ µ singular, but not the reverse.

Note that not all the finite measures on (R,BR) that are singular, are also
discrete. An example is the measure induced by the Cantor (singular) function:
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it is singular with respect to the Lebesgue measure, but it assigns measure zero
to every point of R, and so it is continuous and singular. The Cantor set is the
subset of [0, 1] constructed as follows:
the “middle third” of the interval [0, 1] is removed, i.e. the open interval ( 1

3 , 2
3 )

of length 1
3 . Next, the middle thirds of the two remaining intervals are removed,

i.e. the interval ( 1
9 , 2

9 ) is removed from [0, 1
3 ] and ( 7

9 , 8
9 ) is removed from [ 13 , 1].

Then the middle thirds of each of the four intervals [0, 1
9 ], [ 29 , 1

3 ], [ 23 , 7
9 ] and [ 89 , 1]

are removed, and so on. The remaining closed set C is called the Cantor set.
Equivalently, if we denote by

E1 = (
1
3
,
2
3
)

E2 = (
1
9
,
2
9
) ∪ (

7
9
,
8
9
)

...

we may represent the Cantor set by

C := [0, 1]−
∞⋃

n=1

En.

It follows that C is closed, it has no interior points, it has the power of contin-
uum and it has Lebesgue measure zero.
Now, let A1, A2, . . . , A2n−1 be the subintervals of

⋃n
i=1 Ei, ordered with increas-

ing order; for example, if n = 3:

E1 ∪ E2 ∪ E3

= (
1
27

,
2
27

) ∪ (
1
9
,
2
9
) ∪ (

7
27

,
8
27

) ∪ (
1
3
,
2
3
) ∪ (

19
27

,
20
27

) ∪ (
7
9
,
8
9
) ∪ (

25
27

,
26
27

)

= A1 ∪A2 ∪ . . . ∪A7

We set

Fn(0) = 0

Fn(x) =
k

2n
if x ∈ Ak, k = 1, 2, . . . , 2n − 1

Fn(1) = 1,

completing by linear interpolation; for example, if n = 2 (see Fig.1.1):

E1 ∪ E2 = (
1
9
,
2
9
) ∪ (

1
3
,
2
3
) ∪ (

7
9
,
8
9
) = A1 ∪A2 ∪ A3

F2(x) =
1
4

if x ∈ A1

=
1
2

if x ∈ A2

=
3
4

if x ∈ A3

It can be shown that
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Figure 1.1: The function Fn(x) when n = 2.

F : [0, 1] −→ [0, 1]

x 7−→ F (x) := lim
n→∞

Fn(x)

is increasing and continuous. Let µ be the measure on R so defined:
µ((−∞, 0) = 0,
µ([0, x]) = F (x) ∀x ∈ [0, 1],
µ((1,+∞)) = 0.

Then, µ(C) = 1 and µ({x}) = 0 ∀x ∈ R; thus it is continuous and singular,
but it is not discrete since it is concentrated on a set which is not countable.
In other words, it can not be written as

∑
i δxi , where xi ∈ [0, 1] and δxi is the

Dirac delta at point xi.

From now on, r is a positive quantity (i.e. r ∈ R+), and so r → 0 has to be
intended r → 0+.

We know that, denoted by Br(x) the d-dimensional closed ball centered in
x with radius r, it is possible to define the following quantities:

(Dµ)(x) := lim sup
r→0

µ(Br(x))
νd(Br(x))

, (Dµ)(x) := lim inf
r→0

µ(Br(x))
νd(Br(x))

.

Definition 1.3 If (Dµ)(x) = (Dµ)(x) < +∞, then their common value is
called the symmetric derivative of µ at x and is denoted by (Dµ)(x).
(Dµ)(x) and (Dµ)(x) are also called upper and lower densities of µ at x.

The following is an application of the Besicovitch derivation theorem ([4], p. 54):

Theorem 1.4 Let µ be a positive Radon measure on Rd. Then, for νd-a.e. x,
the limit

f(x) := lim
r→0

µ(Br(x))
νd(Br(x))

11



exists in R; besides, the Radon-Nikodym decomposition of µ is given by

µ = fνd + µ⊥,

where µ⊥(·) = µ(E ∩ · ), with E the νd-negligible set

E =
{

x ∈ Rd : lim
r→0

µ(Br(x))
ν(Br(x))

= ∞
}

.

Thus, the above theorem provides a characterization of the support of the sin-
gular part. In particular, as a consequence of the theorem, we have that

(C1) µ ⊥ νd ⇐⇒ (Dµ)(x) = 0 νd-a.e.;

(C2) µ ¿ νd ⇐⇒ µ(B) =
∫

B

(Dµ)(x)νd(dx) for all Borel set B ⊂ Rd.

Even if, usually, by “density of µ” it is understood the Radon-Nikodym
derivative of µ with respect to νd, and so it is meant that µ is absolutely
continuous, actually, it is well known in literature the Delta “function” at a
point X0, as the (generalized) density of the singular Dirac measure [45].

Remark 1.5 Consider the Dirac measure εX0 associated with a point X0 ∈ Rd,
defined as

εX0(A) :=
{

1 if X0 ∈ A,
0 if X0 6∈ A.

Obviously εX0 is singular with respect to νd, and by (C1) we have that DεX0 = 0
νd-a.e.; in fact, in this case, in accordance with Theorem 1.4 we have that:

lim
r→0

εX0(Br(x))
bdrd

=

{
0 if x 6= X0,

lim
r→0

1
rd

= +∞ if x = X0,
(1.2)

where bj (j = 0, . . . , d) is the j-dimensional measure of the unit ball in Rj ;
note that νd(Br(x)) = bdr

d. We introduce the Dirac delta function δX0 as the
“generalized density” (distribution) of εX0 such that (see Section 1.3)

∫

A

δX0(x)νd(dx) := εX0(A). (1.3)

Due to (1.2) we may claim in a “generalized” sense that

δX0(x) =
{

0 if x 6= X0,
+∞ if x = X0,

and

εX0(A) =
∫

A

δX0(x)νd(dx) :=
{

1 if X0 ∈ A,
0 if X0 6∈ A;

so, formally, δX0(x) is a “fictitious” function which equal zero everywhere except
at x = X0 and has an integral equal to 1.
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By analogy with the Delta function, we want to introduce a concept of “den-
sity” for particular singular measures on Rd (for example, the measure of the
intersection of a given surface with a d-dimensional subset of Rd).
Note that, if we consider the restriction of the Lebesgue measure νd to a mea-
surable subset A of Rd, then the density of the absolutely continuous measure
νd(A ∩ · ) is also called the Lebesgue density of A.
We have the following theorem.

Theorem 1.6 (Lebesgue density theorem) ([30], p. 14) Let A be a mea-
surable subset of Rd. Then the Lebesgue density of A at point x

lim
r→0

νd(A ∩Br(x))
bdrd

(1.4)

exists and equals 1 if x ∈ A and 0 if x 6∈ A for νd-a.e. x.

For lower dimensional sets, the natural analogues of Lebesgue densities are
the socalled dimensional densities, given in terms of the Hausdorff measure.

1.2 Hausdorff measures and related concepts

Definition 1.7 Let A ⊂ Rd, 0 ≤ s < ∞, 0 < δ ≤ ∞. Define

Hs
δ(A) := inf





∞∑

j=1

b(s)
(

diamCj

2

)s

: A ⊂
∞⋃

j=1

Cj , diamCj < δ



 ,

where b(s) ≡ πs/2

Γ( s
2+1) , and

Hs(A) := lim
δ→0

Hs
δ(A) = sup

δ>0
Hs

δ(A).

Hs is called s-dimensional Hausdorff outer measure on Rd.
The restriction of Hs to the σ-algebra of Hs-measurable sets is called s-dimensional
Hausdorff measure.

Note that when s is integer, say s = n, than b(n) = bn, the volume of the unit
ball in Rn.
Countable subadditivity follows immediately from the definition, so Hs is an
outer measure; further, Hs is a Borel regular measure, but not a Radon measure
if 0 ≤ s < d, since Rd in not σ-finite with respect to Hs. The measurability of
Borel sets follows from Caratheodory’s criterion. Indeed, we have the following

Proposition 1.8 [4] The measure Hs are outer measures in Rd and, in partic-
ular, σ-additive on BRd .

The σ-algebra of Hs-measurable sets includes the Borel sets and the socalled
Souslin sets. Souslin sets, unlike the Borel sets, are defined explicitly in terms
of unions and intersections of closed sets; in particular, they are sets of the form

E =
⋃

i1,i2...

∞⋂

k=1

Ei1i2...ik
,
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where E11i2...ik
is a closed set for each finite sequence {i1, i2, . . . , ik} of positive

integers.
It may be shown that every Borel set is a Souslin set and that, if the underline
metric space is complete, then any continuous image of a Souslin set is Souslin.
Further, if µ is an outer measure on a metric space, then the Souslin sets are
µ-measurable.

Remark 1.9 If s = k is an integer, Hk agrees with ordinary “k-dimensional
surface area” on nice sets (see [29] p. 61), that is, for C1 k-dimensional subman-
ifolds of Rd, it coincides with the usual k-dimensional area (e.g. the length for
k = 1 or the surface for k = 2) ([64] p. 22; [4] p. 73).

Theorem 1.10 ([29], p. 63) As outer measures,
Hd = νd on Rd (and so Hd(A) = νd(A) for any Borel set A ⊂ Rd);
H1 = ν1 on R1;
H0 = ν0 is the usual counting measure.

In particular, by the definition of Hausdorff measure, it follows that ([29], p. 65):
Let A ⊂ Rd and 0 ≤ s < t < ∞; then

i) Hs(A) < ∞ ⇒ Ht(A) = 0,

ii) Ht(A) > 0 ⇒ Hs(A) = ∞.

Definition 1.11 The Hausdorff dimension of a set A ⊂ Rd is defined to be

dimH(A) := inf{0 ≤ s < ∞|Hs(A) = 0}.

Remark 1.12 dimH(A) need not to be an integer; for example, the Hausdorff
dimension of the Cantor set is s = log 2/ log 3 = 0, 6309 . . . (see [30] p. 14).
Besides, dimH(A) = s does not imply that Hs(A) is positive and finite; we may
have dimH(A) = s and Hs(A) = 0, or Hs(A) = ∞. (See also [57].)

Here and in the following, we denote by AC , intA, closA and ∂A the comple-
mentary set, the interior, the closure and the boundary of a set A, respectively.

Theorem 1.13 ([29], p. 72) Assume that A ⊂ Rd, A is Hs-measurable, and
Hs(A) < ∞. Then

i) for Hs-a.e. x ∈ AC

lim
r→0

Hs(A ∩Br(x))
b(s)rs

= 0;

ii) for Hs-a.e. x ∈ A

1
2s
≤ lim sup

r→0

Hs(A ∩Br(x))
b(s)rs

≤ 1.
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Definition 1.14 Let A be a subset of Rd Hs-measurable with 0 < Hs(A) < ∞
(0 ≤ s < ∞). The upper and lower s-dimensional densities of A at a point
x ∈ Rd are defined as

D
s
(A, x) := lim sup

r→0

Hs(A ∩Br(x))
b(s)rs

and

Ds(A, x) := lim inf
r→0

Hs(A ∩Br(x))
b(s)rs

,

respectively. If D
s
(A, x) = Ds(A, x) we say that the s-dimensional density of A

at x exists and we write Ds(A, x) for the common value.

Theorem 1.15 ([30], p. 63) Let A be a subset of Rd, Hs-measurable with 0 <

Hs(A) < ∞. If s in not integer, then, if there exists, Ds(A, x) 6= 1 Hs-q.o.

Roughly speaking, the existence of the dimensional density equal to 1 of a set
means that it can be considered, in some sense, “regular”.

Similarly, for a measure µ on Rm, 0 ≤ m ≤ d, m integer, we may define the
m-dimensional density Dm(µ, x) of µ at x by

Dm(µ, x) := lim
r→0

µ(Br(x))
bmrm

. (1.5)

Compare also with Definition 1.3.
Note that for any subset A of Rd, Dm(A, x) = Dm(Hm

|A, x), where Hm
|A is the

measure defined by
Hm
|A(E) ≡ Hm(A ∩ E).

Hence, the m-dimensional density of measures actually generalizes the notion
of m-dimensional density of sets. (See [56] or [32]).

In the following we will introduce a concept of “generalized density” that
recalls both the definition of the Lebesgue density (1.4) and the definition of
the dimensional density (1.5). In fact, for a set A with Hausdorff dimension m,
we will consider the limit

lim
r→0

Hm(A ∩Br(x))
bdrd

.

Definition 1.16 ([32], p. 251) Let A be a subset of a metric space X, m a
positive integer and φ a measure over X:

1) A is m-rectifiable if and only if there exists a Lipschitzian function map-
ping a bounded subset of Rm onto A;

2) A is countably m-rectifiable if and only if A equals the union of a countable
family whose members are m-rectifiable;

3) A is countably (φ,m)-rectifiable if and only if there exists a countably
m-rectifiable set containing φ-almost all of A;

15



4) A is (φ,m)-rectifiable if and only if A is countably (φ,m)-rectifiable and
φ(A) < ∞.

When X = Rd and φ = Hm, we write Hm-rectifiable, instead of (Hm,m)-
rectifiable.
The tangential properties ofHm-rectifiable sets generalize those of m-dimensional
submanifolds of class 1; so, from the point of view of measure theory, a rectifiable
set behaves like submanifolds that admit a tangent space at almost every point.
Roughly, Hm-rectifiable sets are characterized by the equivalent properties of
being countable union of measurable pieces of m-dimensional C1 submanifolds
or of possessing “approximate tangent space”Hm-almost everywhere ([34], p. 90;
see also [56]).

By Definition 1.16, an Hm-rectifiable set is contained in the union of the
images of countably many Lipschitz functions from Rm to Rd, apart for a null
Hm set. It includes countably unions of immersed manifolds.
More precisely ([34], p. 90 and following):
If A is a countably Hm-rectifiable set, then we can write A as a disjoint union

A = A0 ∪
∞⋃

k=1

Ak,

where Hm(A0) = 0 and each Ak is a Borel subset of an m-dimensional C1-
submanifold, or, equivalently,

A = A0 ∪
∞⋃

k=1

fk(Ak),

where Hm(A0) = 0 and fk : Ak ⊂ Rm → Rd are Lipschitz maps.
As a consequence, countably 0-rectifiable and countably H0-rectifiable sets

correspond to finite or countable sets, while H0-rectifiable sets correspond to
finite sets. In particular, the graph of a Lipschitz function of m variables is an
example of countably m-rectifiable set.

Notice that the definition of rectifiability of a set is related to the measure
defined on the set itself, and as well a notion of rectifiable set and tangent planes
is given, similarly a notion of rectifiable and tangent measure may be defined.
(As we said at the beginning, we consider positive Radon measure, but the
following definitions can be given for more general vector measures; see [4]).
In order to look at the asymptotic behavior of a measure µ in Rd near a point
x of its support, it is convenient to introduce the rescaled measure

µx,r(B) := µ(x + rB), B ∈ BRd

around x, and to analyze the behavior of suitable normalizations of µx,r as
r → 0.

Definition 1.17 We denote by Tan(µ, x) the set of all finite Radon measures
on B1(0) which are the weak* limits of

µx,ri

µ(Br(x))
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for some infinitesimal sequence {ri} ⊂ (0,∞). The elements of Tan(µ, x) are
called tangent measures to µ at x.

Remark 1.18 An interesting example of tangent measure comes considering
tangent planes to regular embedded manifolds. Let Γ ⊂ Rd be a m-dimensional
C1 surface and let µ = Hm

|Γ. Then Tan(µ, x) contains only the measure

1
bm
Hm
|π(x) ∀x ∈ Γ,

where π(x) is the tangent space to Γ at x.

Definition 1.19 A Radon measure µ is said m-rectifiable if there exists a
countably Hm-rectifiable set S and a Borel function θ : S → R such that

µ = θHm
|S . (1.6)

Remark 1.20 i) In the extreme cases m = 0, and m = d we obtain the
class of purely atomic measures and the class of all measures absolutely
continuous with respect to νd.

ii) According to Radon-Nikodym theorem, µ is representable by (1.6) for
suitable S ∈ BRd and θ : S → R, if and only if it is absolutely continuous
with respect to Hm, and concentrate on a set σ-finite with respect to
Hk. It can be proved (see Theorem 1.22) that if µ is concentrated on a
countably Hm-rectifiable set, then the function θ(x) coincides µ-a.e. with
Dm(µ, x).

m-rectifiable measures are, for almost every point x, asymptotically concen-
trated near to x on an affine m-plane. This allows to define an approximate
tangent space to m-rectifiable measures (and to countably Hm-rectifiable sets as
well) which plays, in this context, the same role played by the classical tangent
space in differential geometry.

Definition 1.21 We say that a Radon measure µ has approximate tangent
space π with multiplicity θ ∈ R at x, and we write

Tanm(µ, x) = θHm
|π

if
µx,r

rm
locally weakly* converges to θHm

|π in Rd as r → 0.

In other words, the approximate tangent space to µ is the unique m-plane π on
which the measures µx,r/rm are asymptotically concentrated. (See Appendix A
for the particular case of rectifiable curves).
Note that, when the following limits make sense,

Dm(µ, x) = lim
r→0

µ(Br(x))
bmrm

=
1

bm
lim
r→0

µx,r(B1(0))
rm

=
1

bm
θHm

|π(B1(0)) = θ.

More precisely, the following theorem holds:
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Theorem 1.22 (Rectifiability criterion for measures) ([4], p. 94) Let µ a
positive Radon measure on an open set Ω ⊂ Rd.

(i) If µ = θHm
|S and S is countably Hm-rectifiable, then µ admits an approxi-

mate tangent space with multiplicity θ(x) for Hm-a.e. x ∈ S. In particular
θ(x) = Dm(µ, x) for Hm-a.e. x ∈ S.

(ii) If µ is concentred on a Borel set S and admits an approximate tangent
space with multiplicity θ(x) > 0 for µ-a.e. x ∈ S, then S is countably
Hm-rectifiable and µ = θHm

|S. In particular

∃ Tanm(µ, x) for µ− a.e. x ∈ Ω =⇒ µ is k-rectifiable.

Definition 1.23 Let S ⊂ Rd be a countably Hm-rectifiable set and let {Sj} be
a partition of Hm-almost all of S into Hm-rectifiable sets; we define Tanm(S, x)
to be the approximate tangent space to Hm

|Sj
at x for any x ∈ Sj where the latter

is defined.

Note that if M is a m-dimensional C1-manifold, then the approximate tangent
space coincide with the classical tangent space.

From all this, it is clear the following theorem:

Theorem 1.24 ([32], p. 256, 267) A subset A of Rd is countably Hm-rectifiable
if and only if Hm-almost all of A is contained in the union of some countable
family of m dimensional submanifolds of class 1 of Rd.
If A is an Hm-rectifiable set and an Hm-measurable subset of Rd, then, for
Hm-a.e. x ∈ A,

lim
r→0

Hm(A ∩Br(x))
bmrm

= 1, (1.7)

and the approximate tangent space at x is an m-dimensional vectorsubspace of
Rd.

In particular, the reverse holds ([4], p. 83):

Theorem 1.25 (Besicovitch-Marstrand-Mattila) Let A ∈ BRd with Hm(A) <

∞. Then, A is Hm-rectifiable if and only if

lim
r→0

Hm(A ∩Br(x))
bmrm

= 1, Hm-a.e. x ∈ A.

1.3 Basic ideas of the theory of generalized func-
tions

If S ⊂ Rd is given by an at most countable union of points in Rd, we know
that it is well defined the counting measure H0(S ∩ · ) induced by S, so that
H0(S ∩A) “counts” the number of points of S which also belong to a Borel set
A.
In case S reduces to a single point X0, we know that the Dirac measure εX0

coincides with the counting measure H0(X0 ∩ · ), and in Remark 1.5 we have
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introduced the usual Dirac delta function δX0 associated to X0. In the classical
theory of generalized functions (see e.g. [45]),

∫

A

δX0(x)dx := 1A(X0) = H0(X0 ∩A) (1.8)

(here 1A stands for the characteristic function of A), and we remind that δX0(x)
can be obtained as the limit of a sequence of “classical” integrable functions
ϕm(x) (δX0(x) = lim

m→∞
ϕm(x)) such that

lim
m→∞

∫

A

ϕm(x)dx = H0(X0 ∩A).

Remark 1.26 The integral in (1.8) does not represent a usual (Lebesgue) in-
tegral, but it is only a “symbol” for H0(X0 ∩ A); in fact, since δX0(x) = 0 for
any x 6= X0, its Lebesgue integral should be equal to zero. Thus, we cannot
interchange limit and integral, even if it is formally allowed by (1.8).

Well known examples of approximating sequences of δX0 with X0 ∈ R are the
Gaussian functions

ϕm(x) :=
m√
π

e−m2(x−X0)
2
,

or the simple functions

ϕm(x) :=
m

2
1[X0− 1

m ,X0+
1
m ](x). (1.9)

We revisit now the basics of the theory of generalized functions ([45] p. 206
and following).

Definition 1.27 Let X be a set and F(X ,R) be the collection of all real-valued
functions defined on X .
A subset U ⊂ F(X ,R) of this set is a linear space if and only if

(a) 0 ∈ U ;

(b) if f, g ∈ U , then f + g ∈ U ;

(c) if f ∈ U and t ∈ R, then tf ∈ U .

Definition 1.28 A linear functional is a function Φ : U → R, defined on a
linear space U , such that

(a) Φ(0) = 0;

(b) Φ(f + g) = Φ(f) + Φ(g) for all f, g ∈ U ;

(c) Φ(tf) = tΦ(f) for all f ∈ U and t ∈ R.

Let ϕ be a fixed function on the real line, integrable over any finite inter-
val, and let f ∈ Cc(R,R), where Cc(R,R) denotes the space of all continuous
functions f : R→ R with compact support. Consider the linear functional

f ∈ Cc(R,R) 7−→ Tϕ(f) = (ϕ, f) :=
∫ ∞

−∞
ϕ(x)f(x)dx ∈ R. (1.10)
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In this way we may identify the function ϕ as a linear functional defined on
Cc(R,R).
The function f is said test function. The space of test functions, called the
test space, may be chosen in various other ways, depending on specific applica-
tions. For example, it might consist of all continuous functions with a compact
support, as above; however, it makes sense to require the test functions satisfy
rather stringent smoothness conditions whenever we want to differentiate them.
In the theory of generalized functions, the test space, denoted by K, is usually
chosen as the set of all functions f of compact support with continuous deriva-
tives of all orders (equivalently, the set of all infinitely differentiable functions).
Clearly K is a linear space.
In particular, the following notion of convergence in K is introduced.

Definition 1.29 A sequence {fm} of functions in K is said to converge to a
function f ∈ K if

1. there exists an interval outside which all the functions fm vanish;

2. the sequence {f (k)
m } of derivatives of order k converges uniformly on this

interval to f (k), for any k = 0, 1, 2, . . ..

The linear space K equipped with this notion of convergence is called the test
space, and the functions in K are called test functions.

Definition 1.30 Every continuous linear functional T (f) on the test space K

is called a generalized function on (−∞,∞), where continuity of T (f) means
that fm → f in K implies T (fm) → T (f).

However, there are many other linear functionals on K besides functionals
of the form (1.10); for example, the linear functional assigning to any function
f its value at the point x = 0. Generalized functions defined by locally inte-
grable functions are called regular, and all other generalized functions are called
singular (for example the Dirac delta function defined before).

Usually, a representation of the form (1.10) is given to all generalized func-
tions, even in the singular case, where such integrals have to be understood as
an extension of the Lebesgue integral, that is, not as usual Lebesgue integrals,
but as a formal representation of the linear functional T .

Addition of generalized functions and multiplication of generalized functions
by real numbers are defined in the same way as for linear functionals in general.

Definition 1.31 A sequence of generalized functions Tn is said to converge to
a generalized function T if Tn(f) → T (f) for every f ∈ K.

In other words, convergence of generalized functions is just the weak* conver-
gence of continuous linear functionals on K.

Note that generalized functions are particular linear functionals, and it is
well known that integration with respect to a fixed measure is “linear”. In the
following we will consider linear functionals defined by measures, according to
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the usual identification by Riesz Representation Theorem, so that we will regard
them as generalized functions on the usual test space Cc, in order to interpret
them as the “generalized density” of the associated measure, with respect to
the usual Lebesgue measure (see Chapter 2).

1.4 Random closed sets

Throughout this section we refer to [49, 52, 53].
Roughly speaking, a random closed set is a random element in the space of all
closed subsets of a basic setting space X .
Let X be a locally compact, Hausdorff, and separable space (i.e. each point in
X admits a compact neighborhood, and the topology of X admits a countable
base). We denote by F the class of the closed subsets in X , and by FB the class
of the closed sets hitting B, and by FB the complementary class:

FB := {F ∈ F : F ∩B 6= ∅},

FB := {F ∈ F : F ∩B = ∅}.
The space F is topologized by the topology σF, generated by the two families
FK , with K compact subset of X , and FG, with G open subset of X .
It can be proved (see [49], p. 3) that the space F is compact, Hausdorff, and
separable.

Definition 1.32 A random closed set (RACS) Θ is a measurable map

Θ : (Ω,F ,P) −→ (F, σF).

The measurability of such a map Θ is guaranteed if

{ω : Θ(ω) ∩K 6= ∅} ∈ F (1.11)

for all compact set K (see [49]). This means that, observing a realization of Θ,
we can always say if Θ hits or misses a given compact set K.
Note that Θ is a function whose values are closed sets. Such functions are a
usual object of set-valued analysis. For instance, the measurability condition
(1.11) coincides with the condition of measurability of set-valued functions, that
we remind briefly (see [9], p. 307):

Definition 1.33 Consider a measurable space (X,X ), a complete separable
metric space Y , and a set-valued map F : X −→ Y with closed images.
The map F is called measurable if the inverse image of each open set is a
measurable set: for every open subset O ⊂ Y , we have

F−1(O) := {x ∈ X : F (x) ∩ O 6= ∅} ∈ X .

We will deal with random closed set in the Euclidean space Rd. Here are
several examples of random closed sets: random points and point processes,
random spheres and balls, etc.

21



The definition ensures that many functional f(Θ) are measurable, i.e. they
become random variables. For instance, the d-dimensional Lebesgue measure of
Θ, νd(Θ), is a measurable functional. The same is true for the surface area (if
it is well defined), and many other functionals known for convex geometry (see
[62]).

Measurability of some set-theoretic operations can be deduced from topo-
logical properties (the so called semicontinuity) of related maps.
For instance, if Θ and Ξ are random closed sets, then Θ∪Ξ, Θ∩Ξ and ∂Θ are
random closed sets.

Definition 1.34 We say that a random closed set Θ has Hausdorff dimension
s if dimHΘ(ω) = s for P-a.e. ω ∈ Ω.

Note that a random variable is a particular case of a random closed set with 0
Hausdorff dimension.

1.4.1 Capacity functionals and Choquet Theorem

The distribution of a random closed set Θ is described by the corresponding
probability measure P on σF. Fortunately, P is determined by its values on FK

for K running through the class Kd of compacts in Rd, only.
It well known that the probability law of an ordinary random variable is entirely
determined if the corresponding distribution function is given. In the case of a
random closed set, there exists a very similar notion.
Let Θ be a random closed set associated with a probability law on σF. For any
K ∈ Kd let TΘ(K) be equal to P(KK), i.e.

TΘ(K) = P(KK) = P({ω : Θ(ω) ∩K 6= ∅}), K ∈ Kd.

Definition 1.35 The functional TΘ is said to be the capacity (or hitting) func-
tional of Θ.

Considered as a function on Kd, the capacity functional TΘ is an alternating
Choquet capacity of infinite order, i.e. it satisfies the following properties:

(T1) TΘ(∅) = 0;

(T2) TΘ(K1) ≤ TΘ(K2) if K1 ⊆ K2, so that TΘ is a monotone functional;

(T3) TΘ is upper semi-continuous on Kd, i.e. TΘ(Kn) ↓ TΘ(K) as Kn ↓ K;

(T4) the following functionals recurrently defined by

S1(K0; K) = TΘ(K0 ∪K)− TΘ(K0)

. . . . . .

Sn(K0; K1, . . . ,Kn) = Sn−1(K0; K1, . . . ,Kn−1)

−Sn−1(K0 ∪Kn; K1, . . . , Kn−1)

are non-negative for all n ≥ 0 and K0,K1, . . . , Kn ∈ Kd.
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Note that the value of Sn(K0;K1, . . . , Kn) is equal to the probability that Θ
misses K0, but hits K1, . . . , Kn

The properties of TΘ resemble those of distribution function. Property (T3) is
the same as right-continuity, and (T2) is the extension of the notion of mono-
tonicity. However, in contrast to measures, the functional TΘ is not additive,
but only subadditive, i.e.

TΘ(K1 ∪K2) ≤ TΘ(K1) + TΘ(K2)

for all compact sets K1 and K2.

Remark 1.36 If Θ = X is a random point in Rd, then TX(K) = P(X ∈ K) is
the probability distribution of X. Besides, it can be proven that the capacity
functional TΘ is additive if and only if Θ is a random singleton.

The following theorem establishes one-to-one correspondence between Cho-
quet capacities and distributions of random closed sets.

Theorem 1.37 (Choquet) Let T be a functional on Kd. Then there exists a
(necessarily unique) probability P on σF satisfying

P(FK) = T (K), K ∈ Kd,

if and only if T is an alternating Choquet capacity of infinite order such that
0 ≤ T (K) ≤ 1 and T (∅) = 0.

Thus, the capacity functional determines uniquely the distribution of a ran-
dom closed set. It plays in the theory of random sets the same role as the
distribution function in classical probability theory.

Remark 1.38 Generally speaking, the family of all compact sets is too large,
which makes it difficult to define TΘ(K) for all K ∈ Kd. In this connection,
an important problem arises to reduce the class of test sets needed. That is to
say, is the distribution of a random closed set determined by the values T (K),
K ∈ M, for a certain class M ⊂ Kd? In general, it can be proved that the
distribution of a random closed set is determined by the values of its capacity
functional on the class of all finite unions of balls of positive radii, or the class
of all finite unions of parallelepipeds.

1.4.2 Stationary and isotropic random closed sets

Definition 1.39 A random closed set Θ is said to be stationary if Θ has the
same distribution as Θ + a for all a ∈ Rd.

By Choquet Theorem, Θ is stationary if and only if TΘ(K) is translation-
invariant.

Definition 1.40 A random closed set Θ is said to be isotropic if Θ has the
same distribution as rΘ for all rotation r.
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Let Θ be a random closed set in Rd. Fubini’s theorem implies that, for a general
σ-finite measure µ (for example the d-dimensional Lebesgue measure), µ(Θ) is
a random variable, and

E[µ(Θ)] =
∫

Rd

P(x ∈ Θ)µ(x. ). (1.12)

Note that, if Θ is stationary, then P(x ∈ Θ) does not depend on x and is equal
to P(0 ∈ Θ). By (1.12, for any W ∈ Kd,

E[µ(Θ ∩W )] = P(0 ∈ Θ)µ(W ).

The constant E[µ(Θ ∩W )]/µ(W ) = P(0 ∈ Θ) is called the volume fraction of
Θ; it characterizes the part of volume covered by Θ.

1.4.3 Weak convergence of random closed sets

Weak convergence of random closed sets is a particular case of weak convergence
of probability measures, since a random closed set is associated with a certain
probability measure on σF. (For further details see e.g. [52].)

Definition 1.41 A sequence of random closed sets Θn, n ≥ 1, is said to con-
verge weakly if the corresponding probability measures Pn, n ≥ 1, converge
weakly in the usual sense; namely,

lim
n→∞

P(U) = P(U) (1.13)

for each U ∈ σF such that P(∂U) = 0, for the boundary of U with respect to the
hit-or-miss topology (i.e. U is a continuity set for the limiting measure).

To check (1.13) for all U ∈ σF is rather difficult, but it has been proved (see [52]
and references therein) that a reduction is possible, by letting U to be equal to
FK for K running through Kd. In particular, the class FK is a continuity set
for the limiting measure if

P(FK) = P(FintK).

In other words,
P(Θ ∩K 6= ∅ , Θ ∩ intK = ∅) = 0, (1.14)

for the corresponding limiting random set Θ.
In terms of the limiting capacity functional TΘ, denoting by

TΘ(intK) := sup{TΘ(K ′) : K ′ ∈ Kd,K ′ ⊂ intK},
the class of compact sets satisfying (1.14) is denoted by ST , and it is easy to
see that

ST {K ∈ Kd : TΘ(K) = TΘ(intK)}.
It follows that the pointwise convergence of capacity functionals on ST im-

plies the weak convergence of the corresponding probability measures on σF:

Proposition 1.42 The sequence of random closed sets Θn converges to Θ if

TΘn(K) = TΘ(K)

for each K belonging to ST .
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1.5 Point processes

1.5.1 General definitions

Throughout this Section we refer to [28, 41, 46].
Roughly speaking, a point process in a space Rd is a random distribution of
points in Rd. A point process can be described in two equivalent ways: as
random counting measure, and as random closed set.

Point processes as random measures

Let M be the set of all locally finite measures µ on (Rd, BRd). Denote by M
the smallest σ-algebra on M such that all the maps

µ ∈ M −→ µ(A) ∈ R ∀A ∈ BRd

are measurable; i.e. it is the σ-algebra containing all sets of the type

{µ ∈ M : µ(A) ∈ B with A ∈ BRd , B ∈ BR}. (1.15)

If µ(A) ∈ N for any A, then µ is said counting measure; further, it is said simple
if µ({x}) ≤ 1 ∀x ∈ Rd.
Let N be the set of all counting measures, and N be the associated σ-algebra
as in (1.15).

Definition 1.43 Let (Ω,F ,P) be a probability space.

• A random measure on Rd is a measurable map M : (Ω,F ,P) −→ (M,M).

• A point process in Rd is a measurable map Φ : (Ω,F ,P) −→ (N,N ).

Thus, point processes are particular random measures, and they may be written
in the form:

Φ =
+∞∑

i=1

εXi ,

(where ε is the Dirac measure, Xi : (Ω,F) −→ (Rd,BRd) is a random vector,
i ∈ N), or, explicitly:

Φ(A,ω) =
+∞∑

i=1

εXi(ω)(A) ∀A ∈ BRd .

Note that
• for any fixed A ∈ BRd , Φ(A, ·) is a discrete random variable;
• for any fixed ω ∈ Ω, Φ(·, ω) is a measure on BRd .

Notation: in the following we will write Φ(A) instead of Φ(A,ω), and we will
consider only simple processes.
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Point processes as random closed sets

Let S be the set of all sequences ϕ = {xn}n∈N in Rd such that:

(i) ϕ is locally finite, i.e. any bounded subset of Rd contains finitely many
points of ϕ;

(ii) ϕ is simple, i.e. xi 6= xj ∀i 6= j.

Denote by S the smallest σ-algebra containing the family

S̃ := {SB,s | B ∈ BRd , s ∈ {1, 2, ...}}

where SB,s := {ϕ ∈ S | card(ϕ ∩B) = s} (card stands for cardinality).

Definition 1.44 A point process on Rd is a measurable map

Φ : (Ω,F ,P) −→ (S,S).

Thus, a point process can be seen as a random sequence of point in Rd, and so
as a random closed set of null dimension.

Equivalence of the two definitions

There exists an one-to-one correspondence between N and S, which allows to
identify counting measures and sequences of point in Rd.
The bijection is given by the function card as follows:

card(ϕ ∩A) = card(Φ(A, ω)) = µ(A)

where ϕ ∈ S and µ ∈ N are the realizations in ω of Φ, as sequence of points in
Rd, and as counting measure, respectively.
It will be clear by the context when Φ is regarded as counting measure or random
closed set.

1.5.2 Distribution of a point process

As random measure, a point process Φ : (Ω,F ,P) → (N,N ) induces a distribu-
tion P̃ on (N,N ) such that

P̃ (Y ) = P(Φ ∈ Y ) = P({ω ∈ Ω : Φ(ω) ∈ Y }), Y ∈ N .

As random closed set, a point process Φ : (Ω,F ,P) → (S,S) induces a
distribution P on (S,S) such that

P (Y ) = P(Φ ∈ Y ) = P({ω ∈ Ω : Φ(ω) ∈ Y }), Y ∈ S.

The one-to-one correspondence between N and S puts in the same relation
P̃ and P .
It can be shown [28] that the distribution of a random measure ξ is completely
determined by its finite-dimensional distributions, i.e. by the joint distributions,
for all finite families of bounded Borel sets B1, . . . , Bk, of the random variables
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ξ(B1), . . . , ξ(Bk).
For a point process Φ they are the probabilities of type

P(Φ(B1) = n1, . . . , Φ(Bk) = nk),

where n1, . . . , nk are nonnegative integer.
A particular case of finite-dimensional distributions is given by the socalled

void probabilities

vB := P ({ϕ ∈ S : card(ϕ ∩B) = 0})
= P({ω ∈ Ω : Φ(ω) ∩B = ∅})
= P(Φ(B) = 0)

with B ∈ BRd .

Remark 1.45 If a point process is simple, then its distribution is completely
specifies by the values vK , with K running through the class K of compacts
in Rd. Such a characterization may be obtained by regarding Φ as a random
closed set in Rd and then applying the Choquet Theorem.

Since a point process is a particular random closed set, definitions of stationary
and isotropic point processes follow immediately by Definitions 1.39 and 1.40.

1.5.3 Moment measures

While moments of a random variable are real numbers, moments of a point
process are measures.

Definition 1.46 The n-moment measure of a point process Φ is the measure
µ(n) on BRnd so defined:

∫

Rnd

f(x1, . . . , xn)µ(n)(d(x1, . . . , xn)) =
∫

S

∑
x1,...,xn∈ϕ

f(x1, . . . , xn)P (dϕ)

= E


 ∑

x1,...,xn∈Φ

f(x1, . . . , xn)




where f is a nonnegative measurable function on Rnd.

Remark 1.47 If f is the characteristic function of the set B1×· · ·×Bn, where
B1, . . . , Bn are Borel subsets of Rd, we have that

µ(n)(B1 × · · · ×Bn) = E


 ∑

x1,...,xn∈Φ

1B1(x1) · · ·1Bn(xn)




= E(Φ(B1) · · ·Φ(Bn));

if in particular B1 = . . . = Bn = B, then

µ(n)(Bn) = E(Φ(B)n).

27



Therefore µ(n) allows to obtain the n-th moment of the random variable Φ(B).
Moreover, if Φ is stationary, then the moment measures are translation invariant,
i.e.

µ(n)(B1 × · · · ×Bn) = µ(n)((B1 + x)× · · · × (Bn + x)) ∀x ∈ Rd.

An important particular case is given by n = 1.

Definition 1.48 The first moment measure of a point process Φ is called in-
tensity measure.

Denoted by Λ the intensity measure of Φ, by definition it is the measure on BRd

so defined:
Λ(B) := E(Φ(B)) =

∫
ϕ(B)P (dϕ).

Thus, Λ(B) is the mean number of points of Φ in B.
Further, in accordance with Definition 1.46, for any nonnegative measurable
function f on Rd, by Fubini’s theorem, it follows that

E
(∫

fdΦ
)

= E

(∑

x∈Φ

f(x)

)

=
∫ ∑

x∈ϕ

f(x)P (dϕ)

=
∫ ∫

f(x)ϕ(dx)P (dϕ) =
∫

f(x)Λ(dx).

It is clear that, if Φ is stationary, then Λ is translation invariant. In such a case
we known that there exists a positive constant λ, said intensity of the point
process Φ, so that Λ = λνd.

1.5.4 Particular examples of point processes

Point processes on the real line

A point process Φ on R may be taken to model a process of arrival times ti
(times in which certain events occur); so, in general, Φ is supposed to assume
only nonnegative values.
Such a process can be described in four equivalent ways. The first one is common
to every point process, as we have seen in the previous sections; the others follows
by the ordering property of R:

i) As counting measure.

Φ(A) = #{i : ti ∈ A} A ∈ BR.

ii) As integer-valued increasing step-function.

This description follows by regarding Φ as function on R+, rather than as set-
function Φ(A). So we may define

Φ(t) := Φ([0, t]) (1.16)
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with Φ(0) := 0. Note that Φ(t) is a step-function, with unit jumps, and Φ is
also called counting process.
If the process assumes only positive values, then it is natural to interpret points
ti as arrival times. Otherwise we may extend (1.16) in the following way:

Φ(t) =





Φ((0, t]) (t > 0)
0 (t = 0)
−Φ((t, 0]) (t < 0)

Φ(t) is again a right-continuous and integer-valued function.
Further, Φ(t) determines Φ(A) for any Borel set A, and so it describes the point
process by a step function.

iii) As sequence of points.

By setting
ti = inf{t > 0 : Φ(t) ≥ i} (i = 1, 2, . . .), (1.17)

we have the following relation:

ti ≤ t ⇔ Φ(t) ≥ i

Thus, a sequence of points {ti} specifies the function Φ(t), and so the point
process Φ. If Φ assumes also negative values, it is possible to extend (1.17) in a
similar way as in ii):

ti = inf{t : Φ(t) ≥ i}
=

{
inf{t > 0 : Φ((0, t]) ≥ i} (i = 1, 2, . . .)
− inf{t > 0 : Φ((−t, 0]) ≥ −i + 1} (i = 0,−1, . . .)

Note that ti ≤ ti+1 ∀i.

iv) As sequence of intervals.

By setting
τi = ti − ti−1,

where {ti} is the sequence of points defined in iii), the point process Φ is entirely
specified by the sequence of intervals {τi}.

Remark 1.49 If Φ is stationary with intensity λ, we know that its intensity
measure Λ is given by λν1. In particular the constant λ can be determined by
the following limit

λ = lim
h↓0

P(Φ(h) > 0)
h

. (1.18)

Note that (1.18) is equivalent to say that

P(Φ(t, t + h] > 0) = P(at least an arrival in (t, t + h])

= λh + o(h) (h ↓ 0).

Let Φt := Φ([0, t]) be the counting process associated to a point process Φ
on R+. We said that it denotes the number of events which occur up to time
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t. The available information at time t are described by a sub-σ-algebra Ht of
F ; thus we have an increasing family of σ-algebras H = {Ht, 0 ≤ t < ∞}, i.e.
Hs ⊆ Ht for any s ≤ t. The filtration H is said history of the process if Φt is
Ht-measurable for any 0 ≤ t < ∞, i.e. {Φt} is adapted to H.
The natural filtration I = {It , 0 ≤ t < ∞}, where It is the σ-algebra gener-
ated by {Φs : s ≤ t}, is said internal history of the process and it is the smallest
σ-algebra which makes Φ adapted.
We recall that if H is such that Ht =

⋂
s>tHs ∀s, then it is said to be right

continuous.
Note that, since a counting process is right continuous and locally finite, neces-
sarily its internal history is right continuous.

Definition 1.50 The sub-σ-algebra of BR+ ⊗F generated by the sets

(s, t]× U con s < t e U ∈ Hs

is called predictable σ-algebra of H.

Definition 1.51 A process Ψ is said to be H-predictable if it is measurable
with respect to the predictable σ-algebra of H, as function on R+× Ω.

Notation: H(−) = {Ht−},
where H0− = H0 and Ht− = lim sups<tHs =

∨
s<tHs.

Theorem 1.52 [28] A H-predictable process is H(−)-adapted.

We recall that if (Ω,F ,P) is a probability space, H is a filtration on (Ω,F)
and {Ψt}0≤t<∞ is a process H-adapted, such that E(|Ψt|) < ∞ ∀t, then Ψ is
said H-martingale if

E(Ψt |Hs) = Ψs a.s. for 0 ≤ s < t < ∞

(sub-, super-martingale if ≥,≤ respectively ).

Definition 1.53 Let Φ be a point process on R+ and H = {Ht} be a filtration
such that:

i) H is complete and right continuous;

ii) It ⊂ Ht ∀t (i.e. Φ H-adapted);

iii) E(Φt) < ∞ ∀t.
The compensator of Φ with respect to His a random measure A on R+ such
that:

1. {At} is H-predictable;

2. for any H-predictable process C ≥ 0

E
(∫ ∞

0

CdΦ
)

= E
(∫ ∞

0

CdA

)
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(For a proof of existence and uniqueness of A, see [46]).
By hypotheses ii) and iii) of Definition 1.53, and since the process Φt is not

decreasing, it follows that it is a submartingale with respect to H. By Doob-
Meyer decomposition theorem, the compensator A is given by a predictable
process such that the process Mt := Φt −At is a zero-mean martingale.
As a consequence, we have that, for any U ∈ Hs,

E(Φt − Φs ; U) = E(At −As ; U) (1.19)

Since At is Ht−-measurable, then (1.19) may be so interpreted in infinitesimal
terms:

dAt = E(dΦt |Ht−) (1.20)

(where dAt = At − At−dt = At − At−, and the infinitesimal increment dt is
positive).

As random measure on R+, the compensator may be absolutely continuous
with respect to the Lebesgue measure. In such a case its density is said stochastic
intensity:

Definition 1.54 A positive predictable process λ = {λt} such that

At =
∫ t

0

λsds

is the compensator of Φ is said stochastic intensity of Φ.

By dAt = λtdt and (1.20), and remembering that Φ is simple, we have the
following interpretation of λt as the rate of occurring of a new event:

λtdt = E(dΦt |Ht−) = P(dΦt = 1 |Ht−) = P(dΦt > 0 |Ht−).

Poisson point process

The Poisson point process is the most fundamental example of a point process.
It is characterized by a deterministic continuous compensator.

Definition 1.55 (Poisson process) Let Λ be a Radon measure on Rd. A
point process Φ on Rd is called a Poisson point process with intensity measure
Λ if

i) whenever A1, . . . , Ak ∈ BRd are disjoint, the random variables Φ(A1), . . . , Φ(Ak)
are independent;

ii) for each A ∈ BRd and k ≥ 0,

P(Φ(A) = k) = e−Λ(A) Λ(A)k

k!
. (1.21)

(By convention, Φ(A) = ∞ a.s. if Λ(A) = ∞.)
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In particular it follows that

P(Φ(dx) = 0) = 1− Λ(dx) + o(Λ(dx))

P(Φ(dx) = 1) = Λ(dx) + o(Λ(dx))

P(Φ(dx) > 1) = o(Λ(dx)).

We may notice that, by (1.21), the process Φ is not stationary in general.
If Λ is absolutely continuous with respect to νd with density λ ∈ R+, then Φ
is said to be a homogeneous Poisson point process with intensity λ; in this case
Φ is stationary and isotropic, and λ represents the mean number of points per
unit volume.

Definition 1.56 A random point X is said to be uniformly distributed in a
compact set W ⊂ Rd if, for any Borel set B ⊂ W ,

P(x ∈ B) =
νd(B)
νd(W )

.

A point process Φ(n)
W given by n independent points x1, . . . , xn uniformly dis-

tributed in W is called binomial point process with n points.

It follows that, if B ⊂ W , then Φ(n)
W (B) is a random variable with Binomial

distribution B(np(B)), with p(B) = νd(B)
νd(W ) .

It is easy to prove that if Φ is a stationary Poisson point process, then its
restriction to a compact set W , with the condition that Φ(W ) = n, is a binomial
point process with n points.

Now let us consider the particular case of a Poisson point process on R+.
We recall that a point process Φ on R+ is said to have independent increments if
Φ([0, s]) and Φ((s, t]) are independent for all s, t ∈ R+ with s ≤ t. In particular
the following assertions are equivalent:

(i) the point process Φ as independent increments;

(ii) for all k ∈ N and mutually disjoint sets B1, . . . , Bk ∈ BR+ , the random
variables Φ(B1), . . . , Φ(Bk) are independent;

(iii) for all k ∈ N and mutually disjoint sets B1, . . . , Bk ∈ BR+ , the point
processes ΦB1 , . . . , ΦBk

are independent.

Thus, by Definition 1.55, it follows that a Poisson point process Φ on R+ has
independent increment.
A continuous intensity measure and the independence of increment characterize
a Poisson point process:

Proposition 1.57 Φ is a Poisson point process with intensity measure Λ if and
only if Φ has independent increments and Λ({t}) = 0 ∀t ∈ R+.

By (1.20) it follows that the compensator of a point process with independent
increments is deterministic. In particular the following theorem holds.
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Theorem 1.58 [46] A point process Φ has independent increments if and only
if it has a deterministic compensator given by the intensity measure Λ.

As a corollary of the previous theorem, we have that any stationary point pro-
cess with independent increment is a Poisson point process, since the intensity
measure of a stationary point process is necessarily continuous.
Summarizing, Φ is a Poisson point process if one of the following condition is
satisfied:

• Φ has a continuous and deterministic compensator;

• Φ has independent increment and continuous intensity measure ;

• Φ has continuous intensity measure Λ and for any bounded Borel set A

the void probabilities of the process are given by

P(Φ(A) = 0) = e−Λ(A).

1.5.5 Marked point processes

Definition 1.59 A marked point process (MPP) Φ on Rd with marks in a
complete separable metric space K is a point process on Rd ×K with the prop-
erty that the marginal process (or nonmarked process, or underlying process)
{Φ(B ×K) : B ∈ BRd} is a point process.

Note that, by definition, it follows that a point process on a product space is
not a marked point process, in general.

Thus, let Φ̃ =
∑

i εXi be a point process on Rd; a marked point process with
underlying process Φ̃ is any point process on Rd ×K

Φ =
∑

i

ε(Xi,Zi). (1.22)

K is said mark space, while the random element Zi of K is the mark associated
to Xi.

Definition 1.60 A marked point process Φ = {(Xn;Zn)} is stationary if ∀y ∈
Rd the translated process Φy = {(Xn + y; Zn)} has the same distribution of Φ.

As a consequence, if a marked point process is stationary, than it is so also the
marginal process.

Definition 1.61 (Independent marking) Let Φ̃ be a point process on Rd

and let Zi be independent and identically distributed (IID) random elements of
K, such that Φ and {Zi} are independent. Then the marked point process Φ as
in (1.22) is said to be obtained from Φ̃ by independent marking.

Note that, in general, a mark Zi does not only depend on Xi, but also on the
history of the process or on other factors.
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Definition 1.62 (Position-dependent marking) A marked point process Φ =
{(Xi, Zi)} such that the distribution of Zi depends only on Xi is said to be ob-
tained by independent marking.

It is clear that Φ(B×L) represents the number of points which are in B ∈ BRd

with marks in L ∈ K.
Since a marked point process is a particular process on a product space, Defi-
nition 1.48 may be extended in a natural way as follows:

Definition 1.63 The intensity measure Λ of a marked point process Φ on Rd

with marks in K is the σ-finite measure on BRd ⊗ BK so defined:

Λ(B × L) := E(Φ(B × L))

Thus, Λ(B ×L) represents the mean number of points of Φ in B with marks in
L.

Definition 1.64 (Kernel) [46] Let (X,X ) and (Y,Y) be measurable spaces.
A kernel from X to Y is a mapping from X× Y into [0,∞] such that

K( ·, A) is measurable for all A ∈ Y,
K(x, · ) is a measure on Y for all x ∈ X.

It is called stochastic ( substochastic) if K(x,Y) = 1 (≤ 1) for all x ∈ X.

We remind that two measures µ1 and µ2 are equivalent if µ1 ¿ µ2 and µ2 ¿ µ1.
The following theorem is a generalization of the Radon-Nikodym theorem.

Theorem 1.65 (Disintegration theorem) [46] Let (Y,BY) be a complete
separable metric space and let m be a σ-finite measure on X×Y. Then there
exist a σ-finite measure µ on X equivalent to m( · ×Y), and a σ-finite kernel
K from X to Y such that

m(B) =
∫ ∫

1B(x, y)K(x, dy)µ(dx) ∀B ∈ BX ⊗ BY (1.23)

and
∫

f(x, y)m(d(x× y)) =
∫ ∫

f(x, y)K(x, dy)µ(dx)

for any integrable function f .
If in particular m( · × Y) is σ-finite, then one can choose µ = m( · × Y). In
that case K(x,Y) = 1 for µ-a.e. x and the kernel K is uniquely determined by
(1.23) up to a set of m-measure zero.

Since the intensity measure Λ and the mark space K satisfy the above theorem,
we have that

Λ(d(x× y)) = Λ̃(dx)Q(x, dy),

where Q(x, · ) turns to be a probability measure on the mark space, said mark
distribution at a point x.
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Remark 1.66 1. If Q is independent of x, then Λ is a product measure on
Rd ×K; so

Λ = Λ̃⊗Q,

and Q is called mark distribution. (For example when Φ is independent
marking, or when it is stationary.)

2. If Φ is stationary, then the underlying process Φ̃ is stationary as well, and

Λ = λ̃νd ⊗Q,

where λ̃ is the intensity of Φ̃.
Moreover, by stationarity it follows that Λ( ·×L), L ∈ BK is translational
invariant; thus there exists a positive constant λL, called intensity of Φ
with respect to L such that Λ( · × L) = λLνd(·).

Let Φ = {(Tn, Zn}) be a marked point process on R+ with mark space
(K,BK). Since Tn may represent the occurring time of a certain event, while
the mark Zn the associated information, then Φ may be taken as model for a
stochastic system which evolves in time. Thus, for any t ∈ R+ and L ∈ BK,

Φt(L) =
∞∑

n=1

1[0,t](Tn)1L(Zn)

is the number of events during [0, t], with marks in L.
If we set

It := σ(Φs(L) : 0 ≤ s ≤ t , L ∈ B(K)),

then I = {It : t ≥ 0} is a filtration and it represents the internal history of the
process.

Theorem 1.67 [41] Let Φ be a marked point process such that the underlying
process Φ̃ satisfies the hypotheses of Definition 1.53.
Then there exists a random measure A on R+×K such that

a) for any L ∈ BK, the process At(L) = A([0, t]× L) is predictable;
b) for any nonnegative predictable process C,

E
(∫

R+×K

CdΦ
)

= E
(∫

R+×K

CdA

)

If {Ht} is a filtration representing the history of the process, the {Ht}-predictable
random measure A is called compensator of Φ and, ∀L ∈ BK, Mt(L) :=
Φt(L)−At(L) is a zero mean martingale.

We may notice that

E(Φ(dt× dx)) = E(A(dt× dx)) = Λ(dt× dx).

Further, if A and Ã are the compensator of Φ and Φ̃, respectively, then A( · ×
K) = Ã. It can be shown that A of Φ can be factorized as follows:

A(dt× dx) = K(t, dx)Ã(dt), (1.24)
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where K is a {Ht}-predictable stochastic kernel from Ω×R+ to K. In particular
we have that

K(t, B) = P(Z1 ∈ B|Φ̃(dt) = 1,Ht−);

i.e. K(t, ·) represents the conditional probability distribution of a mark, given
the history of the process and given that the associated point is born at time t.

Remark 1.68 If Φ is a position-dependent marking, then K does not depend
on Ht−, and so K is not random. In fact, in this case, it is a kernel from R+ to
K, and

P(Zn ∈ dx|Φ̃) = K(Tn, dx)

The marked point process Φ is also called a position-dependent K-marking of
Φ̃.

The kernel K is not random also for an independent marking process:

Theorem 1.69 Let Φ = {(Tn, Zn)} be an independent marking marked point
process on R+ with internal history {It} and let Q the mark distribution Q . If
Φ̃ = {Tn} is the underlying process with compensator Ã, then

A(dt× dx) = Ã(dt)Q(dx)

is the compensator of Φ with respect to I.
Note that if Φ is stationary, then the marks are independent of Φ̃, and it

easily follows that Q(·) = E[K(·)].

Poisson marked point process on R+

Definition 1.70 (Marked Poisson process) ([46], p. 18) Let K be a stochas-
tic kernel form R+ to K and Φ a position-dependent K-marking of a Poisson
process Φ̃ := Φ( · ×K) with continuous and locally bounded intensity measure
Λ̃. Then Φ is called a marked Poisson process.

The name marked Poisson process is due to the fact that

P(Φ(A) = n) =
Λ(A)n

n!
eΛ(A), n ∈ N, A ∈ R+×K,

where
Λ(d(t, x)) := K(t,dx)Λ̃(dt).

Since the kernel K in (1.24) associated to a position-dependent marked point
process Φ is deterministic (see Remark 1.68), then it follows that the compen-
sator of Φ is deterministic if and only if the compensator of the underlying
process is deterministic. As a consequence, we have that a Poisson marked
point process has a deterministic compensator (which coincides with the inten-
sity measure Λ of the process).

Finally, if a Poisson marked point process Φ is stationary with mark distri-
bution Q, then we know that its intensity measure Λ is of the type λdtQ(dx),
with λ ∈ R+. In particular, the following theorem holds:
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Theorem 1.71 [38] Let Φ be a marked point process on R+ with deterministic
compensator A(dt × dx). Then Φ is a stationary marked Poisson process if
and only if there exists a σ-finite measure µ(dx) on the mark space such that
A(dt× dx) = dtµ(dx).
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Chapter 2

Densities as linear
functionals

In the previous chapter we have introduced the concept of density of a subset of
Rd and of density of a measure, together to the notion of rectifiability of a set,
which gives information about the “regularity” of the set. Moreover we have
observed that the usual Dirac delta function δX0 associated to a point X0 ∈ Rd

may be seen as a singular generalized function, which, in a certain sense, play
the role of the density of the counting measure H0(X0 ∩ · ), associated to X0.
It is clear that any sufficiently regular subset S of Rd may induce a Radon
measure on Rd, and so it can be defined a linear functional associated to S,
acting in a similar way to the Dirac delta of a point X0.

In this chapter we wish to introduce a Delta formalism, á la Dirac, for the
description of random measures associated with random closed sets of lower
dimensions with respect to the environment space Rd, which will provide a
natural framework in several applications, as we will see in the sequel (see
[26, 24]).
If Θn is almost surely a set of locally finite n-dimensional Hausdorff measure,
then it induces a random measure µΘn defined by

µΘn(A) := Hn(Θn ∩A), A ∈ BRd .

It is clear that, if n < d and µΘn(ω) is a Radon measure for almost every ω ∈ Ω,
then it is singular with respect to the d-dimensional Lebesgue measure νd, and
so its usual Radon-Nikodym derivative is zero almost everywhere. On the other
hand, in dependence of the probability law of Θn, the expected measure

E[µΘn ](A) := E[Hn(Θn ∩A)], A ∈ BRd

may be either singular or absolutely continuous with respect to νd.
As a consequence, it seems to arise the problem of introducing a notion of
generalized Radon-Nikodym derivative of the measure E[µΘn ], which we will
denote by E[δΘn ], i.e. a generalized function (a continuous linear functional
on a suitable test space; see Section 1.3), in a similar way as the usual Dirac
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delta δX0 of a point X0. That is, formally, we might write
∫

A
E[δΘn ](x)dx :=

E[Hn(Θn ∩ A)]. In the case E[µΘn ] turns to be absolutely continuous with
respect to νd, E[δΘn

] is the usual Radon-Nikodym derivative.
Further, as we may express the usual Dirac delta function in terms of a suitable
approximating sequence of classical functions, we will show that it is possible
to approximate E[δΘn ] by sequences of classical functions.

2.1 The deterministic case

An important link between Radon measures and linear functionals is given by
the Riesz Theorem [29], p. 49:

Theorem 2.1 (Riesz Representation Theorem) Let L : Cc(Rd,Rm) → R
be a linear functional satisfying

sup{L(f) | f ∈ Cc(Rd,Rm), |f | ≤ 1, spt(f) ⊂ K} < ∞

for each compact set K ⊂ Rd (spt(f) denotes the support of f).
Then there exists a Radon measure µ on Rd and a µ-measurable function σ :
Rd → Rm such that

(i) |σ(x)| = 1 for µ-a.e. x,

(ii) L(f) =
∫
Rd f · σ dµ

for all f ∈ Cc(Rd,Rm).

As a consequence, we have that if L : Cc(Rd,R) → R is a nonnegative linear
and continuous functional, then there exists a unique positive Radon measure
µ on Rd such that

L(f) =
∫

Rd

f dµ ∀f ∈ Cc(Rd,R).

Thus, by Riesz Theorem, we may say that the space of the Radon measures
on Rd is the dual of the Banach space Cc(Rd,R).
Accordingly, we have the following notion of weak convergence of measures:

Definition 2.2 Let µ, µk (k = 1, 2, . . .) be Radon measures on Rd. We say
that the measures µk weakly* converge to the measure µ if

lim
k→∞

∫

Rd

f dµk =
∫

Rd

f dµ ∀f ∈ Cc(Rd,R).

We remind now the well known criterion on weak* convergence of measures,
which will be useful in the following.

Theorem 2.3 Let µ, µk (k = 1, 2, . . .) be Radon measures on Rd. The follow-
ing statements are equivalent:

(i) lim
k→∞

∫

Rd

f dµk =
∫

Rd

f dµ ∀f ∈ Cc(Rd,R).
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(ii) lim sup
k→∞

µk(K) ≤ µ(K) for each compact set K ⊂ Rd.

(iii) µ(U) ≤ lim inf
k→∞

µk(U) for each open set U ⊂ Rd.

(iv) lim
k→∞

µk(B) = µ(B) for each bounded Borel set B ⊂ Rd with µ(∂B) = 0.

We know (Section 1.1) that, given a positive Radon measure µ on Rd, by
the Besicovitch derivation theorem we have that the limit

δµ(x) := lim
r→0

µ(Br(x))
bdrd

exists in R for νd-a.e. x ∈ Rd, and it is a version of the Radon-Nikodym
derivative of µ¿, while µ⊥ is the restriction of µ to the νd-negligible set {x ∈
Rd : δµ(x) = ∞}.
According to Riesz Theorem, Radon measures in Rd can be canonically identified
with linear and order preserving functionals on Cc(Rd,R). The identification is
provided by the integral operator, i.e.

(µ, f) =
∫

Rd

f dµ ∀f ∈ Cc(Rd,R).

If µ ¿ νd, it admits, as Radon-Nikodym density, a classical function δµ defined
almost everywhere in Rd, so that

(µ, f) =
∫

Rd

f(x)δµ(x)dx ∀f ∈ Cc(Rd,R)

in the usual sense of Lebesgue integral.
If µ ⊥ νd, we may speak of a density δµ only in the sense of distributions (it is
almost everywhere trivial, but it is ∞ on a set of νd-measure zero). In this case
the symbol ∫

Rd

f(x)δµ(x)dx := (µ, f)

can still be adopted, provided the integral on the left hand side is understood
in a generalized sense, and not as a Lebesgue integral.
In either cases, from now on, we will denote by (δµ, f) the quantity (µ, f).
Accordingly, a sequence of measures µn weakly∗ converges to a Radon measure
µ if (δµn , f) converges to (δµ, f) for any f ∈ Cc(Rd,R).

In the previous chapter we saw the Dirac delta δX0 at a point X0 both as a
generalized function (Section 1.3), and as the generalized density of the Dirac
measure (Remark 1.5). More precisely, it is the continuous linear functional
associated to the Dirac measure εX0 .
Consider the simple case X0 ∈ R.
As generalized function on the usual test space Cc(R,R), we have

(δX0 , f) := f(X0), f ∈ Cc(R,R); (2.1)

as “density” of the measure εX0 , we have
∫

R
f(x)δX0(x)dx :=

∫

R
f(x)εX0(dx) = f(X0), f ∈ Cc(R,R).
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It is clear that we may define the action of δX0 for any function f : R → R, as
in (2.1), but the assumption f ∈ Cc(R,R) is necessary in order to guarantee the
continuity of δX0 as functional, and to have δX0 as limit of a sequence of linear
functionals.
For example, let X0 = 0 and consider the sequence of linear functionals δ

(m)
0

defined by

(δ(m)
0 , f) :=

∫

R
f(x)ϕm(x)dx, (2.2)

where
ϕm(x) :=

m

2
1(− 1

m , 1
m )(x).

Note that ϕm(x) → δ0(x), and (δ(m)
0 , f) → (δ0, f) for any f ∈ Cc(R,R), while,

if we choose g(x) = 1[0,b](x), b > 0, then g 6∈ Cc(R,R) and we have

(δ0, g) = 1 but (δ(m)
0 , g) → 1

2
.

Thus, for this particular function g, we should choose another suitable sequence
{ϕm} (e.g. ϕm(x) := m1(− 1

m , 1
m )(x)).

Let us notice also that (δ0, g) = ε0(A), where A = [0, b] ⊂ R, and 0 ∈ ∂A, so
that ε0(∂A) 6= 0. It easily follows that the sequence of measures ε

(m)
0 := ϕmνd

ε
(m)
0 (A) :=

∫

A

ϕm(x)dx, A ∈ BR,

weakly* converge to the measure ε0, and so it is clear the correspondence be-
tween the weak* convergence of functionals δ

(m)
0 to δ0, and the weak* conver-

gence of measures ε
(m)
0 to ε0.

In order to extend such á la Dirac approach to any other dimension 0 ≤ n ≤
d, we are going to consider a class of sufficiently regular random closed sets in
Rd of integer dimension n ≤ d.

Definition 2.4 (n-regular sets) Given an integer n ∈ [0, d], we say that a
closed subset S of Rd is n-regular, if it satisfies the following conditions:

(i) Hn(S ∩BR(0)) < ∞ for any R > 0;

(ii) lim
r→0

Hn(S ∩Br(x))
bnrn

= 1 for Hn-a.e. x ∈ S.

Remark 2.5 Note that condition (ii) is related to a characterization of the
countable Hn-rectifiability of the set S (see Section 1.2).

Let Θn be a n-regular closed subset of Rd. Then it follows that

lim
r→0

Hn(Θn ∩Br(x))
bnrn

=
{

1 Hn-a.e. x ∈ Θn,
0 ∀x 6∈ Θn.

(2.3)

In fact, since ΘC
n is open, ∀x 6∈ Θn ∃r0 > 0 such that ∀r ≤ r0 Br(x) ⊂ ΘC

n , that
is Hn(Θn ∩Br(x)) = 0 for all r ≤ r0; thus the limit equals 0, ∀x ∈ ΘC

n .
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Observe that, for a general set A, problems about “Hn-a.e.” and “∀” arise
when we consider a point x ∈ ∂A or singular. For example, if A is a closed
square in R2, for all point x on the edges

lim
r→0

H2(A ∩Br(x))
b2r2

=
1
2
,

while for each of the four vertices the limit equals 1/4; notice that in both of
cases the set of such points has H2-measure 0.

As a consequence, for n < d, (by assuming 0 ·∞ = 0), by (2.3) we also have:

lim
r→0

Hn(Θn ∩Br(x))
bdrd

= lim
r→0

Hn(Θn ∩Br(x))
bnrn

bnrn

bdrd
=

{ ∞ Hn-a.e. x ∈ Θn,
0 ∀x 6∈ Θn.

Note that in the particular case n = 0, with Θ0 = X0 point in Rd (X0 is indeed
a 0-regular closed set),

lim
r→0

H0(X0 ∩Br(x))
bdrd

=
{ ∞ if x = X0,

0 if x 6= X0;

Note that, if Θn is an n-regular closed set in Rd with n < d, then the Radon
measure

µΘn(·) := Hn(Θn ∩ · )
is a singular measure with respect to νd, and so (DµΘn)(x) = 0 νd-a.e. x ∈ Rd.
But, in analogy with the Dirac delta function δX0(x) associated with a point
X0 ∈ Rd, we may introduce the following definition

Definition 2.6 We call δΘn , the generalized density (or, briefly, the density)
associated with Θn, the quantity

δΘn(x) := lim
r→0

Hn(Θn ∩Br(x))
bdrd

, (2.4)

finite or not.

In this way δΘn(x) can be considered as the generalized density (or the
generalized Radon-Nikodym derivative) of the measure µΘn with respect to νd.
Note that, by definition, δΘn(x) = limr→0

µΘn (Br(x))
bdrd .

Remark 2.7 In the case Θ0 = X0, δX0(x) coincides with the well known delta
function at a point X0, the (generalized) density of the singular Dirac measure
εX0 . As the well known Dirac delta δX0(x) allows the localization of a mass
at point X0, the delta function δΘn(x) allows the “localization” of the mass
associated to the n-regular closed set Θn.

Now we are ready to show that for a n-regular set Θn, the density δΘn(x)
can be seen as a linear functional (or as a generalized function) defined by the
measure µΘn , in a similar way as for the classical delta function δX0(x) of a
point X0 described above.

Since, for n < d, δΘn takes only the values 0 and ∞, it provides almost no
information of practical use on Θn, or even on µΘn . This is not the case for
some natural approximations at the scale r of δΘn , defined below.
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Definition 2.8 Let r > 0 and let Θn be n-regular. We set

δ
(r)
Θn

(x) :=
µΘn

(Br(x))
bdrd

=
Hn(Θn ∩Br(x))

bdrd

and, correspondingly, the associated measures µ
(r)
Θn

= δ
(r)
Θn

νd:

µ
(r)
Θn

(B) :=
∫

B

δ
(r)
Θn

(x)dx, B ∈ BRd .

Identifying, as usual, measures with linear functionals on Cc(Rd,R), ac-
cording to the functional notation introduced before in terms of the respective
densities, we may consider the linear functionals associated with the measures
µ

(r)
Θn

and µΘn as follows:

(δ(r)
Θn

, f) :=
∫

Rd

f(x)µ(r)
Θn

(dx) =
∫

Rd

f(x)δ(r)
Θn

(x)dx,

(δΘn , f) :=
∫

Rd

f(x)µΘn(dx), (2.5)

for any f ∈ Cc(Rd,R).
We may prove the following result.

Proposition 2.9 For all f ∈ Cc(Rd,R),

lim
r→0

∫

Rd

f(x)µ(r)
Θn

dx =
∫

Rd

f(x)µΘndx.

Proof. Thanks to the quoted criterion on weak* convergence of measures on
metric spaces (Theorem 2.3), we may limit ourselves to prove that for any
bounded Borel A of Rd such that µΘn(∂A) = 0, the following holds

lim
r→0

µ
(r)
Θn

(A) = µΘn(A).

It is clear that, for any fixed r > 0 and for any bounded fixed set A, there exists
a compact set K containing A such that Hn(Θn∩Br(x)) = Hn(Θn∩K∩Br(x))
for all x ∈ A. Thus, we have

lim
r→0

µ
(r)
Θn

(A) = lim
r→0

∫

Rd

1A(x)
Hn(Θn ∩Br(x))

bdrd
dx

= lim
r→0

∫

Rd

1A(x)
bdrd

(∫

Θn∩K

1Br(x)(y)Hn(dy)
)

dx

= lim
r→0

∫

Rd

(∫

Θn∩K

1A(x)1Br(x)(y)
bdrd

Hn(dy)
)

dx;

by exchanging the integrals and using the identity 1Br(x)(y) = 1Br(y)(x),

= lim
r→0

∫

Θn∩K

(∫

Rd

1A(x)1Br(y)(x)
bdrd

dx

)
Hn(dy)

= lim
r→0

∫

Θn∩K

νd(A ∩Br(y))
bdrd

Hn(dy);
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since
νd(A ∩Br(y))

bdrd
≤ 1, and by hypothesis we know that Hn(Θn ∩K) < ∞,

=
∫

Θn∩K

lim
r→0

νd(A ∩Br(y))
bdrd

Hn(dy);

by Hn(Θn ∩ ∂A) = 0, and lim
r→0

νd(A ∩Br(y))
bdrd

= 0 for all y ∈ (closA)C ,

=
∫

Θn∩intA

lim
r→0

νd(A ∩Br(y))
bdrd

Hn(dy) = Hn(Θn ∩ intA),

since, by the Lebesgue density theorem (Theorem 1.6), lim
r→0

νd(A ∩Br(y))
bdrd

= 1

for every y ∈ intA.
So, by the condition Hn(Θn ∩ ∂A) = 0, we conclude that

lim
r→0

µ
(r)
Θn

(A) = µΘn
(A). (2.6)

¤

Notice that, in the case n = d, δSd
is a classical function, and we will also

use the following well known fact:

δ
(r)
Sd

(x) → δSd
(x) as r → 0 for νd-a.e. x ∈ Rd.

By the proposition above we may claim that the sequence of measures µ
(r)
Θn

weakly* converges to the measure µΘn ; in other words, the sequence of linear
functionals δ

(r)
Θn

weakly* converges to the linear functional δΘn , i.e.

(δΘ, f) = lim
r→0

(δ(r)
Θn

, f) ∀f ∈ Cc(Rd,R). (2.7)

We may like to point out that the role of the sequence {ϕm(x)} for n = 0

in (1.9), is played here, for any n ∈ {0, 1, . . . , d}, by
{Hn(Θn ∩Br(x))

bdrd

}
, by

taking r = 1/m. We notice that if n = 0 and Θ0 = X0, then

H0(X0 ∩Br(x))
bdrd

=
1Br(X0)(x)

bdrd
=

1X0⊕r
(x)

bdrd
,

which is the usual “enlargement” of the point X0 by Minkowski addition with the
closed ball Br(0) (see definition below); in the case d = 1 we have in particular
that

δ
(r)
X0

(x) =
1
2r

1[X0−r,X0+r](x),

in accordance with (1.9).

Definition 2.10 (Minkowski addition) The Minkowski addition A ⊕ B of
two subsets A and B of Rd is the set so defined:

A⊕B := {a + b : a ∈ A, b ∈ B}.
We denote by A⊕r the Minkowski addition of a set A with the closed ball Br(0),
i.e.

A⊕r = {x ∈ Rd : dist(x,A) ≤ r}.
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Remark 2.11 The convergence result shown in Proposition 2.9 can also be
understood noticing that δ

(r)
Θn

(x) is the convolution (e.g. [4]) of the measure
µΘn

with the kernel

ρr(y) :=
1

bdrd
1Br(0)(y).

In analogy with the classical Dirac delta, we may regard the continuous linear
functional δΘn

as a generalized function on the usual test space Cc(Rd,R), and,
in accordance with the usual representation of distributions in the theory of
generalized functions, we formally write

∫

Rd

f(x)δΘn
(x)dx := (δΘn

, f). (2.8)

By the weak convergence of δ
(r)
Θn

to δΘn
, if we rewrite (2.7) with the notation in

(2.8), we have a formal exchange of limit and integral

lim
r→0

∫

Rd

f(x)
Hn(Θn ∩Br(x))

bdrd
dx =

∫

Rd

f(x) lim
r→0

Hn(Θn ∩Br(x))
bdrd

dx.

Further, we notice that the classical Dirac delta δX0(x) associated to a point
X0 follows now as a particular case.

Remark 2.12 If Θ is a piecewise smooth surface S in Rn (and so n-regular),
then, by the definition in (2.5), it follows that, for any test function f ,

(δS , f) =
∫

S

f(x) dS,

which is the definition of δS in [67] on page 33.

In terms of the above arguments, we may state that δΘn(x) is the (general-
ized) density of the measure µΘn , with respect to the usual Lebesgue measure
νd on Rd and, formally, we may define

dµΘn

dνd
(x) := δΘn(x). (2.9)

Note that if n = d, then µΘd
is absolutely continuous with respect to νd, and

dµΘd

dνd (x) is the classical Radon-Nikodym derivative.
Finally, according to Riesz Theorem, the linear functional δΘn defines a mea-

sure on Rd, and this is a way to construct the Lebesgue measure (see discussion
in Example 1.56 in [4]).

2.2 The stochastic case

We consider now random closed sets.

Definition 2.13 (Random n-regular sets) Given an integer n, with 0 ≤
n ≤ d, we say that a random closed set Θn in Rd is n-regular, if it satisfies
the following conditions:
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(i) for almost all ω ∈ Ω, Θn(ω) is an n-regular closed set in Rd;

(ii) E[Hn(Θn ∩BR(0))] < ∞ for any R > 0.

(For a discussion of the delicate issue of measurability of the random variables
Hn(Θn ∩A), we refer to [11, 48, 68]).

Suppose now that Θn is a random n-regular closed set in Rd. By condition
(ii) the random measure

µΘn(·) := Hn(Θn ∩ · )

is almost surely a Radon measure, and we may consider the corresponding
expected measure

E[µΘn
]( · ) := E[Hn(Θn ∩ · )]. (2.10)

In this case δΘn
(x) is a random quantity, and δΘn

is a random linear functional
in the following sense:

Definition 2.14 Let (Ω,F ,P) be a probability space, and L(ω) be a linear func-
tional on a suitable test space S for any ω ∈ Ω.
We say that L is a random linear functional on S if and only if (L, s) is a real
random variable ∀s ∈ S; i.e.

∀s ∈ S, ∀ V ∈ BR {ω ∈ Ω : (L(ω), s) ∈ V } ⊂ F .

Remark 2.15 The definition above is the analogous of the well known defi-
nition for Banach valued random variable. We recall the following definitions
(see, e.g., [7, 15]):

i) Let B be a separable Banach space with norm ‖ · ‖ and Borel σ-algebra B.
A B-valued random variable defined on (Ω,F ,P) is a F − B measurable
function.

It can be proved that X : (Ω,F) → (B,B) is a B-valued random variable
if and only if x∗(X) is a real random variable for every x∗ ∈ B∗.

ii) A B-valued random variable X is weakly integrable if x∗(X) is integrable
for all x∗ ∈ B∗ and if there exists an element of B, denoted by E[X], such
that

E[x∗(X)] = x∗(E[X]) ∀x∗ ∈ B∗.

E[X] is called weak expectation of X, or expected value in the sense of
Pettis (or Gelfand-Pettis).

It can be proved that X is integrable if and only if X has a Bochner
expected value. (The interested reader may refer to [7]).

Note that, if we consider the application

L : (Ω,F ,P) → (S∗,BS∗),

where S∗ is the dual of S (i.e. for any ω ∈ Ω, L(ω) is a continuous linear
functional on a space S), in general S∗ is not a separable Banach space and
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so we are not in the same situation described in Remark 2.15; even if S∗ is a
separable Banach space, we should be able to define s∗∗(L) for any s∗∗ ∈ S∗∗.
In general S is not reflexive and we are directly interested in the action of L

on the elements of S; so it is clear that it is more natural to define a random
linear functional L as in Definition 2.14, and we consider L “as” a B-valued
random variable. (Note that in the case S∗ is a separable Banach space and S
is reflexive, the two definitions coincide).

Now, if L is a random linear functional on S, then it makes sense to compute
the expected value of the random variable (L, s) for any s ∈ S:

E[(L, s)] =
∫

Ω

(L(ω), s) dP(ω).

If for any s ∈ S the random variable (L, s) is integrable, then the map

s ∈ S 7−→ E[(L, s)] ∈ R

is well defined.
Hence, by extending the definition of expected value of a random operator
à la Pettis (or Gelfand-Pettis, [7, 14, 15]), we may define the expected linear
functional associated with L as follows (see [48]).

Definition 2.16 Let L be a random linear functional L on S.
If for any s ∈ S the random variable (L, s) is integrable, then we define the
expected linear functional of L as the linear functional E[L] such that

(E[L], s) = E[(L, s)] ∀s ∈ S;

i.e.

E[L] : S −→ R

s 7−→ (E[L], s) :=
∫

Ω

(L(ω), s) dP(ω).

Note that E[L] is well defined since (E[L], s) < ∞ for all s ∈ S, and if s = r,
then (E[L], s) = (E[L], r). Besides, it easy to check the linearity of E[L]:

(E[L], αs + βr) = α(E[L], s) + β(E[L], r).

for any α, β ∈ R and s, r ∈ S.

Remark 2.17 A well known example of linear functional on Rn is the scalar
product by a fixed vector.
So, let us consider a random vector L = (L1, . . . , Ln) ∈ Rn; then L defines a
random linear functional by:

(L, v) :=
n∑

i=1

Livi, v ∈ Rn.

It is well known that E[L] is defined as the vector with components the expected
values E[Li] of the components of L. This agrees with our definition of E[L] as
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functional; in fact we have that E[L] is again an element of Rn and in accordance
with Definition 2.16,

(E[L], v) =
n∑

i=1

E[Li]vi = E

[
n∑

i=1

Livi

]
= E[(L, v)].

Let us now come back to consider the random linear functional δΘn , associ-
ated with an n-regular random closed set Θn. We have

ω ∈ (Ω,F ,P) 7−→ δΘn
(ω) ≡ δΘn(ω),

and, for any f ∈ Cc(Rd,R), (δΘn
, f) is an integrable random variable, since

certainly an M ∈ R exists such that |f(x)| ≤ M for any x in the support E of
f , and by hypothesis we know that E[Hn(Θn ∩ E)] < ∞.
As before, for the measurability of (δΘn

, f) we refer to [11, 68].
Thus, by Definition 2.16, we may define the expected linear functional E[δΘn ]
on Cc(Rd,R) by

(E[δΘn ], f) := E[(δΘn , f)]. (2.11)

Remark 2.18 By condition (ii) in Definition 2.13, the expected measure E[µΘn ]
is a Radon measure in Rd; as usual, we may consider the associated linear func-
tional as follows:

(δ̃Θn , f) :=
∫

Rd

f(x)E[µΘn ](dx), f ∈ Cc(Rd,R). (2.12)

We show that E[δΘn ] = δ̃Θn .

Proposition 2.19 The linear functionals E[δΘn ] and δ̃Θn defined in (2.11) and
(2.12), respectively, are equivalent.

Proof. Let us consider a function f ∈ Cc(Rd,R). By definition (2.12) we have

(δ̃Θn , f) := lim
k→∞

k∑

j=1

ajE[Hn(Θn ∩Aj)],

where fk =
∑k

j=1 aj1Aj , k=1,2,. . . , is, as usual, a sequence of simple functions
converging to f . (Note that the limit does not depend on the chosen approxi-
mating sequence of simple function, and the convergence is uniform.)
For any k,

Fk :=
k∑

j=1

ajHn(Θn ∩Aj)

is a random variable, and limk→∞ Fk = (δΘn , f).
Consider the sequence {Fk}. We know that an M ∈ R exists such that |f | ≤ M ,
and so |aj | ≤ M ∀j; besides, since Aj is a partition of the support E of f , it
follows that ∀k

Fk ≤ M

k∑

j=1

Hn(Θn ∩Aj) = MHn(Θn ∩ E).
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By hypothesis E[Hn(Θn ∩E)] < ∞, so that the Dominated Convergence Theo-
rem implies the following chain of equalities:

(δ̃Θn
, f) =

∫

Rd

f(x)E[µΘn
](dx)

= lim
k→∞

k∑

j=1

ajE[Hn(Θn ∩Aj)]

= lim
k→∞

E




k∑

j=1

ajHn(Θn ∩Aj)




= E


 lim

k→∞

k∑

j=1

ajHn(Θn ∩Aj)




= E[(δΘn
, f)] = (E[δΘn

], f).

¤

Remark 2.20 Equivalently, by the Riesz duality between continuous functions
and Radon measures, the linear functional E[δΘn ] corresponds to a Radon mea-
sure, say µ̃n, which satisfies by (2.11)

E[(δΘn , f)] =
∫

Rd

f(x)µ̃n(dx) ∀f ∈ Cc(Rd,R). (2.13)

By approximating characteristic functions of bounded open sets by Cc functions,
from (2.13), we get

E[Hn(Θn ∩A)] = E[µΘn ](A)

for any bounded open set A. A simple application of Dynkin’s lemma then
gives that the identity above holds for all bounded Borel sets A, and provides
an alternative possible definition of the expected measure.

As in the deterministic case, we may define the mean generalized density
E[δΘn ](x) of E[µΘn ] by the following formal integral representation:

∫

A

E[δΘn ](x)dx := E[Hn(Θn ∩A)],

with

E[δΘn ](x) := lim
r→0

E[Hn(Θn ∩Br(x))]
bdrd

.

Further, we can provide approximations of mean densities at the scale r, as in
the deterministic case.
Let us define

E[δ(r)
Θn

](x) :=
E[Hn(Θn ∩Br(x))]

bdrd
, (2.14)

and denote by E[µ(r)
Θn

] the measure with density the function E[δ(r)
Θn

](x), with
respect to the Lebesgue measure νd.

49



Let us introduce the linear functional E[δ(r)
Θn

] associated with the measure E[µ(r)
Θn

],
as follows:

(E[δ(r)
Θn

], f) :=
∫

Rd

f(x)E[µ(r)
Θn

](dx), f ∈ Cc(Rd,R).

By the same arguments as in the deterministic case, we now show that the
measures E[µ(r)

Θn
] weakly* converge to the measure E[µΘn

]. In fact, the following
result, which may be regarded as the stochastic analogue of Proposition 2.9,
holds.

Proposition 2.21 For any bounded Borel set A of Rd such that E[µΘn(∂A)] =
0 we have

lim
r→0

E[µ(r)
Θn

(A)] = E[µΘn
(A)].

Proof. It is clear that, for any fixed r > 0 and for any bounded fixed set A, there
exists a compact set K containing A such thatHn(Θn(ω)∩Br(x)) = Hn(Θn(ω)∩
K ∩Br(x)) for all x ∈ A, ω ∈ Ω; further, the condition E[µΘn(∂A)] = 0 implies

P(Hn(Θn ∩ ∂A) > 0) = 0; (2.15)

Thus we have that

lim
r→0

E[µ(r)
Θn

(A)] = lim
r→0

∫

Rd

1A(x)
E[Hn(Θn ∩Br(x))]

bdrd
dx

= lim
r→0

∫

Rd

1A(x)
bdrd

∫

Ω

∫

Θn(ω)∩K

1Br(x)(y)Hn(dy) dP(ω) dx;

by exchanging the integrals and using the identity 1Br(x)(y) = 1Br(y)(x),

= lim
r→0

∫

Ω

∫

Θn(ω)∩K

∫

Rd

1A(x)1Br(y)(x)
bdrd

dx Hn(dy) dP(ω)

= lim
r→0

E
[∫

Θn∩K

νd(A ∩Br(y))
bdrd

Hn(dy)
]

.

Note that, by (2.15),

E
[∫

Θn∩K

νd(A ∩Br(y))
bdrd

Hn(dy)
]

= E
[∫

Θn∩K

νd(A ∩Br(y))
bdrd

Hn(dy) |Hn(Θn ∩ ∂A) = 0
]

,

and that

(i)
∫

Θn(ω)∩K

νd(A ∩Br(y))
bdrd

Hn(dy) ≤
∫

Θn(ω)∩K

Hn(dy) = Hn(Θn(ω) ∩K);

(ii) E[Hn(Θn ∩K)] < ∞ by hypothesis;

(iii) by (2.6), for any A as in (2.15),

lim
r→0

∫

Θn(ω)∩K

νd(A ∩Br(y))
bdrd

Hn(dy) = Hn(Θn(ω)∩K∩A) = Hn(Θn(ω)∩A);
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thus, by the Dominated Convergence Theorem, we have

lim
r→0

E
[∫

Θn∩K

νd(A ∩Br(y))
bdrd

Hn(dy)
]

= lim
r→0

E
[∫

Θn∩K

νd(A ∩Br(y))
bdrd

Hn(dy) |Hn(Θn ∩ ∂A) = 0
]

= E
[
lim
r→0

∫

Θn∩K

νd(A ∩Br(y))
bdrd

Hn(dy) |Hn(Θn ∩ ∂A) = 0
]

= E[Hn(Θn ∩A)].

¤

The quoted criterion on the characterization of weak convergence of se-
quences of measures (Theorem 2.3, (iv)) implies that the sequence of measures
E[µ(r)

Θn
] weakly* converges to the measure E[µΘn

], i.e.

lim
r→0

∫

Rd

f(x)E[µ(r)
Θn

](dx) =
∫

Rd

f(x)E[µΘn ](dx) ∀f ∈ Cc(Rd,R);

or, in other words, the sequence of linear functionals E[δ(r)
Θn

] converges weakly*
to the linear functional E[δΘn ], i.e.

(E[δΘ], f) = lim
r→0

(E[δ(r)
Θn

], f) ∀f ∈ Cc(Rd,R). (2.16)

In accordance with the usual representation of distributions in the theory of
generalized functions, we formally write

∫

Rd

f(x)E[δΘn(x)]dx := (E[δΘn ], f).

Remark 2.22 In this context, our definition of E[δΘn ] given by (2.11) is coher-
ent with the integration of a generalized function with respect to a parameter,
known in literature ([40], p. 263):
Let ϕ(τ, x) be a generalized function of x for all τ in some domain D. If

∫

D

(∫

Rd

ϕ(τ, x)f(x)dx

)
dτ

exists for every test function f , then
∫

D
ϕ(τ, x)dτ is said to exist as a generalized

function and is defined by
∫

Rd

f(x)
(∫

D

ϕ(τ, x)dτ

)
dx :=

∫

D

(∫

Rd

ϕ(τ, x)f(x)dx

)
dτ. (2.17)

In our case, D = Ω and ϕ(τ, x) = δΘn(ω)(x); thus, formally, we have
∫

D
ϕ(τ, x)dτ

=
∫
Ω

δΘn(ω)(x)dP(ω) = E[δΘn(x)], and the definition given by (2.17) is exactly
the (2.11).

By using the integral representation of (δΘn , f) and (E[δΘn ], f), Eq. (2.11)
becomes ∫

Rd

f(x)E[δΘn ](x)dx = E
[∫

Rd

f(x)δΘn(x)dx

]
; (2.18)
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so that, formally, we may exchange integral and expectation.
Further, by (2.16), as for the deterministic case, we have the formal exchange
of limit and integral

lim
r→0

∫

Rd

f(x)
E[Hn(Θn ∩Br(x))]

bdrd
dx =

∫

Rd

f(x) lim
r→0

E[Hn(Θn ∩Br(x))]
bdrd

dx.

Remark 2.23 When n = d, integral and expectation in (2.18) can be really
exchanged by Fubini’s theorem, since in this case both µΘd

and E[µΘd
] are

absolutely continuous with respect to νd and δΘd
(x) = 1Θd

(x), νd-a.s.
In particular δΘd

(x) = 1Θd
(x), νd-a.s. implies that

E[δΘd
](x) = P(x ∈ Θd), νd-a.s.,

and it is well known the following chain of equalities according with our defini-
tion of E[δΘn ] ([44], p.46):

E[νd(Θd ∩A)] = E
(∫

Rd

1Θd∩A(x)dx

)

= E
(∫

A

1Θd
(x)dx

)

=
∫

A

E(1Θd
(x))dx

=
∫

A

P(x ∈ Θd)dx.

Again, we may formally state that (see (2.9))

dE[µΘn ]
dνd

(x) := E[δΘn ](x). (2.19)

We know that E[Hn(Θn ∩ · )] is singular with respect to νd if and only if its
density equals zero almost everywhere, i.e., by our notations, if and only if
dE[µΘn ]

dνd
(x) = 0 νd-a.e. In this case E[δΘn ](x) has the same role of a Dirac

delta, so, as in the deterministic case, we may interpret E[δΘn ] as a generalized
function on the usual test space Cc(Rd,R), the mean Delta function of the
random closed set Θn, or, in term of the measure E[µΘn ], as its generalized
density.
On the other hand, if Θn is not a pathological set, i.e. Hn(Θn)(ω) > 0 for P-a.e.
ω ∈ Ω (n < d), we may notice that, even though for a.e. realization θn of Θn

the measure µθn is positive and singular (and so it is not absolutely continuous),
the expected measure E[µΘn ] may be absolutely continuous with respect to νd.
(See Chapter 3.)

Example: Consider the case n = 0. Let Θ0 = X0 be a random point in Rd;
then, in this case, H0(X0 ∩A) = 1A(X0), and so

E[H0(X0 ∩A)] = P(X0 ∈ A).
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If X0 is a continuous random point with pdf pX0 , then E[H0(X0∩ · )] is absolutely
continuous and, in this case, E[δX0 ](x) is just the probability density function
pX0(x), so

∫
A
E[δX0 ](x)νd(dx) is the usual Lebesgue integral.

Note that we formally have

E[δX0 ](x) =
∫

Rd

δy(x)pX0(y)νd(dy)

=
∫

Rd

δx(y)pX0(y)νd(dy)

= pX0(x);

and, in accordance with (2.18),
∫

A

E[δX0 ](x)νd(dx) =
∫

A

pX0(x)νd(dx)

= P(X0 ∈ A)

= E[H0(X0 ∩A)]

= E
[∫

A

δX0(x)νd(dx)
]

.

If instead X0 is discrete, i.e. X0 = xi with probability pi only for an at most
countable set of points xi ∈ R, then E[H0(X0 ∩ · )] is singular and, as in the
previous case, we have that E[δX0 ](x) coincides with the probability distribution
pX0 of X0.
In fact, in this case pX0(x) =

∑
i piδxi(x), and by computing the expectation of

δX0 , we formally obtain

E[δX0 ](x) = δx1(x)p1 + δx2(x)p2 + · · · =
∑

i

piδxi(x) = pX0(x).

We show this by a simple example. Let X0 be a random point in R such that
it equals 1 with probability 1/4 and equals 3 with probability 3/4, then

E

[∫

[0,2]

δX0(x)dx

]
= P(X0 ∈ [0, 2]) =

1
4

=
∫

[0,2]

(
1
4
δ1(x) +

3
4
δ3(x)

)
dx =

∫

[0,2]

E[δX0(x)]dx.

Besides, since X0 is discrete, E[H0(X0 ∩ · )] 6¿ νd; in fact, if A = {3}, then
νd({3}) = 0, but E[H0(X0 ∩ {3})] = 3/4.
As a consequence, it is clear that

E[H0(X0 ∩A)] 6= H0(E[X0] ∩A),

or, in an equivalent form, by using the functional notation defined above,

E[(δX0 ,1A)] 6= (δE(X0),1A);

as we may expect by observing that if X is a random variable and f : R → R
is a general function not necessarily linear, then (δX , f) = f(X), and it is well
known that E[f(X)] 6= f(E[X]).
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Remark 2.24 By Remark 2.23 and the considerations on the above example,
we may claim that, in the cases n = d and n = 0 with X0 continuous, the
expected linear functionals E[δΘd

] and E[δX0 ] are defined by the function ρ(x) :=
P(x ∈ Θd) and by the pdf pX0 of X0, respectively, as follows:

(E[δΘd
], f) :=

∫

Rd

f(x)ρ(x)dx

and
(E[δX0 ], f) :=

∫

Rd

f(x)pX0(x)dx.

In fact, let us consider the random point X0; in accordance with the definition
in (2.11):

(E[δX0 ], f) :=
∫

Rd

f(x)pX0(x)dx

= E[f(X0)]

= E[(δX0 , f)].
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Chapter 3

Discrete, continuous and
absolutely continuous
random closed sets

Since for our purposes we have to deal with mean generalized densities of random
sets, just introduced, and an interesting property of a random set in Rd is
whether its mean generalized density associated is a classical function, or a
generalized function (that is, whether the expected measure induced by the
random set is absolutely continuous or not with respect to the d-dimensional
Lebesgue measure νd), a concept of absolute continuity of random closed set in
Rd arises in a natural way, related to the absolute continuity of the associated
expected measure. To this end we want to introduce in this chapter definitions
of discrete, continuous and absolutely continuous random closed set, coherently
with the classical 0-dimensional case, in order to propose an extension of the
standard definition of discrete, continuous, and absolutely continuous random
variable, respectively.
(This chapter may be seen as a completion of [26, 25].)

3.1 Discrete and continuous random closed sets

For real-valued random variables it is well known the distinction between dis-
crete, continuous and absolutely continuous random variable, defined in terms
of the associated probability measure, with respect to the usual Lebesgue mea-
sure, since both are acting on the same Borel sigma algebra on the real line;
so, by the well known decomposition theorem of a measure, it is natural the
following definition:

Definition 3.1 Let (Ω,F ,P) be a probability space, and BR the Borel σ-algebra
on R. A real-valued random variable X : (Ω,F ,P) → (R,BR) is said to be

• discrete, if its probability law PX is concentrated on an at most count-
able subset D of R; i.e. the set of its realizations is discrete (so that its
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cumulative distribution function FX : R→ R is a càdlàg function);

PX({x}) = P(X = x) > 0, for x ∈ D, and PX(D) = 1;

• continuous if PX({x}) = P(X = x) = 0 for all x ∈ R (so that FX is a
continuous function);

• absolutely continuous if PX is absolutely continuous with respect to the
usual Lebesgue measure on R (so that FX is an absolutely continuous
function with respect to such measure).

As a consequence, we may observe that, whenever a random variable is ab-
solutely continuous, it admits a probability density, while if it is discrete its
probability law is singular, with respect to the usual Lebesgue measure.

Remark 3.2 The most general case (also called mixed case) includes probabil-
ity laws that are the sum of all the three cases above. We shall ignore, for sake
of simplicity, the mixed case.

The definition above may be extended to a random vector X in Rd (i.e. a
random point in Rd).
In the case of Rd-valued random variables, the concept of absolute continuity
is expressed with respect to the usual Lebesgue measure on Rd. We might give
many simple, and still interesting, examples about the distribution of a random
point X in Rd; for example, when X is a random point uniformly distributed on
a surface S ⊆ Rd, then X is continuous but singular, since its probability distri-
bution is concentrated on an uncountable subset of Rd with Lebesgue measure
zero.

Hence, while the concepts of discrete and continuous random point in Rd

are intrinsic properties of the associated probability law PX , the definition of
absolute continuity requires a reference measure, which in this case is the usual
Lebesgue measure on Rd.

Problems arise when we refer to the probability law PΘ of a random closed set
Θ in Rd. We remember that a random closed set in Rd is a measurable map

Θ : (Ω,F ,P) −→ (F, σF),

where F is the family of closed sets in Rd, and σF is the sigma algebra generated
by the hit-or-miss topology (see Section 1.4).
On σF we do not have a typical reference measure; so, we first limit our analysis
to the concepts of discrete and continuous random closed sets. Later we shall
introduce a concept of absolute continuity in terms of measures on Rd, hence
with respect to the usual Lebesgue measure νd, which is consistent with relevant
interpretations from both theoretical and applied point of view.

Definition 3.3 Let Θ be a random closed set in Rd. We say that Θ is

• discrete if its probability law PΘ is concentrated an at most countable subset
of F; i.e there exist a family θ1, θ2, . . . of closed subsets of Rd, and a family
of real numbers p1, p2, . . . ∈ [0, 1] such that P(Θ = θi) = pi and

∑
i pi = 1;

56



• continuous if
P(Θ = θ) = 0, ∀θ ∈ F. (3.1)

Note that the definition given is consistent with the case that Θ is a random
variable or a random point in Rd. In this case, since the possible realizations of
X are points in Rd, then P(X = θ) = 0 for every subset θ of Rd which is not a
point, and so we say that X is continuous if and only if P(X = x) = 0 for any
x ∈ Rd (that is the usual definition).

As a simple example of discrete random closed set, consider a random square
Θ in R2 which may assume only four realizations with probabilities p1, p2, p3

and p4, respectively, as in the figure below.

Figure 3.1: An example of discrete random closed set in R2.

As a simple example of continuous random closed set, consider a random unit
square Θ with edges A, B, C and D, as in Fig. 3.2, where A = (a, 0) and a is a
real-valued random variable uniformly distributed in [0, 10].

Figure 3.2: An example of continuous random closed set in R2. Here Θ is a unit
square with two edges on the x-axis, and A = (a, 0) with a ∼ U [0, 10].

In a large number of cases, an equivalent condition to (3.1) is:

P(∂Θ = ∂θ) = 0, ∀θ ∈ F. (3.2)
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(We remind that the map Θ 7−→ ∂Θ is measurable (see [49], p. 46)).
Now we prove that, when Θ is a random closed set, (3.2) is a sufficient condition
for the continuity of Θ, and we show under which further condition on Θ, it is
equivalent to (3.1).

Lemma 3.4 Let A and B be two subsets of Rd. Then

A = B ⇐⇒ intA = intB, ∂A ∩A = ∂B ∩B. (3.3)

Proof. ⇐
A = intA ∪ (∂A ∩A) = intB ∪ (∂B ∩B) = B.

⇒
• By absurd let intA 6= intB, with x ∈ intA, x 6∈ intB. So,

x ∈ intA, x ∈ (BC ∪ (∂B ∩B)).

We have two possibilities: x ∈ BC , or x ∈ ∂B ∩B.
If x ∈ BC , then we have an absurd, since, by hypothesis, A = B, and so

x ∈ A ⇒ x ∈ B.
If x ∈ ∂B ∩B, then, ∀r > 0, Br(x) ∩BC 6= ∅.

Since x ∈ intA, then ∃r̄ > 0 such that, ∀r < r̄, Br(x) ∩AC = ∅.
It follows that, ∀r < r̄, Br(x) ∩ AC = ∅ and Br(x) ∩ BC 6= ∅; but this is an
absurd because, by hypothesis, A = B.
• By absurd let ∂A ∩A 6= ∂B ∩B, with x ∈ ∂A ∩A, x 6∈ ∂B ∩B. So,

x ∈ ∂A ∩A, x ∈ (BC ∪ intB).

We have two possibilities: x ∈ BC , or x ∈ intB.
By proceeding in the same way as above, the thesis follows. ¤

Proposition 3.5 Let Θ be a random closed set in Rd. Then

P(∂Θ = ∂A) = 0, ∀A ⊂ Rd =⇒ P(Θ = A) = 0, ∀A ⊂ Rd.

Further, if Θ satisfies one of the following conditions:

1. intΘ = ∅;
2. intΘ 6= ∅, and for a.e. ω ∈ Ω, if ∂A = ∂Θ(ω), then there exist countably

infinitely many closed (distinct) sets {Ai} such that ∂Ai = ∂A(= ∂Θ(ω));

then
P(Θ = A) = 0, ∀A ⊂ Rd =⇒ P(∂Θ = ∂A) = 0, ∀A ⊂ Rd.

Proof. Let A ⊂ Rd.
If A is not closed, since by hypothesis Θ(ω) is closed for all ω ∈ Ω, we have
P(Θ = A) = 0.
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Let A be closed. Then ∂A ∩A = ∂A, and ∂Θ ∩Θ = ∂Θ.
By (3.3) it follows:

P(Θ = A) = P(intΘ = intA, ∂Θ ∩Θ = ∂A ∩A)

= P(intΘ = intA, ∂Θ = ∂A)

≤ P(∂Θ = ∂A) = 0.

Let intΘ = ∅.
Then, Θ = ∂Θ. By absurd ∃A ⊂ Rd such that P(∂Θ = ∂A) > 0. Let B = ∂A.
Then P(Θ = B) = P(∂Θ = ∂A) > 0; that is absurd.

Let Θ be a random closed set with intΘ 6= ∅, such that it satisfies the
condition 2, and let A be a closed subset of Rd.
Let A ⊂ Rd be such that there exists a sequence A1, A2, . . . , An, . . . of closed
subsets of Rd such that ∂Ai = ∂A ∀i, and Ai 6= Aj ∀i 6= j. Then, by hypotheses,
it follows

P(∂Θ = ∂A) =
∑

i

P(Θ = Ai)︸ ︷︷ ︸
=0

= 0.

¤

In conclusion, by Proposition 3.5, we may observe that:

• If Θ is a random closed set in Rd with dimension less than d, then (3.1)
and (3.2) are equivalent conditions for the continuity of Θ.

• The class of random closed set Θ with intΘ 6= ∅, satisfying condition 2,
is very large. Elements of this class are, for example, the Boolean models
[64] and all random closed sets Θ such that, for a.e. ω ∈ Ω,

Θ(ω) = clos(intΘ(ω)).

• In the case that Θ is a random set with intΘ 6= ∅ and such that condition
2 is satisfied, the hypothesis that Θ is closed is necessary. In fact, as a
counterexample, let us consider the random set Θ defined by

Θ(ω) := intBr(0) ∪ P (ω), ω ∈ Ω, (r > 0),

where P is a random point uniformly distributed on ∂Br(0).
Then it is clear that Θ is not closed, it is continuous, and, for all ω ∈ Ω,
∂Θ = ∂Br(0). Besides, the only closed sets Ai ⊂ Rd such that ∂Ai =
∂Br(0) are: Br(0), ∂Br(0) and (intBr(0))C .
Thus, even if the condition 2 is satisfied, we have P(∂Θ = ∂Br(0)) = 1 > 0.

Finally, we show by a counterexample that, in general, if Θ is a random
closed set in Rd, then

P(Θ = A) = 0, ∀A ⊂ Rd =⇒/ P(∂Θ = ∂A) = 0, ∀A ⊂ Rd.

Let us consider a sequence {xi}i∈I of points in R such that
⋃

i xi = C, where C

is the Cantor set. (Note that I is uncountable).
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Let X be a random variable uniformly distributed on C. Then P(X = xi) = 0
for all i ∈ I.
Let Θ be the random set so defined: if X(ω) = xi, then

Θ(ω) := {x1}︸︷︷︸
={0}

∪{x2} ∪ · · · ∪ {xi−1} ∪ [xi, xi+1] ∪ {xi+2} ∪ · · · ∪ {1}. (3.4)

It follows that, for all ω ∈ Ω, Θ(ω) is closed and ∂Θ(ω) = C. In particular,
since C = ∂C, we have that P(∂Θ = ∂C) = 1 > 0.
Let A be a subset of R.
If A is not of the type (3.4), then P(Θ = A) = 0.
If A is of the type (3.4), then P(Θ = A) = P(X = xi) = 0.
Summarizing, for any A ⊂ R, P(Θ = A) = 0, but there exists a subset C of R
such that P(∂Θ = ∂C) > 0.

3.1.1 A comparison with current literature

In current literature (see [49], p.45 and followings) definitions of continuity are
given, but, in many applications, such definitions do not provide a sufficient
insight about the structure of the relevant random closed set. Further they
do not say whether or not a mean density can be introduced for sets of lower
Hausdorff dimensions, with respect to the usual Lebesgue measure on Rd. In
particular we remind the following definition:

Definition 3.6 (Matheron)

1. A random closed set Θ in Rd is P-continuous at a point x ∈ Rd if

lim
y→x

P({x ∈ Θ} ∩ {y 6∈ Θ} = lim
y→x

P({x 6∈ Θ} ∩ {y ∈ Θ} = 0.

Θ is P-continuous if it is P-continuous at every x ∈ Rd.

2. A random closed set Θ in Rd is a.s. continuous at x ∈ Rd if

P(x ∈ ∂Θ) = 0, (3.5)

and Θ is a.s. continuous if it is continuous at any x ∈ Rd.

Note that “a.s.” reflects the fact that the definition is given in terms of the
probability law of Θ, and not the fact that the condition (3.5) should be satisfied
by a.e. x ∈ Rd; in fact, in the definition above, Θ is a.s. continuous if and only
if (3.5) holds ∀x ∈ Rd.

Proposition 3.7 [49]

i) Let Θ be a random closed set with associated capacity functional TΘ. Then
Θ is P-continuous at x ∈ Rd if and only if

x = lim xn in Rd ⇒ TΘ({x}) = lim TΘ({xn}) (3.6)

ii) a.s. continuity =⇒ P-continuity.
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Notation: if a random closed set is a.s. continuous in the sense of Matheron,
we say that it is M-continuous.

The definition of continuity proposed by Matheron concerns the possibility of
exchanging the limit in (3.6). This kind of continuity is related to the continuity
of the functional TΘ for any sequence {xn} converging to a point x in Rd.
But we may observe that, if Θ is a M-continuous random closed set, then, in
general, its capacity functional TΘ is not continuous for any sequence {Kn} of
compact sets converging (in the Hausdorff metric) to a compact set K. For
example, consider a random point X uniformly distributed on K = ∂B1(0).
Clearly X is M-continuous, since P(X = x) = 0 for all x ∈ Rd. Let Kn =
∂B1+ 1

n
(0). Then

lim Kn = K, but limTX(Kn) 6= TX(K),

since TX(Kn) = 0 ∀n, and TX(K) = 1.
With the aim of giving suitable definitions of discrete, continuous and abso-

lutely continuous random closed set, in order to obtain analogous relations, well
known for measures (see Remark 1.2), this suggests our definition of continuity
of a random closed set. In particular, the main difference between our definition
of continuity and the one proposed by Matheron is:
to know that the random set Θ is not continuous by our definition implies that,
as in the case of a random variable, it may assume some configuration with
probability bigger than 0; to know that the random set Θ is not M-continuous
does not give this kind of information.
We show this with an example:
Let us consider in R2 a line through the origin 0 which turns around 0 uniformly,
and let Θ be a fixed segment on it with extremes A and B as in Fig. 3.3; i.e.
imagine a segment [A,B], with A,B > 0 on the x-axis, which turns around the
origin uniformly. Note that here Θ = ∂Θ.

Figure 3.3: A continuous random segment in R2. Here α is a r.v. with distri-
bution U [0, 2π].

Clearly, P(Θ = θ) = 0 for any subset θ of Rd, and so we say that it is continuous.
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The same holds also in the case that A = 0, and so even if 0 ∈ Θ(ω) ∀ω ∈ Ω
(see Fig. 3.4).

Figure 3.4: A continuous but not M-continuous random segment in R2. Here α
is a r.v. with distribution U [0, 2π].

Now, if we want to apply the Definition 3.6, when A 6= 0, we have that, ∀x ∈ R2,
P(x ∈ ∂Θ) = 0, and so Θ is considered M-continuous; while if A = 0, then
P(0 ∈ ∂Θ) = 1, and so in this case it is not M-continuous.
In this example the not continuity is due to the fixed point 0 ∈ Θ; but we may
exhibit a similar example in which the random set Θ has no fixed points, and
obtain the same conclusions:
Let A = (0, 0), B = (1, 0), C = (1, 1) and D = (0, 1) be the edges of a square
and let us consider the two random sets Θ1 and Θ2 moving the square in a
prefixed direction (i.e. for any ω, Θ1(ω) and Θ2(ω) are both a square). Let
Θ1 be the random square with edge A uniformly distributed on a subset of the
x-axis as in Fig. 3.2 so that, if A = (a, 0), then a is a random variable with
uniform distribution in [0, 10];

Figure 3.5: An example of continuous but not M-continuous random closed set
in R2. Here Θ1 is a unit square with two edges on the x-axis, and A = (a, 0)
with a ∼ U [0, 10].

and let Θ2 be the same square, but such that A is uniformly distributed on a
segment on the line y = x, i.e. A = (a, a) (see Fig. 3.6).
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Figure 3.6: An example of random closed set in R2 which is both continuous
and M-continuous. Here Θ2 is a unit square with two edges on the line y = x,
and A = (a, a) with a ∼ U [0, 10].

By Definition 3.8, we say that Θ1 and Θ2 are continuous. Instead, by Matheron’s
definition, we have that P(x ∈ ∂Θ2) = 0 for all x ∈ R2, and so Θ2 is M-
continuous; while for any x = (s, 0), or x = (s, 1), with s ∈ [1, 10], we have that
P(x ∈ ∂Θ1) = 1/10, and so Θ1 cannot be considered M-continuous.
Thus, although both Θ1 and Θ2 move in only one direction, it seems that the
reason why Θ2 is continuous, while Θ1 is not M-continuous, depends on the
specific direction of the movement of the square.

We may notice that, if Θ is M-continuous, since any point x ∈ Rd is a
compact set with empty interior, it follows that

P(∂Θ ∩ x 6= ∅, ∂Θ ∩ intx = ∅) = P(x ∈ ∂Θ) = 0,

then any x ∈ Rd belongs to the class ST of ∂Θ (see Section 1.4.3). Thus,
Matheron’s definition of continuity seems to be related to the definition of the
class ST , and so to the problem of the weak convergence of random sets. But
note that, even if for all x ∈ Rd we have P(x ∈ ∂Θ) = 0, it does not imply that
Kd coincides with ST . Thus, the knowledge that a random set Θ is M-continuous
does not determine the class ST .

3.2 Absolutely continuous random closed sets

As we have previously observed, the concept of absolute continuity requires
a reference measure. Because in general on σF we do not have one, we are
considering random sets in Rd and in a lot of real applications it is of interest
to study their expected measures, it is natural to consider as reference measure
the d-dimensional Lebesgue measure on Rd.

For any lower dimensional random n-regular closed set Θn in Rd, while it is
clear that µΘn(ω) is a singular measure, it may well happen that the expected
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measure E[µΘn ] is absolutely continuous with respect to νd, and so the Radon-
Nikodym theorem ensures the existence of a density of this measure with respect
to νd. So it is natural the following definition.

Definition 3.8 (Absolute continuity in mean) Let Θ be a random closed
set in Rd such that its associated expected measure E[µΘ] is a Radon measure.
We say that Θ is absolutely continuous in mean if the expected measure E[µΘ]
is absolutely continuous with respect to νd.

Note that such a definition provides only information on the absolute conti-
nuity of the expected measure E[µΘ] associated to the random set, but it may
not give information on the geometric stochastic properties (e.g. arrangement)
of Θ in Rd.
In fact, while it is easy to check that the above definition is consistent with
the case in which Θ is a real random variable or a random point in Rd, corre-
sponding to n = 0, if Θ has Hausdorff dimension d, then the expected measure
E[Hd(Θ ∩ · )] is, obviously, always absolutely continuous with respect to the
d-dimensional Lebesgue measure νd, even if Θ is a deterministic set. So, the
absolute continuity of the expected measure E[Hd(Θ ∩ · )] with respect to νd

does not provide information about the continuity of Θ.
However, not only the d-dimensional case give no any kind of information about
the continuity of the random set; there exist also some pathological sets of lower
dimension which may be deterministic or discrete and, in the same time, their
expected measure is absolutely continuous. For example, consider a random
closed set Θn such that, for almost every ω ∈ Ω, Hn(Θn(ω)) = 0; than it
follows that E[Hn(Θn)] = 0, and so it is clear that E[µΘn ] ¿ νd. Therefore,
any random set with this property is absolutely continuous in mean, indepen-
dently of its probability law. For example, consider the case of a 2-dimensional
Brownian path in a fixed plane in R3 (i.e. consider a realization θ2 of a planar
Brownian motion, as deterministic closed set in a plane in R3); it is known that
dimH(θ2) = 2, but H2(θ2) = 0. Thus, there exist deterministic random closed
sets which are absolutely continuous in mean.

We have observed that the well known definitions for a random variable X

in Definition 3.1 are given in terms of its probability measure, and so, by the
quoted relations between measures in Remark 1.2, we may claim that

X absolutely continuous ⇒ X continuous, but not the reverse; (3.7)

X discrete ⇒ X singular, but not the reverse.

Since a random variable is a particular random closed set of Hausdorff dimension
0, we wish to introduce now a stronger definition of absolute continuity for
random closed sets, in order to obtain analogous relations for random sets with
Hausdorff dimension bigger than 0, so that (3.7) follows as particular case.

In Section 3.1 we have proposed a definition of discrete and continuous ran-
dom set in terms of its probability law, and we have observed, also thanks to
examples, how such definitions take into account the “random arrangement”
of the set in the space Rd. As it emerges from Proposition 3.5 and from the
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examples given, the random variability of a random closed set is related to the
random variability of its boundary. This is the reason why we are going to
introduce a stronger definition of absolute continuity of a random closed set in
terms of the expected measure induced by its boundary.
Further, since we want that this definition is coherent with the relation “ab-
solute continuity implies continuity”, and since we wish to propose a concept
of absolute continuity such that it may contain some relevant information on
the random set, it is clear that we have to exclude “pathological” sets like the
2-dimensional Brownian path discussed above. But this will be not a particular
restriction, because these kind of sets (i.e. sets with null Hausdorff measure)
are not interesting in many real applications. In fact, which kind of information
could we have on a random set Θn by the knowledge of its expected measure
E[µΘn

], if E[Hn(Θn)] = 0? Thus, we introduce now a class of random sets, which
contains all the random sets which appear in most of the real applications we
will consider in the following.

Definition 3.9 (R class) We say that a random closed set Θ in Rd belongs
to the class R if

dimH(∂Θ) < d and P(HdimH(∂Θ)(∂Θ) > 0) = 1.

Definition 3.10 (Strong absolute continuity) We say that a random closed
set Θ is (strong) absolutely continuous if Θ ∈ R and

E[µ∂Θ] ¿ νd (3.8)

on BRd .

Notation: Without any other specification, in the following we will write “ab-
solutely continuous random set” to mean a “strongly absolutely continuous ran-
dom set”.

Remark 3.11 If Θ is a random closed set in R such that dimH(Θ) = s < d,
then ∂Θ = Θ; therefore E[µΘ] = E[µ∂Θ] and, by definition, it follows that there
is no distinction between absolute continuity strong and in mean.

On the other hand, any random closed sets in R with Hausdorff dimension
d is absolutely continuous in mean, but in general it is not absolutely continu-
ous in the strong sense (for instance all discrete random closed sets in R with
Hausdorff dimension d).
Note that, if Θ ∈ R with dimH(Θ) = d is sufficiently regular so that dimH(∂Θ) =
d− 1, then it is absolutely continuous if E[Hd−1(∂Θ ∩ · )] ¿ νd(·).

Remark 3.12 In the particular case that Θ = X is a random variable, the
Definition 3.10 coincides with the usual definition of absolute continuity of a
random variable. In fact, dimHX = 0, ∂X = X, and E[H0(X)] = P(X ∈ Rd) =
1, so X ∈ R and then the condition (3.8) is equivalent to

E[H0(X ∩ · )] = P(X ∈ · ) ¿ νd.
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Note that, if Θ1 and Θ2 are random squares as in the example in Section 3.1,
by Definition 3.10, it follows that Θ2 is absolutely continuous, while Θ1 is not.
In fact, we may notice that the expected measure given by E[H1(∂Θ1 ∩ · )] is
not absolutely continuous with respect to ν2: if, for example, A is the segment
[0, 11] on the x-axis, then we have that ν2(A) = 0, while E[H1(∂Θ1 ∩A)] = 1.
We have just observed that also by Matheron’s definition of a.s. continuity of
random sets it follows that Θ2 is a.s. continuous, while Θ1 is not so. Since
that definition gives a condition on the law of the boundary, one might wonder
whether Matheron’s definition of continuity is equivalent to our notion of abso-
lute continuity. Really, it is not so; in fact, in the particular case when Θ = X

is a M-continuous random variable, then we have that P(X = x) = 0 for all
x ∈ R, but this does not imply that X is absolutely continuous in the usual
sense. So it does not say whether or not a mean density can be introduced for
sets of lower Hausdorff dimension, with respect to the usual Lebesgue measure
on Rd.

At this point, since in the previous section we have noticed that the points
x ∈ Rd which satisfy P(x ∈ ∂Θ) = 0 belong to the class ST , one might wonder
if a good definition of absolutely continuity could be the request that the class
ST coincides with the whole family Kd of compacts in Rd. But this is not the
case; for example, let us consider

Θ(ω) = Br(X(ω)) ⊂ R2, ω ∈ Ω, r ∈ R+,

where X is a random point in R2 with uniform distribution in some compact
set W . Surely, there exists a line l such that P(∂Θ ∩ l 6= ∅) > 0. Since l is
a compact set in R2 with empty interior, it follows that ST 6= Kd. Note that,
even if we consider only the compact sets K ∈ Kd with intK 6= ∅, again, we
have not a good definition of absolute continuity, since we do not reobtain the
particular case of a random variable (e.g. consider a random variable X in R
with distribution concentrated on the Cantor set).

There are situations in which the absolute continuity of the random set can
be related to some relevant parameters characterizing the set. For example,
consider as random closed set Θ the family of balls in Rd with fixed radius and
random centre given by a spatial point process; so, in particular, Θ may be
a Boolean model. Note that, if the intensity measure of the point process is
discrete, than Θ turns to be discrete, while if the intensity measure is diffuse,
then Θ is an absolutely continuous random set.
It is interesting to notice that also the geometry of the random set plays a cru-
cial role in the correspondence between the absolute continuity of the intensity
measure and the absolute continuity of the resulting random closed set Θ as
in the above example. In other words, we might say that Θ is discrete if and
only if the intensity measure of the process of the centers is discrete since each
ball has fixed radius. Thus, in this case, the knowledge of the geometry of the
process let us study the random measure Hd−1(∂Θ ∩ · ), or related quantities,
in terms of the stochastic intensity of the point process.
Note that Θ can be seen as a particular marked point process in Rd, where the
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underlying point process is given by the Poisson point process, and the marks by
the length of the radius (see e.g. [37]). Now we present some other examples in
order to better clarify the role of the two main parameters of the marked point
process determining the random closed set Θ; the intensity measure of the pro-
cess giving the random spatial position of the centers, and the distribution law
of the marks (the “objects” associated with each centre). Let Θ be the random
closed set given by a marked point process in Rd with independent marks, such
that the underlying point process has intensity measure Λ, while the marks are
given by cubes in Rd with edges of random length R, such that Θ ∈ R;

• if Λ is a discrete measure, and the distribution law of R is discrete as well,
than the resulting random set Θ is discrete;

• if Λ is discrete, while the distribution law of R is absolutely continuous,
then it follows that Θ is an absolute continuous random closed set;

• if both Λ and R are absolutely continuous, then Θ is absolute continuous.

• if Λ is absolutely continuous, while R is discrete, than Θ is absolutely
continuous;

• if Λ is continuous, but not absolutely continuous, and R is discrete, than
Θ is not discrete, but we can say nothing about its continuity in general.

Note that the absolute continuity of the intensity measure does not always imply
the absolute continuity of Θ. For example let us consider the case in which the
marks depend on the underlying process: the edge length of each cube may
depend on the coordinates of its centre, so that an edge of every cube lies on
a prefixed plane π. As a consequence we have that E[Hd−1(∂Θ ∩ π)] 6= 0 with
νd(π) = 0, and so Θ is not absolutely continuous.

Obviously, the examples we have shown here (some of which are a bit patho-
logical) are given in order to clarify the meaning of our definitions of discrete,
continuous, and absolutely continuous random closed set.
An example of absolutely continuous time-dependent random closed set is dis-
cussed in Section 6.2.7.

3.2.1 A condition for the absolute continuity of a random
closed set

In order to verify if a random closed set Θ is absolutely continuous, we give now
a sufficient condition for (3.8).

Proposition 3.13 Let Θs be a random closed set such that dimHΘs = s < d

(and so Θs = ∂Θs). Then

P(Hs(Θs ∩ ∂A) > 0) = 0, ∀A ⊂ Rd =⇒ E[Hs(Θs ∩ · )] ¿ νd. (3.9)

Proof. By absurd, suppose that ∃A ⊂ Rd such that νd(A) = 0 and E[Hs(Θs ∩
A)] > 0.
We may notice that

νd(A) = 0 =⇒ intA = ∅. (3.10)
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In fact, by absurd let intA 6= ∅; then ∃x ∈ intA and ∃Br(x) ⊂ A, with r > 0.
Thus νd(A) ≥ νd(Br(x)) = bdr

d > 0.
It is clear that

E[Hs(Θs ∩A)] > 0 =⇒ P(Hs(Θs ∩A) > 0) > 0 (3.11)

Hence, we have the following chain of implications:

A ⊆ closA = ∂A ∪ intA
(3.10)
= ∂A

⇓
Θs ∩A ⊆ Θs ∩ ∂A

⇓
Hs(Θs ∩A) ≤ Hs(Θs ∩ ∂A)

⇓

P(Hs(Θs ∩ ∂A) > 0) ≥ P(Hs(Θs ∩A) > 0)
(3.11)
> 0,

but this is an absurd, since P(Hs(Θs ∩ ∂A) > 0) = 0. ¤

Remark 3.14 Note that the condition

P(Hs(Θs ∩ ∂A) > 0) = 0, ∀A ⊂ Rd

is sufficient, but not necessary. The opposite implication holds under the addi-
tional condition that νd(∂A) = 0. In fact, E[Hs(Θs ∩ · )] ¿ νd does not imply,
in general, that, for any A ⊂ Rd, P(Hs(Θs ∩ ∂A) > 0) = 0 holds.
For example, let X be an absolutely continuous random variable. Then, in this
case, d = 1, dimH(X) = 0, and E[H0(X ∩ · )] = P(X ∈ · ) ¿ νd.
Let A = Q; then ∂A = R. So, even if E[H0(X ∩ · )] is absolutely continuous, we
have that P(H0(X ∩ ∂A) > 0) = P(X ∈ R) = 1 > 0.

Proposition 3.15 Let Θs be a random closed set such that dimHΘs = s < d.
Then

E[Hs(Θs∩· )] ¿ νd =⇒ P(Hs(Θs∩∂A) > 0) = 0, ∀A ⊂ Rd s.t. Hd(∂A) = 0.

Proof. By absurd, ∃A ⊂ Rd with νd(∂A) = 0, such that

P(Hs(Θs ∩ ∂A) > 0︸ ︷︷ ︸
H

) > 0. (3.12)

Then

E[Hs(Θs ∩ ∂A)] = E[Hs(Θs ∩ ∂A); H] + E[Hs(Θs ∩ ∂A); HC ]

= E[Hs(Θs ∩ ∂A); H]
(3.12)
> 0.

Hence, we may claim that there exists K = ∂A ⊂ Rd such that νd(K) = 0
and E[Hs(Θs ∩K)] > 0; that is E[Hs(Θs ∩ · )] is not absolutely continuous with
respect to νd. ¤
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Corollary 3.16 Let Θs be a random closed set such that dimHΘs = s < d.
Then, ∀A ⊂ Rd such that Hd(∂A) = 0,

E[Hs(Θs ∩ · )] ¿ νd ⇐⇒ P(Hs(Θs ∩ ∂A) > 0) = 0.

As we have just observed before, if dimH(Θ) = d, then E[Hd(Θ ∩ · )] ¿ νd,
in accordance with the proposition above. In fact, if A is a subset of Rd such
that νd(∂A) = 0, then Hd(Θ ∩ ∂A) ≤ Hd(∂A) = 0, and, as a consequence,
P(Hd(Θ ∩ ∂A) > 0) = 0.

3.2.2 A remark on the boundary of an absolutely contin-
uous random closed set

We remind that, by Matheron’s definition of a.s. continuity (see Definition 3.6),
if Θ is M-continuous, then

P(x ∈ ∂Θ) = 0 ∀x ∈ Rd.

As we have just observed, the requirement that such a property holds for all
x in Rd seems to be too strong in our context. Now we show that also by our
definition of absolute continuity, in mean and strong, a similar property on ∂Θ
may be obtained. In particular, the following holds.

Proposition 3.17 Let Θn be a random closed set with Hausdorff dimension
n < d. Then

P(x ∈ Θn) = 0 for νd-a.e. x ∈ Rd.

Proof. Since n < d then E[νd(Θn)] = 0.
By Fubini’s theorem we have

E[νd(Θn)] =
∫

Ω

∫

Rd

1Θn(x)dx ) =
∫

Rd

∫

Ω

1Θn(x)P(dω) dx =
∫

Rd

P(x ∈ Θn)dx.

Thus, necessarily, we have that P(x ∈ Θn) for νd-a.e. x ∈ Rd. ¤

Note that the above proposition applies to any lower dimensional set, inde-
pendently of its probability law. If we suppose now that the expected measure
E[µΘn ] associated with Θn (n < d) is absolutely continuous with respect to νd,
then the set of points x ∈ Rd such that P(x ∈ Θn) = 0 becomes “bigger”.

Proposition 3.18 Let Θn be a random closed set with Hausdorff dimension
n < d and such that E[µΘn ] ¿ νd.
Then for any Hn-measurable subset A of Rd with Hs(A) > 0, νd(A) = 0, we
have that

P(x ∈ Θn) = 0 Hn-a.e. x ∈ A.

Proof. By absurd there exists a Hn-measurable subset A of Rd with Hs(A) > 0,
νd(A) = 0, such that P(x ∈ Θn) > 0 Hn-a.e. x ∈ A.
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By Corollary 2.10.48 in [32] we have that the measure Hn is σ-finite on A, so
that we may use Fubibi’s theorem. Thus it follows that

0 <

∫

A

P(x ∈ Θn)Hn(dx) =
∫

A

∫

Ω

1Θn
(x)P(dω) Hn(dx)

=
∫

Ω

∫

A

1Θn
(x)Hn(dx) P(dω) = E[Hn(Θn ∩A)]

But this is in contrast with the assumption E[µΘn
] ¿ νd, because E[Hn(Θn∩A)]

should be equal to 0. ¤

Note that, if Θ is a random closed set with Hasudorff dimension less than d,
then Θ = ∂Θ, while if Θ ∈ R, than dimH(∂Θ) < d.

Corollary 3.19 Let Θ be a random closed set in Rd with dimH(∂Θ) = n < d.
If one of the following two conditions is satisfied:

(i) ∂Θ is absolutely continuous in mean,

(ii) Θ is absolutely continuous,

then
P(x ∈ ∂Θ) = 0 Hn-a.e. x ∈ A,

for any Hn-measurable subset A of Rd with Hs(A) > 0, νd(A) = 0.

As a simple example, consider the random segment with an extreme coinciding
with the origin as in Fig. 3.4. Clearly, it is absolutely continuous, in this case
n = 1, and the only point belonging to the random set with probability bigger
than 0 is the origin, which has null H1 measure, as we expected.

3.2.3 Relations between discrete, continuous, and abso-
lutely continuous random closed sets

Throughout this section Θ is supposed to belong to the class R.

In analogy with measure theory, we give the following definition:

Definition 3.20 We say that a random closed set Θ in Rd is singular if and
only if it is not absolutely continuous (in the sense of Definition 3.10).

In this way, the relations between the continuous and singular parts of a measure
(see Remark 1.2) hold also for a random closed set, although in a different
context. So, in terms of our definitions, we may claim the following.

Proposition 3.21

Θ absolutely continuous ⇒ Θ continuous, but not the reverse; (3.13)

Θ discrete ⇒ Θ singular, but not the reverse. (3.14)
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Proof. A simple counterexample to (3.13) and (3.14) is given by the continuous,
but not absolutely continuous, random square Θ1 introduced in Section 3.1 and
mentioned in Section 3.2.
Let us prove the first implication; the second one follows in a similar way. By
absurd, let Θ be not continuous; then there exists θ ⊂ Rd such that P(Θ = θ) >

0, with HdimH(∂θ)(∂θ) > 0. Thus, we have that Hd(∂θ) = 0, but

E[HdimH(∂Θ)(∂Θ ∩ ∂θ)]

= E[HdimH(∂Θ)(∂Θ ∩ ∂θ); {ω : Θ = θ}] + E[HdimH(∂Θ)(∂Θ ∩ ∂θ); {ω : Θ 6= θ}]
≥ E[HdimH(∂Θ)(∂Θ ∩ ∂θ); {ω : Θ = θ}]
= HdimH(∂θ)(∂θ)

> 0.

Hence, by Definition 3.10, Θ is not absolutely continuous, that is absurd. ¤

Now we wonder in what relation a random set Θ is with its subsets. In par-
ticular, if Θ, for example, is an absolutely continuous random set with Hausdorff
dimension d, then may one claim that any of its subsets of lower dimension is
absolutely continuous, too? This is not true as we show by the following coun-
terexample.

Definition 3.22 Let Θ and Q be random closed sets in Rd defined on the same
probability space (Ω,F ,P). We say that Q ⊆ Θ if and only if

∀ω ∈ Ω Q(ω) ⊆ Θ(ω).

We may claim that:

• Θ absolutely continuous 6⇒ every Q ⊂ Θ is absolutely continuous.

For example, let us consider the random closed set Θ in R2 given by

Θ(ω) = Br(X(ω)), ω ∈ Ω, r ∈ R+,

where X is a random point uniformly distributed in the unit square centered in
0. Then Θ is absolutely continuous.
Denoting by x the x-axis, let Ω′ := {ω ∈ Ω : Θ(ω) ∩ x 6= ∅}. Then P(Ω′) > 0.
If we define

Q(ω) :=
{

Θ(ω) ∩ x if ω ∈ Ω′

∅ if ω ∈ Ω \ Ω′,

it follows that Q ⊂ Θ, dimHQ = 1, E[H1(Q)] > 0, and Q(ω) ⊂ x for any ω ∈ Ω.
As a consequence, since ν2(x) = 0 and E[H1(Q ∩ x)] = E[H1(Q)] > 0, we may
claim that Q is not absolutely continuous. On the other hand, it is also true
that

• Θ singular 6⇒ every Q ⊂ Θ is singular.

For example, let Θ = Θ1 ∪ Θ2, where Θ1 is singular, and Θ2 is absolutely
continuous, and let Q = Θ2. Then, obviously, Θ is singular, while Q ⊂ Θ is
absolutely continuous.

But the following holds.

71



Proposition 3.23 If dimHΘ < d and Θ is discrete, then any subset Q ∈ R of
Θ is singular.

Proof. By definition, there exist θ1, θ2, . . . closed subsets of Rd, and p1, p2, . . . ∈
[0, 1], such that P(Θ = θi) = pi and

∑
i pi = 1.

Since Hd(θi) = 0 for all i, it follows that any countable union of them has
Lebesgue measure zero.
Thus, let A =

⋃
i θi; then νd(A) = 0 and, ∀ω ∈ Ω, Θ(ω) ⊆ A.

As a consequence, ∀Q ⊆ Θ, we have that, ∀ω ∈ Ω, Q(ω) ⊆ A; in particular, if
dimHQ = s, (s ∈ [0, dimHΘ]):

E[Hs(Q ∩A)] = E[Hs(Q)] > 0,

i.e. Q is not absolutely continuous. ¤

Note that the hypothesis dimHΘ < d is crucial. As a simple counterexample,
consider a unit cube C in R3; let Θ(ω) = C ∀ω ∈ Ω, and let X be a random point
uniformly distributed in C. Then, obviously, dimHΘ = 3, Θ is deterministic
(and so discrete), and X ⊂ Θ; but X is, by definition, absolutely continuous.

In conclusion, we may notice that when we pass from the case of a random
point X in Rd, to the case of a general random closed set Θ with dimension
bigger than zero, the analysis of the random set becomes more complex.
An intuitive reason of this lies in the fact that a point in Rd has no proper
subsets, while any connected subset of Rd whose dimension is not zero, has
uncountably many proper sets, and it can not be written as a countable union
of its subsets in a unique way.

We may summarize the relations between continuity, absolute continuity and
M-continuity by the following proposition.

Proposition 3.24 i) M-continuity =⇒
⇐=/ continuity;

ii) absolute continuity
=⇒
⇐=/ continuity;

iii) M-continuity =⇒/
⇐=/ absolute continuity.

Proof. i) Proof of ⇒
By absurd let Θ be M-continuous, but not continuous. Then there exists θ ⊂ Rd

such that P(Θ = θ) > 0.
If we set

Ω′ := {ω : Θ(ω) = θ},
then P(Ω′) > 0 and ∂Θ(ω) = ∂θ for all ω ∈ Ω′.
Let x ∈ ∂θ; so we have that, ∀ω ∈ Ω′, x ∈ ∂Θ(ω).
In conclusion it follows that

P(x ∈ ∂Θ) ≥ P(Ω′) > 0,

i.e. Θ is not M-continuous, that is absurd.
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Counterexample for ⇐/ : the two random squares Θ1 and Θ2 described in Sec-
tion 3.1.1

ii) This point is just the implication (3.13).

iii) Counterexample for ⇒/ : let X be a real-valued random variable con-
tinuous, but not absolutely continuous. Then the random set Θ = X is M-
continuous, but it is not absolutely continuous.

Counterexample for ⇐/ : let Θ the random ball in R3 given by

Θ(ω) := B1(X(ω)),

where X is a random point uniformly distributed on ∂B1(0). It follows that Θ
is absolutely continuous, but it is not M-continuous since P(0 ∈ ∂Θ) = 1. ¤

Remark 3.25 In the particular case in which Θ = X is a random point, then

M-continuity ⇐⇒ continuity. (3.15)

As we have noticed previously, in this case our definition of continuity coincides
with the classical one. The same holds for M-continuity; in fact ∂X = X, and

P(x ∈ ∂X) = P(X = x) = 0 ∀x ∈ Rd.

All the examples we have presented suggest that the reason of the equivalence
in (3.15) lies in the fact that a random point has no proper subsets.

Really, there may exist other situations in which M-continuity and continuity
are equivalent. For example whenever Θ is a stationary random closed set with
νd(∂Θ) = 0.
It is clear that any stationary random closed set is continuous. On the other
hand, the following result holds (see [49], p. 48).

Proposition 3.26 Let Θ be a random closed set in Rd. If the mapping

x −→ P(x ∈ ∂Θ)

is continuous on Rd, then

Θ is M-continuous ⇐⇒ νd(∂Θ) = 0 P-a.s.

Proof. If Θ is M-continuous, then, by definition, P(x ∈ ∂Θ) = 0 for all x ∈ Rd.
As a consequence, by Fubini’s theorem it follows that

E[νd(∂Θ)] =
∫

Rd

P(x ∈ ∂Θ)dx = 0,

and so νd(∂Θ) = 0 P-a.s.
If νd(∂Θ) = 0 P-a.s., then E[νd(∂Θ)] = 0. But E[νd(∂Θ)] = 0 if and only

if P(x ∈ ∂Θ) = 0 for νd-a.e. x ∈ Rd. By the continuity of the mapping
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x → P(x ∈ ∂Θ) we have that P(x ∈ ∂Θ) = 0 for all x ∈ Rd, i.e. Θ is M-
continuous. ¤

Note that if Θ is stationary, then ∂Θ is stationary as well, and so the mapping
x → P(x ∈ ∂Θ) is continuous, since P(x ∈ ∂Θ) is constant on Rd. Thus it
immediately follows that

Corollary 3.27 If Θ is a stationary random closed set with νd(∂Θ) = 0 P-a.s.,
then Θ is M-continuous.

Therefore we may claim that

Θ stationary with νd(∂Θ) = 0 P-a.s.

⇓
Θ is both M-continuous and continuous.

Note that an uncountable union of singular random sets may be, in general,
an absolutely continuous random set. For example, let us consider a vertical
random bar Θ in R2, and let A and B be its extremes. So, A and B are two
random points. We assume that A = (X, 0), and B = (X, 1), where X is a
random variable (on the same probability space) with uniform distribution in
[0, 10]. It is clear that E[H1(Θ ∩ · )] ¿ νd, and so Θ is absolutely continuous.
A and B, as any other random point Pc ⊂ Θ of the type P = (X, c), with
c ∈ (0, 1), are singular. In fact, if l is the line y = c,then P(H0(Pc ∩ l) > 0) = 1,
by Proposition 3.15 it follows that P is not absolutely continuous. Note that
Θ =

⋃
c∈[0,1] Pc.

Therefore, the subdivision of a random set in singular and absolutely con-
tinuous subsets depends on the specific situation, since the knowledge of Θ does
not give, in general, sufficient information about its subsets (except particular
cases, or when Θ is discrete).

Let us consider Θn discrete (i.e. P(Θn = θi
n) = pi, with

∑
i∈I pi = 1) with

0 ≤ n < d; then E[Hn(Θn ∩ · )] is singular with respect to νd and, formally, in
accordance with (2.18), by E[δΘn(x)] =

∑
i δθi

n
pi, we have

E
[∫

A

δΘn(x)dx

]
= E[Hn(Θn ∩A)]

=
∑

i

Hn(θi
n ∩A)pi

=
∑

i

pi

∫

A

δθi
n
(x)dx

=
∫

A

∑

i

δθi
n
(x)pidx (3.16)

=
∫

A

E[δΘn(x)]dx.
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Note that the last three integrals have to be regarded in a generalized sense.
We give an intuitively explanation in terms of the generalized densities (delta
functions) δi

θn
associated with Θn.

Since, for any i, θi
n is a lower dimensional subset of Rd, as we have seen in the

previous sections, the (deterministic) measure µθi
n

is singular with respect to
νd, and so the δθi

n
’s are “usual Dirac delta”’s, that is, they are zero νd-a.e. and

have to be considered as generalized functions. Now, in the sum
∑

i∈I

δθi
n
(x)pi(x)

which appears in (3.16), I is a countable set, and so the resulting delta func-
tion E[δΘn

(x)] is again a “usual Dirac delta”. Instead, in the case that Θn is
not discrete, I is not countable, so we may not claim a priori that E[δΘn

(x)]
(uncountable sum of “usual Dirac delta”’s) is a “usual Dirac delta” or a “usual
function”. In fact, there are situations in which this sum turns to be an usual
function (e.g. see Example on p. 52 with X0 continuous random point); in these
cases the expected measure E[µΘn ] is absolutely continuous and its Radon-
Nikodym derivative is just the density E[δΘn(x)].
Please note that, if n = d, as we have observed previously, E[µΘd

] is absolutely
continuous with respect to νd even if Θd is discrete, because Hd(Θd ∩ · ) is the
restriction of νd to the set Θd. So, in the discrete case, the δθi

d
’s are not usual

Dirac delta, but indicator functions:

δθi
d
(x) = 1θi

d
(x) νd-a.e.

As a consequence, the Radon-Nikodym derivative is the step function given by
the countable sum in (3.16).

Finally, if Θn can be written as disjoint union of Θ1 and Θ2, then

δΘn = δΘ1 + δΘ2 .

As a consequence, we may have a decomposition of E[δΘn ] in terms of the
densities of Θ1 and Θ2. In particular, as a simple example, let us consider the
case Θ1 is fixed, while Θ2 is random, with Θ1 ∩Θ2 = ∅. Then we have

E[Hn(Θn ∩A)] = E[Hn(Θ1 ∩A)] + E[Hn(Θ2 ∩A)]

= Hn(Θ1 ∩A) + E[Hn(Θ2 ∩A)]

= (δΘ1 ,1A) + (E[δΘ2 ],1A),

that is to say
E[δΘn ] = δΘ1 + E[δΘ2 ].
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Chapter 4

Approximation of the mean
densities

In many real applications such as fiber processes, n-facets of random tessellations
of dimension n ≤ d, etc., several problems are related to the estimation of the
mean density of the expected measure E[µΘ] of a random closed set Θ in Rd. In
order to face such problems in the general setting of spatially inhomogeneous
processes, we suggest and analyze here an approximation of mean densities for
sufficiently regular random closed sets. We will show how some known results
in literature follow as particular cases.

4.1 The particular cases n = 0 and n = d

In the previous chapter we have observed that any d-regular random set is
absolutely continuous in mean, and it suffices to apply Fubini’s theorem (in
Ω × Rd, with the product measure P × νd) to obtain that the mean density is
given by (see Remark 2.23)

E[δΘd
](x) = P(x ∈ Θd) for νd-a.e. x ∈ Rd.

Therefore in this case it is easy to estimate the mean density by the estimation
of the hitting functional (Section 1.4.1) at a point x:

TΘd
(x) = P(Θd ∩ x 6= ∅) = P(x ∈ Θd).

It is clear that, given a sample of the random closed set Θd, i.e. given a sequence
Θ1

d,Θ
2
d, . . . of random closed sets IID as Θd, for any fixed point x ∈ Rd, an

unbiased estimator of E[δΘd
](x) is given by

λ̂
(N)
Θd

(x) :=
1
N

N∑

i=1

1Θi
d
(x).
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If n = 0 and Θ0 = X is a random point, then E[H0(Θ0 ∩ · )] = P(X ∈ · ).
Therefore Θ0 is absolutely continuous in mean if and only if the law of X is
absolutely continuous. In this case E[δX ] coincides with the pdf pX of X and so
we may estimate E[δX ] by the well known estimation by means of histograms
([58] § VII.13)

Estimation of densities by means of histograms

We recall the estimation of probability densities of real-valued random variables
by means of functions that are called “histograms”.

An interval in R will be denoted by I, and its length by |I|.
Definition 4.1 A sequence of intervals I1, I2, . . . is called an interval partition
of R if

i) Ip ∩ Iq = ∅ if p 6= q,

ii) R =
⋃

p∈N
Ip.

Such a sequence of intervals will be denoted by I (I := {Ip}p∈N).
In particular, we set

|I| := sup
p
|I| and γ(I) := inf

p
|I|.

It is assumed that 0 < γ(I) ≤ |I| < ∞.

Definition 4.2 If a step function

h =
∑

p

cp1Ip

is a probability density (i.e.
∫
R h = 1), then we say that h is a histogram.

Now, let X1, . . . , Xn be a sample of a population having an absolutely con-
tinuous probability distribution with density f . Furthermore, let I be a prefixed
interval partition of R. Then with every given outcome x1, . . . , xn of the sample
we associate a histogram given by

h = h(I; x1, . . . , xn) :=
∑

p

cp1Ip , (4.1)

where

cp :=
#{i : xi ∈ Ip}

n|Ip| .

It is easily verified that the step function h defined above is a probability density,
hence it is indeed a histogram, and it can be used as an estimation for f . In
fact, we may observe that the coefficients cp depend on the sample outcome
x1, . . . , xn; thus h(I; X1, . . . , Xn) as in (4.1), with

cp = cp(X1, . . . , Xp) =
#{i : xi ∈ Ip}

n|Ip| ,
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is a statistic for f . Note that

cp(X1, . . . , Xp) =
1

n|Ip|
n∑

i=1

1Ip(Xi),

and the variables 1Ip(X1), . . . ,1Ip(Xn) are IID with a Bernoulli distribution
with parameter given by

P(1Ip
(Xi) = 1) = P(Xi ∈ Ip) =

∫

Ip

f(x)dx.

As a consequence, the following holds ([58], p. 367).

Proposition 4.3 We have

i) E[cp(X1, . . . , Xn)] =
1
|Ip|

∫

Ip

f(x)dx,

ii) var(cp(X1, . . . , Xn)) =
1

n|Ip|2
(∫

Ip

f(x)dx

)(∫

Ic
p

f(x)dx

)

≤ 1
n|Ip| sup

x∈Ip

f(x).

For any fixed x ∈ R, the expression

h(I;X1, . . . , Xn)(x)

represents a real-valued statistic. The following theorem is proved in [58], p. 367.

Theorem 4.4 Let X1, . . . , Xn be an infinite sample from an absolutely contin-
uous population with probability density f . Suppose that I1, I2, . . . is a sequence
of partitions of R such that

|In| −→ 0 and nγ(In) −→∞.

Then in every point of continuity x of f we have

lim
n→∞

h(In;X1, . . . , Xn)(x) = f(x) in probability.

4.2 An approximation of the mean densities

Given an n-regular random closed set Θn, even if a natural sequence of approx-
imating functions of the expected measure E[µΘn ] is given by E[δ(r)

Θn
] defined

by (2.14), problems might arise in the estimation of E[Hn(Θn ∩Br(x))], as the
computation of the Hausdorff measure is typically non-trivial even in the de-
terministic case. Since points and lines are ν2-negligible, it is natural to make
use of their 2-D box approximation. As a matter of fact, a computer graphics
representation of them is anyway provided in terms of pixels, which can only
offer a 2-D box approximation of points in R2. Therefore we are led to consider
a new approximation, based on the Lebesgue measure (much more robust and
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computable) of the enlargement of the random set, so we suggest unbiased esti-
mators for densities of random sets of lower dimensions in a given d-dimensional
space, by means of their approximation in terms of their d-dimensional enlarge-
ment by Minkowski addition. This procedure is obviously consistent with the
usual histogram estimation of probability densities of a random variable. A
crucial result is given in the following proposition.

Proposition 4.5 [2] Let Θn be a random n-regular set, and let A ∈ BRd . If

lim
r→0

E[νd(Θn⊕r
∩A)]

bd−nrd−n
= E[Hn(Θn ∩A)], (4.2)

then

lim
r→0

∫

A

P(x ∈ Θn⊕r
)

bd−nrd−n
dx = E[Hn(Θn ∩A)]. (4.3)

Proof. For a random closed set Ξ in Rd, Fubini’s theorem gives

E[νd(Ξ ∩A)] =
∫

A

P(x ∈ Ξ)dx.

Therefore, the following chain of equalities holds:

lim
r→0

∫

A

P(x ∈ Θn⊕r )
bd−nrd−n

dx = lim
r→0

1
bd−nrd−n

∫

A

P(x ∈ Θn⊕r )dx

= lim
r→0

1
bd−nrd−n

E[νd(Θn⊕r ∩A)]

(4.2)
= E[Hn(Θn ∩A)]

¤

Motivated by the previous proposition, we define

δ⊕r
n (x) :=

P(x ∈ Θn⊕r )
bd−nrd−n

and, accordingly, the absolutely continuous Radon measures µ⊕r = δ⊕r
n νd, i.e.

µ⊕r(B) :=
∫

B

P(x ∈ Θn⊕r )
bd−nrd−n

dx ∀B ∈ BRd .

We may notice that

P(x ∈ Θn⊕r ) = P(Θn ∩Br(x) 6= ∅) = TΘn(Br(x)),

thus making explicit the reference to TΘn , the capacity functional characterizing
the probability law of the random set Θn.

Corollary 4.6 Let Θn be a random n-regular set, and assume that (4.2) holds
for any bounded open set A such that E[µΘn ](∂A) = 0. Then the measures µ⊕r

weakly∗ converge to the expected measure E[µΘn ] as r → 0.
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In other words, we may say that the sequence of linear functionals δ⊕r
n , associ-

ated with the measures µ⊕r as follows

(δ⊕r
n , f) :=

∫

Rd

f(x)µ⊕r(dx),

converge weakly* to the linear functional E[δΘn
], i.e.

lim
r→0

(δ⊕r
n , f) = (E[δΘn

], f) ∀f ∈ Cb(Rd,R).

Note that, if Θn is absolutely continuous in mean, we have

E[Hn(Θn ∩A)] =
∫

A

λΘn(x)dx,

where λΘn
is the density of its associated expected measure E[µΘn

]. So, in this
case, we can rephrase (4.3) as

lim
r→0

∫

A

P(x ∈ Θn⊕r )
bd−nrd−n

dx =
∫

A

λΘn
(x)dx. (4.4)

In particular, if Θn is a stationary random closed set, then δ⊕r
n (x) is independent

of x and the expected measure E[µΘn ] is motion invariant, i.e. λΘn(x) = L ∈ R+

for νd-a.e. x ∈ Rd. It follows that

lim
r→0

∫

A

P(x ∈ Θn⊕r )
bd−nrd−n

dx = lim
r→0

P(x0 ∈ Θn⊕r )
bd−nrd−n

νd(A) ∀x0 ∈ Rd,

∫

A

λ(x)dx = Lνd(A);

so by (4.4) we infer

lim
r→0

P(x0 ∈ Θn⊕r )
bd−nrd−n

= L ∀x0 ∈ Rd.

Recall that all these conclusions hold under the assumption, made in Propo-
sition 4.5, that (4.2) holds. So, the main problem is to find conditions on Θn

ensuring that this condition holds. If Θn is such that almost every realization
Θn(ω) has Minkowski content equal to the Hausdorff measure, i.e.

lim
r→0

νd(Θn⊕r (ω))
bd−nrd−n

= Hn(Θn(ω)), (4.5)

then it is clear that, taking the expected values on both sides, (4.2) is strictly
related to the possibility of exchanging limit and expectation. So we ask whether
(5.11) implies a similar result when we consider the intersection of Θn⊕r (ω) with
an open set A in Rd, and for which kind of random closed sets the convergence
above is dominated, so that exchanging limit and expectation is allowed.

We remind that the n-dimensional Minkowski content of a closed set S ⊂ Rd

is defined by

lim
r→0

νd(S⊕r)
bd−nrd−n

whenever the limit exists.
We quote the following result from [4], p.110:
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Theorem 4.7 Let S ⊂ Rd be a countably Hn-rectifiable compact set and assume
that for all x ∈ S

η(Br(x)) ≥ γrn ∀r ∈ (0, 1) (4.6)

holds for some γ > 0 and some Radon measure η in Rd absolutely continuous
with respect to Hn. Then

lim
r→0

νd(S⊕r)
bd−nrd−n

= Hn(S).

(Note that it makes no difference to consider the enlargement S⊕r of S with the
open or the closed ball of radius r centered in 0).
The following result is a local version of Theorem 4.7.

Lemma 4.8 [2] Let S be a compact subset of Rd satisfying the hypotheses of
Theorem 4.7. Then, for any A ∈ BRd such that

Hn(S ∩ ∂A) = 0, (4.7)

the following holds

lim
r→0

νd(S⊕r ∩A)
bd−nrd−n

= Hn(S ∩A). (4.8)

Proof. If n = d, then equality (4.8) is easily verified. Thus, let n < d.
We may notice that, by the definition of rectifiability, if C ⊂ Rd is closed, then
the compact set S ∩ C is still countably Hn-rectifiable; besides (4.6) holds for
all point x ∈ S ∩ C (since it holds for any point x ∈ S). As a consequence, by
Theorem 4.7, we may claim that for any closed subset C of Rd, the following
holds

lim
r→0

νd((S ∩ C)⊕r)
bd−nrd−n

= Hn(S ∩ C). (4.9)

Let A be as in the assumption.
• Let ε > 0 be fixed. We may observe that the following holds:

S⊕r ∩A ⊂ (S ∩ closA)⊕r ∪ (S ∩ closA⊕ε \ intA)⊕r ∀r < ε.

Indeed, if x ∈ S⊕r ∩ A then there exists y ∈ S with |x − y| ≤ r, and y ∈
closA⊕ε. Then, if x /∈ (S ∩ closA)⊕r, we must have y ∈ S \ closA, hence
y ∈ S ∩ closA⊕ε \ closA.

By (4.9), since closA and closA⊕ε \ intA are closed, we have

lim
r→0

νd((S ∩ closA)⊕r)
bd−nrd−n

= Hn(S ∩ closA)
(4.7)
= Hn(S ∩A), (4.10)

lim
r→0

νd(S ∩ closA⊕ε \ intA)⊕r

bd−nrd−n
= Hn(S ∩ closA⊕ε \ intA). (4.11)
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Thus,

lim sup
r→0

νd(S⊕r ∩A)
bd−nrd−n

≤ lim sup
r→0

νd((S ∩ closA)⊕r ∪ (S ∩ closA⊕ε \ intA)⊕r)
bd−nrd−n

≤ lim sup
r→0

νd((S ∩ closA)⊕r) + νd((S ∩ closA⊕ε \ intA)⊕r)
bd−nrd−n

(4.10),(4.11)
= Hn(S ∩A) +Hn(S ∩ closA⊕ε \ intA);

by taking the limit as ε tends to 0 we obtain

lim sup
r→0

νd(Ir(S) ∩A)
bd−nrd−n

≤ Hn(S ∩A) +Hn(S ∩ ∂A)︸ ︷︷ ︸
=0

= Hn(S ∩A).

• Now, let B be a closed set well contained in A, i.e. dist(A,B) > 0. Then
there exists r̃ > 0 such that B⊕r ⊂ A, ∀r < r̃. So,

Hn(S ∩B)
(4.9)
= lim inf

r→0

νd((S ∩B)⊕r)
bd−nrd−n

≤ lim inf
r→0

νd(S⊕r ∩B⊕r)
bd−nrd−n

≤ lim inf
r→0

νd(S⊕r ∩A)
bd−nrd−n

.

Let us consider an increasing sequence of closed sets {Bn}n∈N well contained in
A such that Bn ↗ intA. By taking the limit as n tends to ∞, we obtain that

lim inf
r→0

νd(S⊕r ∩A)
bd−nrd−n

≥ lim
n→∞

Hn(S ∩Bn) = Hn(S ∩ intA)
(4.7)
= Hn(S ∩A).

We summarize,

Hn(S ∩A) ≤ lim inf
r→0

νd(S⊕r ∩A)
bd−nrd−n

≤ lim sup
r→0

νd(S⊕r ∩A)
bd−nrd−n

≤ Hn(S ∩A),

and so the thesis follows. ¤

If we consider the sequence of random variables
νd(Θn⊕r

∩A)

bd−nrd−n , for r going to 0,
we ask which conditions have to be satisfied by a random set Θn, so that they
are dominated by an integrable random variable. In this way we could apply the
Dominated Convergence Theorem in order to exchange limit and expectation
in (4.8).

Lemma 4.9 [2] Let K be a compact subset of Rd and assume that for all x ∈ K

η(Br(x)) ≥ γrn ∀r ∈ (0, 1) (4.12)

holds for some γ > 0 and some probability measure η in Rd.
Then, for all r < 2,

νd(K⊕r)
bd−nrd−n

≤ 1
γ

2n4d bd

bd−n
.
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Proof. Since K⊕r is compact, then it is possible to cover it with a finite number
p of closed balls B3r(xi), with xi ∈ K⊕r, such that

|xi − xj | > 3r i 6= j.

(A first ball is taken off K⊕r, and so on until the empty set is obtained).
As a consequence, there exist y1, . . . yp such that

• yi ∈ K, i = 1, . . . , p,

• |yi − yj | > r, i 6= j,

• K⊕r ⊆
p⋃

i=1

B4r(yi).

In fact, if xi ∈ K, then we choose yi = xi; if xi ∈ K⊕r \ K, then we choose
yi ∈ Br(xi)∩K. As a consequence, |yi − xi| ≤ r and B4r(yi) ⊇ B3r(xi) for any
i = 1, . . . , p. So

p⋃

i=1

B4r(yi) ⊇
p⋃

i=1

B3r(xi) ⊇ K⊕r,

and

3r ≤ |xi − xj | ≤ |xi − yi|+ |yi − yj |+ |yj − xj | ≤ 2r + |yi − yj | i 6= j.

For r < 2, Br/2(yi) ∩ Br/2(yj) = ∅. Since by hypothesis η is a probability
measure satisfying (4.12), we have that

1 ≥ η

(
p⋃

i=1

Br/2(yi)

)
=

p∑

i=1

η(Br/2(yi))
(4.12)

≥ pγ
(r

2

)n

,

and so
p ≤ 1

γ

2n

rn
.

In conclusion,

νd(K⊕r)
bd−nrd−n

≤ νd(
⋃p

i=1 B4r(yi))
bd−nrd−n

≤ pbd(4r)d

bd−nrd−n
≤ 1

γ
2n4d bd

bd−n
.

¤

In the following theorem we consider n ∈ {0, 1, . . . , d−1}, since the particular
case n = d is trivial.

Theorem 4.10 [2] Let Θn be a countably Hn-rectifiable random closed set in
Rd (i.e., for P-a.e. ω ∈ Ω, Θn(ω) ⊆ Rd is a countably Hn-rectifiable closed set),
such that E[µΘn ] is a Radon measure. Let W ⊂ Rd be a compact set and let
ΓW : Ω −→ R be the function so defined:

ΓW (ω) := max
{
γ ≥ 0 : ∃ a probability measure η ¿ Hn such that

η(Br(x)) ≥ γrn ∀x ∈ Θn(ω) ∩W⊕1, r ∈ (0, 1)
}
.
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If there exists a random variable Y with E[Y ] < ∞, such that 1/ΓW (ω) ≤ Y (ω)
for P-a.e. ω ∈ Ω, then, for all A ∈ BRd such that

A ⊂ intW and E[Hn(Θn ∩ ∂A)] = 0, (4.13)

we have

lim
r→0

E[νd(Θn⊕r
∩A)]

bd−nrd−n
= E[Hn(Θn ∩A)]. (4.14)

Proof. Since E[Y ] < ∞, then Y (ω) < ∞ for P-a.e. ω ∈ Ω.
Let A ∈ BRd be satisfying (4.13). Let us define

ΩA := {ω ∈ Ω : Hn(Θn(ω) ∩ ∂A) = 0},
ΩT := {ω ∈ Ω : Θn(ω) is countably Hn-rectifiable and closed},
ΩY := {ω ∈ Ω : Y (ω) < ∞},
ΩΓ := {ω ∈ Ω : 1

ΓW (ω) ≤ Y (ω)};
by hypothesis P(ΩA) = P(ΩT ) = P(ΩY ) = P(ΩΓ) = 1.
Thus, if Ω′ := ΩA ∩ ΩT ∩ ΩY ∩ ΩΓ, it follows that P(Ω′) = 1.

Let ω ∈ Ω′ be fixed. Then

• ΓW (ω) > 0, i.e. a probability measure η ¿ Hk exists such that

η(Br(x)) ≥ ΓW (ω)rn ∀x ∈ Θn(ω) ∩W⊕1, r ∈ (0, 1),

• Hn(Θn(ω) ∩ ∂A) = 0,

so, by applying Lemma 4.8 to Θn ∩W⊕1, we get

lim
r→0

νd(Θn⊕r (ω) ∩A)
bd−nrd−n

= Hn(Θn(ω) ∩A);

i.e. we may claim that

lim
r→0

νd(Θn⊕r ∩A)
bd−nrd−n

= Hn(Θn ∩A) almost surely.

Further, for all ω ∈ Ω′, Θn(ω)∩W⊕1 satisfies the hypotheses of Lemma 4.9, and
so

νd(Θn⊕r (ω) ∩A)
bd−nrd−n

=
νd((Θn(ω) ∩W⊕1)⊕r ∩A)

bd−nrd−n
≤ νd((Θn(ω) ∩W⊕1)⊕r)

bd−nrd−n

≤ 1
ΓW (ω)

2n4d bd

bd−n
≤ Y (ω)2n4d bd

bd−n
∈ R.

Let Z be the random variable so defined:

Z(ω) := Y (ω)2n4d bd

bd−n
, ω ∈ Ω′.

By assumption E[Z] < ∞, so that the Dominated Convergence Theorem gives

lim
r→0

E
[
νd(Θn⊕r ∩A)

bd−nrd−n

]
= E[Hn(Θn ∩A)].
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Notice that in the statement of Theorem 4.10 we introduced the auxiliary
function Y (ω) in order to avoid the non-trivial issue of the measurability of
ΓW (ω); as a matter of fact, in all examples, one can estimate 1/ΓW (ω) from
above in a measurable way.

Notice also that if Θn satisfies the assumption of the theorem for some closed
W , then it satisfies the assumption for all closed W ′ ⊂ W ; analogously, any n-
regular random closed set Θ′n contained almost surely in Θn still satisfies the
assumption of the theorem.

We summarize as follows.

Theorem 4.11 (Main result) [2] Let Θn be a random n-regular closed set in
Rd and let E[µΘn

] be its expected measure. Assume that Θn satisfies the density
lower bound assumption of Theorem 4.10 for any compact set W ⊂ Rd. Then

lim
r→0

∫

A

P(x ∈ Θn⊕r)
bd−nrd−n

dx = E[µΘn ](A)

for any bounded Borel set A ⊂ Rd such that

E[µΘn ](∂A) = 0. (4.15)

In particular, if Θn is absolutely continuous in mean, we have

lim
r→0

∫

A

P(x ∈ Θn⊕r)
bd−nrd−n

dx =
∫

A

λΘn(x)dx (4.16)

for any bounded Borel set A ⊂ Rd with νd(∂A) = 0, where λΘn is the mean
density of Θn. Finally, if Θn is stationary we have

lim
r→0

P(x0 ∈ Θn⊕r)
bd−nrd−n

= λΘn ∀x0 ∈ Rd. (4.17)

Proof. The first statement follows by (4.3) in Proposition 4.5: indeed, the
assumption (4.2) of that proposition is fulfilled, thanks to Theorem 4.10.
The second statement is a direct consequence of the first one.
Finally, in the stationary case (4.17) follows directly by (4.16), as explained
after Corollary 4.6. ¤

Note that condition (4.15), when restricted to bounded open sets A, is
“generically satisfied” in the following sense: given any family of bounded open
sets {At}t∈R with closAs ⊆ At for s < t, the set

T := {t ∈ R : E[µΘn ](∂At) > 0}
is at most countable. This is due to the fact that the sets {∂At}t∈T are pairwise
disjoint, and all with strictly positive E[µΘn ]-measure.

Remark 4.12 (Mean density as a pointwise limit) It is tempting to try
to exchange limit and integral in (4.16), to obtain

lim
r→0

P(x ∈ Θn⊕r)
bd−nrd−n

= λΘn(x), (4.18)
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at least for νd-a.e. x ∈ Rd. The proof of the validity of this formula for
absolutely continuous (in mean) processes seems to be a quite delicate problem,
with the only exception of stationary processes. However, in the extreme cases
n = d and n = 0 it is not hard to prove it.

A consistent estimator of the mean density

Let us observe that P(x ∈ Θn⊕r ) = TΘn(Br(x)). The estimation of the hitting
functional has been faced in classical literature. Thus, the approximation of the
mean densities we have proposed here may be the initial point for the estimation
of mean densities of n-regular random sets, at any lower Hasudorff dimension
n.
Let us assume that (4.18) holds, and let Θ1

n, Θ2
n, . . . be a sequence of random

closed sets IID as Θn. For any fixed r > 0, an unbiased estimator for P(x ∈
Θn⊕r

) is given by

T̂Θn(N, r) :=
1
N

N∑

i=1

1Θi
n∩Br(x)6=∅.

Note that the variables 1Θ1
n∩Br(x)6=∅, . . . ,1ΘN

n ∩Br(x) 6=∅ are IID with a Bernoulli
distribution with parameter given by P(x ∈ Θn⊕r ).
As a consequence we have that

E[
T̂Θn(N, r)
bd−nrd−n

] =
E[1Θi

n∩Br(x)6=∅]
bd−nrd−n

=
P(x ∈ Θn⊕r )

bd−nrd−n
, (4.19)

and

var(
T̂Θn(N, r)
bd−nrd−n

) =
1

N(bd−nrd−n)2
P(x ∈ Θn⊕r )(1− P(x ∈ Θn⊕r )). (4.20)

It is well known the following result.

Lemma 4.13 If Y1, Y2, . . . is a sequence of random variables such that

• lim
N→∞

E[YN ] = c,

• lim
N→∞

var(YN ) = 0,

then
lim

N→∞
Yn = c in probability.

Thus, (4.19) and (4.20) suggest to take as consistent estimator of the mean
density λΘn(x) the following

λ̂
(N)
Θn

(x) :=

∑N
i=1 1Θi

n∩B
N−k (x)6=∅

bd−nN−k(d−n)+1
, (4.21)

with 0 < k < 1
d−n .

More precisely, we may claim that
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Proposition 4.14 Let Θ1
n,Θ2

n, . . . be a sequence of random closed sets IID as
Θn, with n < d, such that (4.18) holds. Then we have

lim
N→∞

λ̂
(N)
Θn

(x) = λΘn(x) in probability.

Proof.

lim
N→∞

E[λ̂(N)
Θn

(x)] = lim
N→∞

NP(x ∈ Θn⊕N−k
)

bd−nN−k(d−n)+1

(4.18)
= λΘn

(x).

We check now that the variance of λ̂
(N)
Θn

(x) tends to 0.

lim
N→∞

var(λ̂(N)
Θn

(x))

= lim
N→∞

1
(bd−nN−k(d−n)+1)2

NP(x ∈ Θn⊕N−k
)(1− P(x ∈ Θn⊕N−k

))

=
1

bd−n
lim

N→∞
1

N−k(d−n)+1

P(x ∈ Θn⊕N−k
)

bd−nN−k(d−n)
(1− P(x ∈ Θn⊕N−k

)).

Since

lim
N→∞

P(x ∈ Θn⊕N−k
) = 0, because n < d,

lim
N→∞

P(x ∈ Θn⊕N−k
)

bd−nN−k(d−n)
= λΘn(x) ∈ R, by (4.18),

and

lim
N→∞

1
N−k(d−n)+1

= 0, because 0 < k < 1
d−n ,

it follows that
lim

N→∞
var(λ̂(N)

Θn
(x)) = 0.

By Lemma 4.13 the thesis is proved. ¤

4.2.1 The particular cases n = 0 and n = d

Even if, of course, the special cases n = 0 and n = d can be handled with
much more elementary tools, we show now how they are consistent with our
framework.

Let us consider the well known case of a random point X in Rd. Thus, we
are in the particular case in which n = 0 and Θ0 = X.
First of all we observe that X is a compact 0-regular random set and satisfies
the hypotheses of Theorem 4.10 with η := H0(X(ω) ∩ · ) for all ω ∈ Ω. In fact,
for any fixed ω ∈ Ω,

• η is absolutely continuous with respect to H0 with η(Rd) = 1;

• ∀x ∈ X(ω) (i.e. if X(ω) = x), ∀r > 0,

η(Br(x)) = H0(X(ω) ∩Br(x)) = 1Br(x)(x) = 1,

and so Γ(ω) = 1.
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Since P(x ∈ X⊕r) = P(X ∈ Br(x)) = E[H0(X ∩ Br(x))], in this case the lin-
ear functional δ⊕r

0 is just the linear functional E[δ(r)
Θ0

]. We know by previous

arguments (see Section 2.2) that the sequence of linear functionals E[δ(r)
Θ0

] con-
verges weakly* to the linear functional E[δΘ0 ], i.e., for any A ∈ BRd such that
E[µΘ0 ](∂A) = 0,

lim
r→0

∫

A

P(X ∈ Br(x))
bdrd

dx = E[H0(X ∩A)],

in accordance with Proposition 4.5.
Now, let us assume that E[H0(X ∩ · )] = P(X ∈ · ) is absolutely continuous

with density f(x) given by the usual Radon-Nikodym derivative, which, in this
case, coincides with the probability density distribution of the random point X.
By remembering that a version of the Radon-Nikodym derivative of E[H0(X∩· )]
is given by the limit limr→0

E[H0(X∩Br(x))]
bdrd , note that we may exchange limit and

integral:

lim
r→0

∫

A

P(x ∈ Br(X))
bdrd

dx = E[H0(X ∩A)]

=
∫

A

lim
r→0

E[H0(X ∩Br(x))]
bdrd

dx

=
∫

A

lim
r→0

P(X ∈ Br(x))
bdrd

dx

=
∫

A

lim
r→0

P(x ∈ Br(X))
bdrd

dx,

so it follows that

lim
r→0

δ⊕r
0 (x) = lim

r→0

P(x ∈ X⊕r)
bdrd

= f(x) νd-a.e. x ∈ Rd,

as expected.
Note that in the case d = 1 we have in particular that

E[δ⊕r
0 ](x) =

P(X ∈ [x− r, x + r])
2r

; (4.22)

if X has pdf f , we know that E[δX ](x) = f(x), so that (4.22), with Proposition
4.14, lead to the usual estimation of density by means of histograms (see Section
4.1). In fact, in this case, if X1, X2, . . . is a sequence of random variables IID as
X, then, by Proposition 4.14,

f̂(x) := λ̂
(N)
X (x)

(4.21)
=

∑N
i=1 1B

N−k (x)(Xi)
b1N−k+1

, 0 < k < 1

converges in probability to f(x) for N →∞.
Note that

N∑

i=1

1B
N−k (x)(Xi) = #{i : Xi ∈ BN−k(x)}
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where BN−k(x) is the interval Ip on R centered in x with length 2N−k, so that

f̂(x) =
#{i : Xi ∈ Ip}

N |Ip| ,

Thus, if IN is a partition of R, where the length of each interval is equal to
2N−k, with 0 < k < 1, then, for N →∞,

|IN | = 2N−k −→ 0 and Nγ(IN ) = 2N−k+1 −→∞,

so Theorem 4.4 may be seen as a particular case of Proposition 4.14.

In the particular case n = d, we know that the measure E[µΘd
] is always

absolutely continuous with density λΘd
(x) = P(x ∈ Θd). We may like to no-

tice that δ⊕r
d = P(x ∈ Θd⊕r

) and by Monotone Convergence Theorem we can
exchange limit and integral, and so we reobtain

lim
r→0

P(x ∈ Θd⊕r ) = P(x ∈ Θd) = λΘd
(x).

4.3 Applications

In many real applications Θn is given by a random collection of geometrical
objects, so that it may be described as the union of a family of n-regular random
closed sets Ei in Rd:

Θn =
⋃

i

Ei. (4.23)

Here we do not make any specific assumption regarding the stochastic depen-
dence among the Ei’s. In fact, if Θn is known to be absolutely continuous in
mean, a problem of interest is to determine its mean density λΘn , and Theo-
rem 4.10 seems to require sufficient regularity of the Ei’s, rather than stringent
assumptions about their probability law. As a simple example, consider the
case in which, for any i, Ei is a random segment in Rd such that the mean
number of segments which hit a bounded region is finite; then we will show in
the sequel that Θ1 satisfies Proposition 4.5, without any other assumption on
the probability law of the Ei’s (e.g. the law of the point process associated with
the centers of the segments).

Note also that geometric processes like segment-, line-, or surface- processes
may be described by the so called union set of a particle process (see, for exam-
ple, [13, 64]):

Θn =
⋃

K∈Ψ

K,

where Ψ is a point process on the state space of Hn-rectifiable closed sets. It
is known that the stationarity of Θn depends on the stationarity of the point
process Ψ.

Other random closed sets represented by unions, as in (4.23), are given by

Θn =
Φ⋃

i=1

Ei, (4.24)
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where Φ is a positive integer valued random variable, representing the random
number of geometrical objects Ei.
This kind of representation may be used to model a class of time dependent
geometric processes, too. For example, at any fixed time t ∈ R+, let Θt be
given by

Θt =
Φt⋃

i=1

Ei,

where Φt is a counting process in R+; e.g., if Φt is a Poisson counting process
with intensity λ (see Section 1.5.4), then at any time t the number of random
objects Ei is given by a random variable distributed as Po(λt); in this case the
process {Θt} is additionally determined by a marked point process Φ̃ in R+,
with marks in a suitable space: the marginal process is given by the counting
process Φt, while the marks are given by a family of random closed sets Ei.

In literature, many geometric processes like this are investigated, as point-,
line-, segment-, or plane processes, random mosaics, grain processes,...
Note that Θn may be unbounded, given by an infinite union of random sets Ei

(e.g. as in (4.23) with Ei random line). In such a case, when we consider the
restriction of Θn to a bounded window W ⊂ Rd, by the usual assumption that
the mean number of Ei’s hitting a bounded region is finite, we may represent

Θn ∩W =
Φ⋃

i=1

EW
i ,

with EW
i = Ei ∩W , the union above being finite almost surely.

We give now some significant simple examples of random sets of this kind,
to which the results of the previous sections apply.

Example 1. A class of random sets satisfying hypotheses of Theorem 4.10 is
given by all sets Θn which are random union of random closed sets of dimension
n < d in Rd as in (4.24), such that

(i) E[Φ] < ∞,

(ii) E1, E2, . . . are IID as E and independent of Φ,

(iii) E[Hn(E)] = C < ∞ and ∃γ > 0 such that for any ω ∈ Ω,

Hn(E(ω) ∩Br(x)) ≥ γrn ∀x ∈ E(ω), r ∈ (0, 1). (4.25)

We can choose η(·) :=
Hn(Θn(ω) ∩ ·)
Hn(Θn(ω))

for any fixed ω ∈ Ω. As a consequence,

η is a probability measure absolutely continuous with respect to Hn, and such
that

η(Br(x)) ≥ γ

Hn(Θ(ω))
rn ∀x ∈ Θn(ω), r ∈ (0, 1).

In fact, if x ∈ Θn(ω), then there exists an ı̄ such that x ∈ Eı̄(ω); since Θn(ω) =⋃Φ(ω)
i=1 Ei(ω), we have

η(Br(x)) =
Hn(Θn(ω) ∩Br(x))

Hn(Θn(ω))
≥ Hn(Eı̄(ω) ∩Br(x))

Hn(Θn(ω))
≥ γ

Hn(Θ(ω))
rn.
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As a result, the function Γ defined as in Theorem 4.10 is such that

1
Γ(ω)

≤ Hn(Θn(ω))
γ

=: Y (ω),

and so it remains to verify only that E[Hn(Θn)] < ∞:

E[Hn(Θn)] = E[E[Hn(Θn) |Φ]]

=
∞∑

k=1

E[Hn(
k⋃

i=1

Ei) |Φ = k]P(Φ = k)

(ii)

≤
∞∑

k=1

k∑

i=1

E[Hn(Ei)]P(Φ = k)

(iii)
=

∞∑

k=1

CkP(Φ = k)

= CE[Φ]
(i)
< ∞.

Note that we have not made any particular assumption on the probability laws
of Φ and E. Further, it is clear that the same proof holds even in the case in
which the Ei’s are not IID, provided that E[Hn(Ei)] ≤ C, ∀i, and (4.25) is true
for any Ei (with γ independent of ω and i).

By keeping the general assumption that Φ is an integrable positive, integer
valued random variable, we may write the probability that a point x belongs to
the set Θn⊕r in terms of the mean number of Ei which intersect the ball Br(x).
We prove the following proposition.

Proposition 4.15 [2] Let n < d, let Φ be a positive integer valued random
variable with E[Φ] < ∞, and let {Ei} be a collection of random closed sets with
dimension n. Let Θn be the random closed set so defined:

Θn =
Φ⋃

i=1

Ei.

If E1, E2, . . . are IID as E and independent of Φ, then, for any x ∈ Rd such
that P(x ∈ E) = 0,

lim
r→0

P(x ∈ Θn⊕r )
bd−nrd−n

= lim
r→0

E[#{Ei : x ∈ Ei⊕r}]
bd−nrd−n

,

provided that at least one of the two limits exists.
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Proof. The following chain of equalities holds:

P(x ∈ Θn⊕r
) = P(x ∈

Φ⋃

i=1

Ei⊕r
)

= 1− P(x 6∈
Φ⋃

i=1

Ei⊕r )

= 1− P(
Φ⋂

i=1

{x 6∈ Ei⊕r})

= 1−
∞∑

k=1

P(
k⋂

i=1

{x 6∈ Ei⊕r}) |Φ = k)P(Φ = k);

since the Ei’s are IID and independent of Φ,

= 1−
∞∑

k=1

[P(x 6∈ E⊕r)]kP(Φ = k)

= 1− E[(P(x 6∈ E⊕r))Φ]

= 1−G(P(x 6∈ E⊕r)), (4.26)

where G is the probability generating function of the random variable Φ.
Now, let us observe that

E[#{Ei : x ∈ Ei⊕r}] =
∞∑

k=1

E[
k∑

i=0

1Ei⊕r
(x) |Φ = k]P(Φ = k)

=
∞∑

k=1

kP(x ∈ E⊕r)P(Φ = k)

= P(x ∈ E⊕r)
∞∑

k=1

kP(Φ = k)

= E[Φ]P(x ∈ E⊕r). (4.27)

We remind that E[Φ] = G′(1) and 1 = G(1).
In order to simplify the notation, let s(r) := P(x ∈ E⊕r). By hypothesis we
know that s(r) → 0 as r → 0; thus by (4.26) and (4.27) we have

lim
r→0

P(x ∈ Θn⊕r )
E[#{Ei : x ∈ Ei⊕r}]

= lim
r→0

G(1)−G(1− s(r))
G′(1)s(r)

=
1

G′(1)
lim
r→0

G(1− s(r))−G(1)
−s(r)

=
1

G′(1)
G′(1) = 1. (4.28)

In conclusion we obtain

lim
r→0

P(x ∈ Θn⊕r )
bd−nrd−n

= lim
r→0

P(x ∈ Θn⊕r )
E[#{Ei : x ∈ Ei⊕r}]

E[#{Ei : x ∈ Ei⊕r}]
bd−nrd−n

(4.28)
= lim

r→0

E[#{Ei : x ∈ Ei⊕r}]
bd−nrd−n

. (4.29)
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Corollary 4.16 Under the same assumptions of Proposition 4.15, (4.27) and
(4.29) yield

lim
r→0

P(x ∈ Θn⊕r )
bd−nrd−n

= E[Φ] lim
r→0

P(x ∈ E⊕r)
bd−nrd−n

(4.30)

for any x ∈ Rd where at least one of the two limits exists.

Remark 4.17 1. Whenever it is possible to exchange limit and integral in
(4.4), we can use the fact that A is arbitrary to obtain

λΘn
(x) = E[Φ] lim

r→0

P(x ∈ E⊕r)
bd−nrd−n

= E[Φ]λE(x),

for νd-a.e. x ∈ Rd, where λΘn
and λE are the mean densities of µΘn

and µE ,
respectively. In particular, when E is stationary (which implies Θn stationary
as well), λΘn(x) ≡ LΘn ∈ R+ and λE(x) ≡ LE ∈ R+, so that

LΘn = E[Φ] lim
r→0

P(x0 ∈ E⊕r)
bd−nrd−n

= E[Φ]LE .

2. Let Θn be a random closed set as in Proposition 4.15. By (4.30) we infer
that the probability that a point x belongs to the intersection of two or more
enlarged sets Ei is an infinitesimal faster than rd−n, i.e.

lim
r→0

P(∃i, j, i 6= j such that x ∈ Ei⊕r ∩ Ej⊕r )
rd−n

= 0. (4.31)

In fact, denoting by Fr(x) the event {∃i, j, i 6= j such that x ∈ Ei⊕r ∩ Ej⊕r},
we have

1Fr(x) ≤
∑

i

1{x∈Ei⊕r} − 1{x∈Θn⊕r},

so that, as (4.27) gives

E[
∑

i

1{x∈Ei⊕r}] = E[Φ]P(x ∈ E⊕r),

taking expectations in both sides and dividing by rd−n we get that

0 ≤ lim
r→0

P(Fr(x)
rd−n

≤ lim
r→0

E[Φ]P(x ∈ E⊕r)− E[Φ]P(x ∈ E⊕r)
rd−n

= 0.

Really, another proof of (4.31), which emphasize the role of the grains Ei’s, is
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the following:

P(x ∈
Φ⋃

i=1

(Ei⊕r ) (4.32)

=
∞∑

n=1

P(x ∈
n⋃

i=1

Ei⊕r
|Φ = n)P(Φ = n)

=
∞∑

n=1

P({ω : br(x) ∩
n⋃

i=1

Ei(ω) 6= ∅)} |Φ = n)P(Φ = n)

=
∞∑

n=1

P({ω :
n⋃

i=1

(br(x) ∩ Ei(ω)) 6= ∅)} |Φ = n)P(Φ = n)

=
∞∑

n=1

P({ω : ∃i ∈ {1, . . . , n} such that br(x) ∩ Ei(ω) 6= ∅)} |Φ = n)P(Φ = n)

=
∞∑

n=1

P(
n⋃

i=1

{ω : br(x) ∩ Ei(ω) 6= ∅)} |Φ = n)P(Φ = n)

=
∞∑

n=1

P(
n⋃

i=1

{ω : x ∈ Ei⊕r (ω) 6= ∅)} |Φ = n)P(Φ = n)

(i)
=

∞∑
n=1




n∑

i=1

P(x ∈ Ei⊕r |Φ = n)−
∑

i<j

P(x ∈ Ei⊕r ∩ Ej⊕r |Φ = n)

+
∑

i<j<k

P(x ∈ Ei⊕r ∩ Ej⊕r ∩ Ek⊕r |Φ = n) − · · ·

P(Φ = n)

=
∞∑

n=1

[
nP(x ∈ E⊕r)−

(
n

2

)
P(x ∈ Ei⊕r ∩ Ej⊕r ) (4.33)

+
(

n

3

)
P(x ∈ Ei⊕r ∩ Ej⊕r ∩ Ek⊕r )− · · ·

]
P(Φ = n),

where in (i) we used the inclusion-exclusion theorem.
In order to simplify the notations, let

pi1,...,is(x) := P(x ∈ Ei1⊕r
∩ · · · ∩ Eis⊕r

);

thus, by (4.33) we have that

P(x ∈
Φ⋃

i=1

(Ei⊕r )) = E[Φ]P(x ∈ E⊕r)−
∞∑

n=1

[(
n

2

)
pi,j −

(
n

3

)
pi,j,k + · · ·

]
P(Φ = n).

By (4.30), and since the equation above holds for any discrete random variable
Φ, so in particular for any deterministic Φ ≡ n, we may conclude that, for any
integer s ≥ 2,

lim
r→0

P(x ∈ Ei1⊕r
∩ · · · ∩ Eis⊕r

)

bd−nrd−n
= 0.
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Example 2. (Poisson line process.)
Now, we recall the definition of a Poisson line process, given in [64] as a simple
example of applicability of the above arguments. We shall obtain the same re-
sult for the mean density of the random length measure.
Line processes are the simplest examples of fibre processes. Such random pat-
terns can be treated directly as random sets; however, they can also be con-
sidered as point processes with constituent “points” lying not in the Euclidean
space, but in the space of lines in the plane, which can be parameterized as a
cylinder C∗ in R3 (see [64], Ch. 8):

C∗ = {(cos α, sin α, p) : p ∈ R, α ∈ (0, π]},
where p is the signed perpendicular distance of the line l from the origin 0 (the
sign is positive if 0 lies to the left of l and negative if it lies to the right), and α

is the angle between l and the x-axis, measured in an anti-clockwise direction.
“A line process is a random collection of lines in the plane which is locally
finite, i.e. only finitely many lines hit each compact planar set. Formally it
is defined as a random subset of the representation space C∗. The process is
locally finite exactly when the representing random subset is a random locally
finite subset, hence a point process, on C∗. Such point processes are particular
cases of point processes on R2, because, as suggested by the parametrization
(p, α), the cylinder can be cut and embedded as the subset R × (0, 2π] of R2”
([64], p.248).
A line process Θ1 = {l1, l2, . . .}, when regarded as a point process on C∗, yields
an intensity measure Λ on C∗:

Λ(A) = E[#{l : l ∈ Θ1 ∩A}]
for each Borel subset A of C∗.
A Poisson line process Ξ is the line process produced by a Poisson process
on C∗. Consequently it is characterized completely by its intensity measure Λ.
Under the assumption of stationarity of Ξ, it follows that there exists a constant
LΞ > 0 such that the intensity measure Λ of Ξ is given by

Λ(d(p, α)) = LΞ · dp · dα

2π
;

besides, it is clear that the measure E[H1(Ξ∩ ·)] is motion invariant on R2, and
so there exists a constant c such that

E[H1(Ξ ∩A)] = cν2(A)

for any A ∈ BR2 .
Such a constant c can be calculated using the cylinder representation of Ξ; it is
shown that c = LΞ (see [64], p.249).

We show now that the same statement can be obtained as a consequence of
(4.3).
As a matter of fact, by stationarity we know that

cν2(A) = lim
r→0

P(0 ∈ Ξ⊕r)
2r

ν2(A) (4.34)
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holds for any Borel set A which satisfies condition (4.2), so that it is sufficient
to prove that

lim
r→0

E[ν2(Ξ⊕r ∩A)]
2r

= E[H1(Ξ ∩A)]

holds for a particular fixed A. Let us choose a closed square W in R2 with edges
P1, P2, P3, P4, and side length h.
Note that Θ1 := Ξ∩W⊕1 is a countably H1-rectifiable and compact random set
and, by the absolute continuity of the expected measure, E[H1(Ξ∩∂W ] = 0 (so
that P(H1(Ξ ∩ ∂W ) > 0) = 0).
For any ω ∈ Ω let us define

η(·) :=
H1(Θ1(ω) ∩ · )
H1(Θ1(ω))

.

Then η is a probability measure absolutely continuous with respect to H1 such
that

η(Br(x)) ≥ 1
H1(Θ1)

r ∀x ∈ Θ1(ω), r ∈ (0, 1),

and we may notice that H1(li(ω)∩W⊕1) ≤ (h + 2)
√

2 for any ω ∈ Ω, for any i.
Let I := {i : li ∩W⊕1 6= ∅}, and ΦW := card(I); we know that E[ΦW ] < ∞, so

E[H1(Θ1)] = E[
∑

i∈I

H1(li ∩W⊕1)] ≤ (h + 2)
√

2E[ΦW ] < ∞.

The hypotheses of Theorem 4.10 are satisfied with A = W and Y = H1(Θ1),
thus we obtain

lim
r→0

E[ν2(Ξ⊕r ∩W )]
2r

= E[H1(Ξ ∩W )].

In conclusion, remembering that the number Nr of lines of Ξ hitting the ball
Br(0) is a Poisson random variable with mean 2rLΞ ([64], p.250), by (4.34) we
obtain

c = lim
r→0

P(0 ∈ Ξ⊕r)
2r

= lim
r→0

P(Ξ ∩Br(0) 6= ∅)
2r

= lim
r→0

P(Nr ≥ 1)
2r

= lim
r→0

1− e−2rLΞ

2r
= LΞ.

Remark 4.18 In the above example we have chosen the measure η as the
restriction of the Hausdorff measure H1 to a suitable set containing Ξ ∩ W .
As a matter of fact, due to the stochasticity of the relevant random closed set
Ξ, problems may arise in identifying a measure η needed for the application of
Theorem 4.10. A proper choice of η can be made by referring to another suitable
random set containing Ξ. We further clarify such procedure by the following
example.
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Example 3. (Segment processes.)
Let Θ1 be a random closed set in R2 such that

Θ1 :=
Φ⋃

i=1

Si,

where Φ is a counting process (i.e. a positive integer valued random variable)
with E[Φ] < ∞, and S1, S2, . . ., are random segments independent of Φ, ran-
domly distributed in the plane with random lengths H1(Si) in [0,M ].

Let us consider a realization Θ1(ω) and define η(·) :=
H1(Θ1(ω) ∩ ·)
H1(Θ1(ω))

.

Let x ∈ Θ1(ω); then an ı̄ exists such that x ∈ Sı̄(ω), and so

η(Br(x)) =
H1(Θ1(ω) ∩Br(x))

H1(Θ1(ω))
≥ H1(Sı̄(ω) ∩Br(x))

H1(Θ1(ω))
.

Fixed r ∈ (0, 1), observe that, if Sı̄(ω)∩∂Br(x) 6= ∅, thenH1(Sı̄(ω)∩Br(x)) ≥ r,
while if Sı̄(ω) ⊆ Br(x), then H1(Sı̄(ω) ∩ Br(x)) = H1(Sı̄(ω)) ≥ H1(Sı̄(ω))r.
Suppose that Φ(ω) = n and define

L(ω) := min
i=1,...,n

{H1(Si(ω))}.

We have that

η(Br(x)) ≥ min{1, L(ω)}
H1(Θ1(ω))

r, ∀x ∈ Θ1(ω), r ∈ (0, 1).

Thus, Θ1(ω) satisfies the hypotheses of Theorem 4.7.
If we want to apply Theorem 4.10, the above is not a good choice for η. In fact,

1
Γ(ω)

≤ max{H1(Θ1(ω)),
H1(Θ1(ω))

L(ω)
} =: Y (ω),

and we may well have E[Y ] = ∞. In this case, a possible solution to the
problem is to extend all the segments with length less than 2 (the extension can
be done omothetically from the center of the segment, so that measurability of
the process is preserved). In particular, for any ω ∈ Ω, let

S̃i(ω) =
{

Si(ω) if H1(Si(ω)) ≥ 2,
Si(ω) extended to length 2 if H1(Si(ω)) < 2;

and

Θ̃1(ω) :=
Φ(ω)⋃

i=1

S̃i(ω).

In this way, for every x ∈ Θ1(ω), there exists an ı̄ such that x ∈ S̃ı̄(ω) with
S̃ı̄(ω) ∩ ∂Br(x) 6= ∅ for any r ∈ (0, 1). If we define

η(·) :=
H1(Θ̃1(ω) ∩ ·)
H1(Θ̃1(ω))

,
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then
η(Br(x)) ≥ 1

H1(Θ̃1(ω))
r ∀x ∈ Θ1(ω), r ∈ (0, 1),

and so in this case we have Y = H1(Θ̃1), and

E[Y ] = E[H1(
Φ⋃

i=1

S̃i)] = E[E[
Φ∑

i=1

H1(S̃i) |Φ]]

=
∞∑

n=1

n∑

i=1

E[H1(S̃i) |Φ = n]P(Φ = n) ≤
∞∑

n=1

n(M + 2)P(Φ = n)

= (M + 2)E[Φ] < ∞.

(The same holds whenever the Si’s are IID as S with E[H1(S)] < ∞.)
Note the peculiar role played by the geometrical properties of the random set.

A particular segment process is the well known stationary Poisson segment
process in Rd [13, 64]. In this case each segment Si is determined by its reference
point ci, length and orientation. The ci’s are given by a stationary Poisson
point process Ψ with intensity α > 0, while length, say R, and orientation are
supposed to be random and independent, with E[R] < ∞. Then the measure
E[µΘ1 ] induced by the segment process is stationary, and it can be proved (see
e.g. [13], p. 42, [64]) that its density is given by λ(x) = αE[R] =: L, for any
x ∈ Rd.
Clearly, the resulting random closed set is not compact and the mean number of
segments which intersect a fixed bounded region is finite. Using Theorem 4.11,
and because of stationarity, we know that

L = lim
r→0

P(0 ∈ Θ1⊕r )
bd−1rd−1

.

Let us first consider for simplicity the particular case in which orientation and
length R are both fixed. Then, denoted by K the subset of Rd such that a
segment with reference point in K hits the ball Br(0), it is easy to see that
νd(K) = bd−1r

d−1R + bdr
d, and

P(0 ∈ Θ1⊕r ) = P(Ψ(K) > 0) = 1− e−ανd(K),

so that we obtain

lim
r→0

1− e−α(bd−1rd−1R+bdrd)

bd−1rd−1
= αR.

Note that this does not depend on orientation, so, if now we return to consider
the case in which length and orientation are random, it easily follows that

L = αE[R],

as we expected.

Geometric processes of great interest in applications are the so called fibre
processes. A fibre process Θ1 is a random collection of rectifiable curves. A
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relevant real system which can be modelled as a fibre process is the system of
vessels in tumor driven angiogenesis. Estimation of the mean length intensity
of such system is useful for suggesting important methods of diagnosis and of
dose response in clinical treatments.

It is clear that, as in Example 3, Theorem 4.10 can be applied also to this
kind of H1-rectifiable random closed sets, going to consider as Θ̃1 the random
closed set given by the union of suitably extended fibres. As a consequence,
Proposition 4.5 holds for fibre processes, and we may obtain information about
the measure E[µΘ1 ], also under hypotheses of inhomogeneity of the process.

Example 4. (Boolean models.)
Another geometric process, well known in literature, is given by a inhomoge-
neous Boolean model of spheres (see [64]); i.e. Θd−1 turns out to be a random
union of spheres in Rd, and so it may be represented as follows

Θd−1(ω) :=
⋃

i

∂BRi(ω)(Yi(ω)),

where Yi is a random point in Rd, given by a Poisson point process in Rd, and Ri

is a positive random variable (e.g. R ∼ U [0,M ]). As a consequence, the mean
number of balls which intersect any compact set K is finite. In order to claim
that (4.2) holds, we proceed in an analogous way as in the previous example for
a stationary Poisson segment process; it is clear that if Theorem 4.10 holds for
a random closed set

Ξd−1 :=
Φ⋃

i=1

∂BRi(ω)(Yi(ω)), (4.35)

where Φ is a positive integer valued random variable with finite expected value,
and Yi is a random point in Rd, then the thesis follows.
Since in general 1/Hd−1(∂BRi(Yi)) has not a finite expected value, using the
same approach as in the previous example, we are going to consider a suitable
random set Ξ̃d−1 containing Ξd−1.
Let d = 2; the case d > 2 follows similarly. For any ω ∈ Ω, let

Bi(ω) =
{

BRi(ω)(Yi(ω)) if Ri(ω) ≥ 1
2 ,

BRi(ω)(Yi(ω)) ∪ lYi(ω) if Ri(ω) < 1
2 ,

where lYi(ω) is a segment centered in Yi(ω) with length 3, and

Ξ̃1(ω) :=
Φ(ω)⋃

i=1

∂Bi(ω).

In this way, for every x ∈ Ξ1(ω), there exists an ı̄ such that x ∈ ∂Bı̄(ω) with
∂Bı̄(ω) ∩ ∂Br(x) 6= ∅ for any r ∈ (0, 1). We define

η(·) :=
H1(Ξ̃1(ω) ∩ ·)
H1(Ξ̃1(ω))

.

99



Let r ∈ (0, 1) be fixed and observe that, if Rı̄(ω) ≥ r
2 , then ∂Br(x)∩∂BRı̄(ω)(Yı̄(ω)) 6=

∅, and so

η(Br(x)) ≥ 2r

H1(Ξ̃1(ω))
.

On the other hand, Rı̄(ω) < r
2 < 1/2, let s := dist(x, lYı̄(ω)), and m :=

H1(lYı̄(ω) ∩Br(x)); then s2 ≤ Rı̄(ω)2 ≤ r2

4 and

η(Br(x)) ≥ m

H1(Ξ̃1(ω))
=

2
√

r2 − s2

H1(Ξ̃1(ω))
≥

√
3r

H1(Ξ̃1(ω))
.

Hence, summarizing, we have

η(Br(x)) ≥
√

3
H1(Ξ̃1(ω))

r ∀x ∈ Ξ1(ω), ∀r ∈ (0, 1),

and it is clear that E[H1(Ξ̃1)] < ∞; thus Theorem 4.10 holds for Ξ̃1, with
W = Rd and Y := H1(Ξ̃1)/

√
3.

Consider now the random closed set Ξ1 defined by (4.35), where Φ, Ri and
Xi are chosen as before. It is clear that Theorem 4.10 holds for Ξ1 as well, since
Ξ1 ⊆ Ξ̃1.

Remark 4.19 If we consider

Ξ :=
Φ⋃

i=1

BRi(Xi), (4.36)

(i.e. Ξ is a Boolean model of balls in Rd), than ∂Ξ ⊆ ⋃Φ
i=1 ∂BRi(Xi). It is clear

that Theorem 4.11 holds for ∂Ξ as well.
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Chapter 5

First order Steiner formulas
for random closed sets

If we consider a d-dimensional random closed set Θ with dimH(∂Θ) = d − 1,
sufficiently regular such that ∂Θ satisfies the conditions of Theorem 4.10, then
we may rephrase (4.14) as

lim
r→0

E[νd(∂Θ⊕r ∩A)]
r

= 2E[Hd−1(∂Θ ∩A)]. (5.1)

Note that E[νd(∂Θ)] = 0, so that, roughly speaking, we may regard (5.1) as the
derivative in r = 0 of the expected Hausdorff measure of ∂Θ with respect to the
Minkowski enlargement.
If we enlarge ∂Θ only in the complement of Θ (i.e. we consider Θ⊕r \ Θ), we
ask if Θ satisfies a local mean first order Steiner formula, i.e:

lim
r→0

E[νd(Θ⊕r \Θ ∩A)]
r

= E[Hd−1(∂Θ ∩A)].

In this Chapter we shall give conditions about regularity of a random closed
subset of Rd in order to satisfy a first order Steiner formula, which will be very
useful in the sequel. (See also [42] for further applications.) In particular we
say that a random closed set Θ in Rd satisfies a first order Steiner formula if
and only if for almost every ω ∈ Ω, Hd−1(∂Θ(ω)) < ∞ and

lim
r→0

Hd(Θ(ω)⊕r \Θ(ω))
r

= Hd−1(∂Θ(ω));

while we say that Θ satisfies a mean first order Steiner formula if and only if
E[Hd−1(∂Θ)] < ∞ and

lim
r→0

E[Hd(Θ⊕r \Θ)]
r

= E[Hd−1(∂Θ)].

By a Steiner formula, we mean a polynomial expansion of the volume of the
parallel set of a given subset of the Euclidean space Rd. A subset A of Rd is
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said to satisfy a Steiner formula if there exist numbers Φm(A), m = 1, . . . , d,
such that, for every (sufficiently small) r > 0

Hd(A⊕r) =
d∑

m=0

rd−mbd−mΦm(A). (5.2)

In [31] Federer introduced the class of sets with positive reach and showed that
for these sets the Steiner formula holds.
We start by recalling the definition of set with positive reach, introduced by
Federer. Let A ⊂ Rd; let Unp(A) be the set of points having a unique projection
(or footpoint) on A:

Unp(A) := {a ∈ Rd : ∃! x ∈ A such that dist(x,A) = ‖a− x‖}.

The definition of Unp(A) implies the existence of a projection mapping ξA :
Unp(A) → A which assigns to x ∈ Unp(A) the unique point ξA(x) ∈ A such
that dist(x,A) = ‖x− ξA(x)‖. For a point a ∈ A we set:

reach(A, a) = sup{r > 0 : Br(a) ⊂ Unp(A)}.

Definition 5.1 The reach of A is defined by

reach(A) = inf
a∈A

reach(A, a),

and A is said to be a set with positive reach if reach(A) > 0.

It is known that for a set with positive reach the Steiner formula (5.2) applies.
In fact, Theorem 5.6 in [31] shows that a local Steiner formula holds:

Theorem 5.2 If A ⊂ Rd and reach(A) > 0, then there exist unique Radon
measures ψ0, ψ1, . . . , ψd over Rd such that, for 0 ≤ r < reach(A),

Hd({x : dist(x, A) ≤ r and ξA(x) ∈ B}) =
d∑

m=0

rd−mbd−mψm(B),

whenever B is a Borel set of Rd.

The Radon measures ψ0, ψ1, . . . , ψd are said the curvature measures associated
with A, and their supports are contained in A.
Note that, when ψ0(A), ψ1(A), . . . , ψd(A) are meaningful, for instance in the
case A is compact, these numbers are the total curvatures of A, and are de-
noted by Φ0(A), Φ1(A), . . . Φd(A), respectively. Thus, the Steiner formula (5.2)
is obtained by choosing B = A, and the first order Steiner formula follows
immediately.

Sets with positive reach include the important subclass of convex bodies, i.e.
compact convex subsets in Rd. Steiner formulas and curvature measures for
these sets are studied in [62]. Let us also mention that an extension of Steiner
type formulas to closed sets has been achieved by Hug, Last, and Weil in [37],
Theorem 2.1, which involves tools from convex geometry. This result has been
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used by Rataj in [59], Theorem 3, to prove a first order Steiner formula for
compact unions of sets with positive reach.
In the next section, we provide an alternative proof of the first order Steiner
formula for unions of sets with positive reach, based on elementary tools of
measure theory, in particular on the inclusion-exclusion theorem, which seems
to be more tractable when we pass to consider the stochastic case.

5.1 A first order Steiner formula for finite unions
of sets with positive reach

Lemma 5.3 [1] Let µ be a measure on BRd . Let A1, . . . , An be closed subsets
of Rd such that µ(∂Ai) < ∞ ∀i = 1, . . . , n.
If

µ(∂Ai ∩ ∂Aj) = 0 ∀i 6= j, (5.3)

then

µ(∂(
n⋂

i=1

Ai)) =
n∑

i=1

µ(∂Ai ∩ int(
⋂

j 6=i

Aj)). (5.4)

Proof. We proceed by induction.
Step 1: (5.4) is true for n = 2.

A1∩A2 = {x : x ∈ A1, x ∈ A2} can be written as disjoint union of the following
sets:

• intA1 ∩ intA2

• intA1 ∩ ∂A2

• ∂A1 ∩ intA2

• ∂A1 ∩ ∂A2.

Notice that

x ∈ int(A1 ∩A2) ⇔ ∃r t.c. Br(x) ⊂ A1 ∩A2

⇔ ∃r t.c. Br(x) ⊂ A1, Br(x) ⊂ A2

⇔ x ∈ intA1, x ∈ intA2,

and so int(A1 ∩A2) = intA1 ∩ intA2.

Therefore we have

∂(A1 ∩A2) = (A1 ∩A2) \ int(A1 ∩A2)

= (intA1 ∩ ∂A2) ∪ (∂A1 ∩ intA2) ∪ (∂A1 ∩ ∂A2).

Since this is a disjoint union and by hypothesis µ(∂A1 ∩ ∂A2) = 0, it follows
that

µ(∂(A1 ∩A2)) = µ(∂A1 ∩ intA2) + µ(intA1 ∩ ∂A2).
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Step 2: We show that if (5.4) is true for k, then it is true also for k + 1.
Since ∂(

⋂k
i=1 Ai) ⊆

⋃k
i=1 ∂Ai, by hypothesis (5.3) we have

µ(∂(
k⋂

i=1

Ai) ∩ ∂Ak+1) ≤ µ(
k⋃

i=1

∂Ai ∩ ∂Ak+1) ≤
k∑

i=1

µ(∂Ai ∩ ∂Ak+1) = 0.

Therefore

µ(∂(
k+1⋂

i=1

Ai)) = µ(∂(
k⋂

i=1

Ai ∩Ak+1))

= µ(∂(
k⋂

i=1

Ai) ∩ intAk+1) + µ(∂Ak+1 ∩ int
k⋂

i=1

Ai).

Since µ(∂Ak+1∩int
⋂k

i=1 Ai) is the last term of the sum in (5.4) (with n = k+1),
the thesis follows if and only if

µ(∂(
k⋂

i=1

Ai) ∩ intAk+1) =
k∑

i=1

µ(∂Ai ∩ int(A1 ∩ . . . ∩Ai−1 ∩Ai+1 ∩ . . . ∩Ak+1)).

(5.5)
Let ν be the restriction of the measure µ to the set intAk+1, i.e.

ν(·) := µ|intAk+1(·) = µ(· ∩ intAk+1);

ν is also a Borel measure and clearly

ν(∂Ai ∩ ∂Aj) = 0 ∀i 6= j.

Applying the induction assumption to ν and using the equality int(
⋂

Ai) =⋂
intAi, we have that

µ(∂(
k⋂

i=1

Ai) ∩ intAk+1) = ν(∂(
k⋂

i=1

Ai))

=
k∑

i=1

ν(∂Ai ∩ int(
⋂

j 6=i

Aj))

=
k∑

i=1

µ(∂Ai ∩ int(
⋂

j 6=i

Aj) ∩ intAk+1),

which concludes the proof. ¤

Lemma 5.4 [1] Let µ be a measure on BRd . Let A1, . . . , An be closed subsets
of Rd such that µ(∂Ai) < ∞ ∀i = 1, . . . , n.
If

µ(∂Ai ∩ ∂Aj) = 0 ∀i 6= j, (5.6)

then

µ(∂(
n⋃

i=1

Ai)) =
n∑

i=1

µ(∂Ai ∩ (
⋃

j 6=i

Aj)C). (5.7)
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Proof. We proceed by induction.
Step 1: (5.7) is true for n = 2.

A1 ∪A2 can be written as disjoint union of the following sets:

• A1 ∩A2

• A1 ∩AC
2

• AC
1 ∩A2.

Each of them can be written as disjoint union of sets in the following way:

A1∩A2 = (intA1∩ intA2) ∪ (intA1∩∂A2) ∪ (∂A1∩ intA2) ∪(∂A1∩∂A2)

A1 ∩AC
2 = (∂A1 ∩AC

2 ) ∪ (intA1 ∩AC
2 )

AC
1 ∩A2 = (∂A2 ∩AC

1 ) ∪ (intA2 ∩AC
1 ).

Let us notice that:

• x ∈ intA1 ⇒ x ∈ int(A1 ∪A2)

• x ∈ intA2 ⇒ x ∈ int(A1 ∪A2)

• x ∈ ∂A1 ∩AC
2 ⇒ x 6∈ int(A1 ∪A2)

(If x ∈ ∂A1 ∩ AC
2 , then ∀r > 0, Br(x) ∩ AC

1 6= ∅ and, ∀r < r̃ for a
certain r̃ > 0, Br(x) ∩ A2 = ∅ since AC

2 is open; i.e. 6 ∃r0 > 0 such that
Br(x) ⊂ A1 ∪A2 ∀r < r0).

• x ∈ ∂A2 ∩AC
1 ⇒ x 6∈ int(A1 ∪A2)

• in general, if x ∈ ∂A1 ∩ ∂A2, it is not possible to say whether x belongs
to int(A1 ∪A2) or not.

Thus, ∂(A1 ∪A2) is given by the following disjoint union of sets:

∂(A1 ∪A2) = (∂A1 ∩AC
2 ) ∪ (∂A2 ∩AC

1 ) ∪ E,

where E := {x ∈ ∂A1∩∂A2 : x ∈ ∂(A1∪A2)}, and in particular E ⊆ ∂A1∩∂A2.
Since by hypothesis µ(∂A1 ∩ ∂A2) = 0, it follows that

µ(∂(A1 ∪A2)) = µ(∂A1 ∩AC
2 ) + µ(AC

1 ∩ ∂A2).

Step 2: We show that if (5.7) is true for k, then it is true also for k + 1.
Since ∂(

⋃k
i=1 Ai) ⊆

⋃k
i=1 ∂Ai, by (5.6) we have

µ(∂(
k⋃

i=1

Ai) ∩ ∂Ak+1) ≤ µ(
k⋃

i=1

∂Ai ∩ ∂Ak+1) ≤
k∑

i=1

µ(∂Ai ∩ ∂Ak+1) = 0.

Therefore

µ(∂(
k+1⋃

i=1

Ai)) = µ(∂(
k⋃

i=1

Ai ∪Ak+1))

= µ(∂(
k⋃

i=1

Ai) ∩AC
k+1) + µ(∂Ak+1 ∩ (

k⋃

i=1

Ai)C),
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Since µ(∂Ak+1∩(
⋃k

i=1 Ai)C) is the last term of the sum in (5.7) (with n = k+1),
the thesis follows if and only if

µ(∂(
k⋃

i=1

Ai) ∩AC
k+1) =

k∑

i=1

µ(∂Ai ∩ (
⋃

j 6=i

Aj)c). (5.8)

Let ν be the restriction of the measure µ to the set AC
k+1, i.e.

ν(·) = µ|AC
k+1

(·) = µ(· ∩AC
k+1) ;

ν is a Borel measure and clearly

ν(∂Ai ∩ ∂Aj) = 0 ∀i 6= j .

Applying the induction assumption to ν, we get

µ(∂(
k⋃

i=1

Ai) ∩AC
k+1) = ν(∂(

k⋃

i=1

Ai))

=
k∑

i=1

ν(∂Ai ∩ (
⋃

j 6=i

Aj)C)

=
k∑

i=1

µ(∂Ai ∩ (
⋃

j 6=i

Aj)C) ∩AC
k+1),

and so (5.8). ¤

In the particular case µ ≡ Hd−1, the following corollary follows:

Corollary 5.5 Let A1, . . . , An be closed subsets of Rd such that Hd−1(∂Ai) <

∞ ∀i = 1, . . . , n.
If

Hd−1(∂Ai ∩ ∂Aj) = 0 ∀i 6= j,

then

Hd−1(∂(
n⋂

i=1

Ai)) =
n∑

i=1

Hd−1(∂Ai ∩ int(
⋂

j 6=i

Aj)), (5.9)

and

Hd−1(∂(
n⋃

i=1

Ai)) =
n∑

i=1

Hd−1(∂Ai ∩ (
⋃

j 6=i

Aj)C). (5.10)

Definition 5.6 We say that a compact subset S of Rd with Hn(S) < ∞ admits
Minkowski content if

lim
r→0

Hd(S⊕r)
bd−nrd−n

= Hn(S). (5.11)

We remind that (see Definition 1.16) a subset S of Rd is n-rectifiable (n
positive integer) if there exists a Lipschitz function mapping a bounded subset
of Rd onto S.
The following theorem is proved in [32], p. 275.
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Theorem 5.7 If S is a closed n-rectifiable subset of Rd, then S admits Minkowski
content.

Sufficient conditions for (5.11) are given also in [4], p. 110, in terms of countable
Hn-rectifiability.

Proposition 5.8 [1] If A is a compact subset of Rd with reach(A) = r > 0,
then ∂A is d− 1-rectifiable.

Proof. Let s ∈ (0, r) be fixed. Consider the sets

As := {x | dist(x, A) ≤ s},
A′s := {x | dist(x, A) ≥ s},
Σs := {x |dist(x,A) = s}.

We show that Σs is a d− 1-rectifiable closed set.
It is clear that Σs is closed, and it is compact since A is bounded.
By Theorem 4.8 (5) in [31], dist(·, A) is continuously differentiable on int(Unp(A)\
A), which is an open set containing Σs; by (3) of the same theorem, we have
that ‖∇dist(·, A)‖ ≡ 1 on Σs.
By Dini’s theorem (implicit function theorem), σs is locally the graph of a C1

function in (d− 1)-variables. Since Σs is compact, we may claim that

Σs = Σ1
s ∪ · · · ∪ ΣN

s ,

where Σi
s = fi(Bi) with Bi bounded subset of Rd−1, and fi Lipschitz function.

Without loss of generality, we may suppose that the Bi’s are disjoint balls.
Let B̃ =

⋃N
i=1 Bi, and R > 0 be such that B = BR(0) contains B̃. Then,

by Whitney’s Extension Theorem (see for instance [29], p. 245), there exists a
Lipschitz map

F : B −→ Rd such that F ≡ fi on Bi, ∀i = i . . . , N.

As a consequence, Σs = F (B̃), and so Σs is (d− 1)-rectifiable.
By Theorem 4.8 (8) in [31], it follows that

|ξA(x)− ξA(y)| ≤ r

r − s
‖x− y‖, ∀x, y ∈ As.

As a consequence ξA is a Lipschitz function on As.
Let us observe that if x 6∈ A, then ξA(x) ∈ ∂A. (In fact, ξA(x) ∈ A since A

is closed; on the other hand ξA(x) ∈ int(A) is a contradiction because for any
z ∈ int(A) we have ‖x− z‖ > dist(x,A).) Thus, in particular, it is defined the
Lipschitz map

ξA : Σs −→ ∂A.

We show that ξA : Σs → ∂A is surjective.
By Corollary 4.9 in [31], reach(A′s) ≥ s; in particular the projection map ξA′s :
As → A′s is defined in As \A. Let a ∈ ∂A, and {ai}i∈N be a sequence of points
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ai 6∈ A, such that lim
i→∞

ai = a, with ‖ai − a‖ < s/2 for all i ∈ N. Then, by

Corollary 4.9 in [31],
ξA[ξA′s(ai)] = ξA(ai). (5.12)

Observe that ξA′s(ai) ∈ ∂A′s ⊆ Σs: since dist(ai, A) ≤ ‖ai − a‖ ≤ s/2, then
ai 6∈ A′s, and so ξA′s(ai) ∈ ∂A′s. If by contradiction x ∈ ∂A′s and dist(x, A) > s,
then, by the continuity of dist(·, A), we have x ∈ int(A′s), i.e. x 6∈ ∂A′s. As a
consequence, x ∈ ∂A′s ⇒ dist(x, A) = s, that is ∂A′s ⊆ Σs.
Since Σs is compact, there exists y ∈ Σs such that ξA′s(ai) → y. By the
continuity of ξA on As, we have

ξA(y) = ξA[ lim
i→∞

ξA′s(ai)] = lim
i→∞

ξA[ξA′s(ai)]
(5.12)
= lim

i→∞
ξA(ai) = ξA(a) = a,

i.e. ξA is surjective.
Summarizing, we have proved that

• there exists a bounded set B̃ ⊆ Rd−1 and a Lipschitz function

F : B̃ −→ Rd

such that F (B̃) = Σs;

• there exists a function
ξA : Σs −→ ∂A

which is surjective and Lipschitz.

Thus, the composition
ξA ◦ F : B̃ −→ ∂A

is Lipschitz, defined on a compact set, and surjective, and so ∂A is (d − 1)-
rectifiable. ¤

A consequence of the above proposition and Theorem 5.7 is the following

Corollary 5.9 Let A be a compact subset of Rd with reach(A) = r > 0.
Then ∂A admits Minkowski content.

Lemma 5.10 [1] Let A1, . . . , An be compact sets in Rd. For every ε > 0 and
for every r ≤ ε/2, the following inclusion holds:

A1⊕r ∩ . . . ∩An⊕r ⊆ (A1 ∩ . . . ∩An)⊕r ∪
⋃

i 6=j

(∂Ai ∩Aj⊕ε \ intAj)⊕r.

Proof. Let x ∈ A1⊕r ∩ . . . ∩An⊕r . There exist n points x1, . . . , xn such that

xi ∈ Ai, ‖x− xi‖ = dist(x,Ai) ≤ r, i = 1, . . . , n.

We may have two cases: x ∈ A1∩ . . .∩An, and ∃i ∈ {1, . . . , n} such that x /∈ Ai.
It is easy to check that if x /∈ Ai, then xi ∈ ∂Ai.

First case: x ∈ A1 ∩ . . . ∩An.
In this case it is clear that x ∈ (A1 ∩ . . . ∩An)⊕r.
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Second case: x /∈ Ai.
We have xi ∈ ∂Ai. If x 6∈ (A1 ∩ . . .∩An)⊕r, then ∃j 6= i such that xi 6∈ Aj . (In
fact, if ∀j 6= i, xi ∈ Aj , then xi ∈ A1 ∩ . . . ∩ An, and so x ∈ (A1 ∩ . . . ∩ An)⊕r,
since ‖x− xi‖ ≤ r.)
Thus, xi ∈ ∂Ai \ intAj . Further, ‖xi − xj‖ ≤ ‖xi − x‖+ ‖x− xj‖ ≤ 2r, and so
xi ∈ Aj⊕2r . Therefore xi ∈ (∂Ai \ intAj ∩Aj⊕2r ).
As a consequence of the above argument, either x ∈ (A1∩ . . .∩An)⊕r, or ∃j 6= i

such that
x ∈ (∂Ai ∩Aj⊕2r

\ intAj)⊕r.

We conclude that

A1⊕r
∩ . . . ∩An⊕r

⊆ (A1 ∩ . . . ∩An)⊕r ∪
⋃

i 6=j

(∂Ai ∩Aj⊕2r
\ intAj)⊕r;

since 2r ≤ ε, the thesis follows. ¤

We are now ready to prove the main result of this section, claimed in The-
orem 5.12. In order to make clearer the idea of the proof, we consider first the
particular case of the union of two sets with positive reach.

Proposition 5.11 If A and B are two compact subsets of Rd with positive reach
such that

(i) reach(A ∩B) > 0,

(ii) Hd−1(∂A ∩ ∂B) = 0,

then

lim
r→0

Hd((A ∪B)⊕r)−Hd(A ∪B)
r

= Hd−1(∂(A ∪B)).

Proof. Let
R := min{reach(A), reach(B), reach(A ∩B)};

then R > 0 and, ∀ρ < R,

Hd(A⊕ρ) = Hd(A) + ρHd−1(∂A) +
d−2∑

i=0

ρd−ibd−iΦi(A)

Hd(B⊕ρ) = Hd(B) + ρHd−1(∂B) +
d−2∑

i=0

ρd−ibd−iΦi(B)

Hd((A ∩B)⊕ρ) = Hd(A ∩B) + ρHd−1(∂(A ∩B)) +
d−2∑

i=0

ρd−ibd−iΦi(A ∩B).

We remind that

• Hd(A ∪B) = Hd(A) +Hd(B)−Hd(A ∩B),

• (A ∪B)⊕r = A⊕r ∪B⊕r,

• (A ∩B)⊕r ⊆ A⊕r ∩B⊕r
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In particular, by Lemma 5.10, we may claim that, ∀ε > 0 fixed, ∀r ≤ ε/2,

Hd(A⊕r ∩B⊕r) ≥ Hd((A ∩B)⊕r) (5.13)

Hd(A⊕r∩B⊕r) ≤ Hd((A∩B)⊕r)+Hd((∂B∩A⊕ε\intA)⊕r)+Hd((∂A∩B⊕ε\intB)⊕r).
(5.14)

Thus, it follows that, for any r < R, r ≤ ε/2,

Hd((A ∪B)⊕r) = Hd(A⊕r ∪B⊕r)

= Hd(A⊕r) +Hd(B⊕r)−Hd(A⊕r ∩B⊕r)
(5.13)

≤ Hd(A⊕r) +Hd(B⊕r)−Hd((A ∩B)⊕r)

= Hd(A) + rHd−1(∂A)

+ Hd(B) + rHd−1(∂B)

− Hd(A ∩B)− rHd−1(∂(A ∩B))

+
d−2∑

i=0

rd−ibd−i[Φi(A) + Φi(B)− Φi(A ∩B)].

Hd−1(∂A∩∂B) = 0 implies thatHd−1(∂A) = Hd−1(∂A∩BC)+Hd−1(∂A∩intB),
(the same for Hd−1(∂B)), and by Corollary 5.5 we have

Hd−1(∂A) +Hd−1(∂B)−Hd−1(∂(A ∩B))

= Hd−1(∂A) +Hd−1(∂B)−Hd−1(∂A ∩ intB)−Hd−1(intA ∩ ∂B)

= Hd−1(∂A ∩BC) +Hd−1(∂B ∩AC)

= Hd−1(∂(A ∪B)).

As a consequence,

Hd((A ∪B)⊕r)−Hd(A ∪B)
r

≤

Hd−1(∂(A ∪B)) +
d−2∑

i=0

rd−i−1bd−i[Φi(A) + Φi(B)− Φi(A ∩B)].

By taking the lim sup for r tending to 0, we obtain

lim sup
r→0

Hd((A ∪B)⊕r)−Hd(A ∪B)
r

≤ Hd−1(∂(A ∪B)). (5.15)
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By proceeding in a similar way, we have that

Hd((A ∪B)⊕r) = Hd(A⊕r ∪B⊕r)

= Hd(A⊕r) +Hd(B⊕r)−Hd(A⊕r ∩B⊕r)
(5.14)

≥ Hd(A⊕r) +Hd(B⊕r)−Hd((A ∩B)⊕r)

−Hd((∂B ∩A⊕ε \ intA)⊕r)−Hd((∂A ∩B⊕ε \ intB)⊕r)

= Hd(A) + rHd−1(∂A)

+ Hd(B) + rHd−1(∂B)

− Hd(A ∩B)− rHd−1(∂(A ∩B))

+
d−2∑

i=0

rd−ibd−i[Φi(A) + Φi(B)− Φi(A ∩B)]

−Hd((∂B ∩A⊕ε \ intA)⊕r)−Hd((∂A ∩B⊕ε \ intB)⊕r).

Thus,

Hd((A ∪B)⊕r)−Hd(A ∪B)
r

≥ Hd−1(∂(A ∪B))

+
d−2∑

i=0

rd−i−1bd−i[Φi(A) + Φi(B)− Φi(A ∩B)]

−H
d((∂B ∩A⊕ε \ intA)⊕r)

r
− Hd((∂A ∩B⊕ε \ intB)⊕r)

r

We may observe that ∂B ∩A⊕ε \ intA is closed and d− 1-rectifiable, since it is
a subset of ∂B which is d− 1-rectifiable by Proposition 5.8. The same holds for
∂A∩B⊕ε \ intB, as well. As a consequence, by Theorem 5.7, we may claim that

lim
r→0

Hd((∂B ∩A⊕ε \ intA)⊕r)
r

= 2Hd−1(∂B ∩A⊕ε \ intA),

lim
r→0

Hd((∂A ∩B⊕ε \ intB)⊕r)
r

= 2Hd−1(∂A ∩B⊕ε \ intB).

By taking the lim inf for r going to 0 we obtain

lim inf
r→0

Hd((A ∪B)⊕r)−Hd(A ∪B)
r

≥ Hd−1(∂(A ∪B))

− 2[Hd−1(∂B ∩A⊕ε \ intA) +Hd−1(∂A ∩B⊕ε \ intB)]. (5.16)

Observe now that {A⊕ε \ intA}ε ↓ ∂A, and so

lim
ε→0

Hd−1(∂B ∩A⊕ε \ intA) = Hd−1(∂B ∩ ∂A)
(ii)
= 0.

Finally, by taking the limit for ε tending to 0 in (5.16), we have

lim inf
r→0

Hd((A ∪B)⊕r)−Hd(A ∪B)
r

≥ Hd−1(∂(A ∪B)). (5.17)

By (5.17) and (5.15) the thesis follows. ¤

Let us consider now the case of a finite union.
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Theorem 5.12 [1] If A1, . . . , An are compact subsets of Rd with positive reach
and such that

(i) for every subset of indices I ⊂ {1, 2, . . . , n} the set
⋂

i∈I Ai has positive
reach,

(ii) Hd−1(∂Ai ∩ ∂Aj) = 0, ∀i 6= j,

then

lim
r→0

Hd((
⋃n

i=1 Ai)⊕r)−Hd(
⋃n

i=1 Ai)
r

= Hd−1(∂(
n⋃

i=1

Ai)).

Proof. Let
R = min{reach(

⋂

i∈I

Ai) : I ⊂ {1, . . . , n}}.

We know that, ∀r < R,

Hd((Ai ∩ . . . ∩Ak)⊕r) = Hd(Ai ∩ . . . ∩Ak) + rHd−1(∂(Ai ∩ . . . ∩Ak))

+
d−2∑

i=0

rd−ibd−iΦi(Ai ∩ . . . ∩Ak). (5.18)

Further, by Lemma 5.10, for any ε > 0 and ∀r ≤ ε/2, we have

Hd(A1⊕r ∩ . . . ∩Ak⊕r ) ≥ Hd((A1 ∩ . . . ∩Ak)⊕r) (5.19)

Hd(A1⊕r ∩ . . .∩Ak⊕r ) ≤ Hd((A1∩ . . .∩Ak)⊕r)+
∑

i 6=j

Hd((∂Ai∩Aj⊕ε \ intAj)⊕r)

(5.20)
In order to simplify the notations, let

Ei,j := (∂Ai ∩Aj⊕ε \ intAj)⊕r, i, j ∈ {1, . . . , n}.
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It follows that, for any r < R, r ≤ ε/2,

Hd((
n⋃

i=1

Ai)⊕r)

= Hd(
n⋃

i=1

Ai⊕r
)

=
n∑

i=1

Hd(Ai⊕r
)−

∑

i<j

Hd(Ai⊕r
∩Aj⊕r

) +
∑

i<j<k

Hd(Ai⊕r
∩Aj⊕r

∩Ak⊕r
)

+ . . . + (−1)n+1Hd(A1⊕r ∩ . . . ∩An⊕r )
(5.19),(5.20)

≤
n∑

i=1

Hd(Ai⊕r )

−
∑

i<j

Hd((Ai ∩Aj)⊕r)

+
∑

i<j<k

[Hd((Ai ∩Aj ∩Ak)⊕r) +Hd(Ei,j) +Hd(Ei,k)

+Hd(Ej,i) +Hd(Ej,k) +Hd(Ek,i) +Hd(Ek,j)]

−
∑

i<j<k<l

Hd((Ai ∩Aj ∩Ak ∩Al)⊕r)

+ · · ·

=
n∑

i=1

Hd(Ai⊕r )−
∑

i<j

Hd((Ai ∩Aj)⊕r) +
∑

i<j<k

Hd((Ai ∩Aj ∩Ak)⊕r)

+ . . . + (−1)n+1Hd((A1 ∩ . . . ∩An)⊕r) (5.21)

+
∑

i<j<k

[Hd(Ei,j) + . . . +Hd(Ek,j)]

+
∑

i<j<k<l<m

[Hd(Ei,j) + . . . +Hd(Em,l)]

+ · · ·
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We observe that, by (5.18),

n∑

i=1

Hd(Ai⊕r
)−

∑

i<j

Hd((Ai ∩Aj)⊕r) +
∑

i<j<k

Hd((Ai ∩Aj ∩Ak)⊕r)

+ . . . + (−1)n+1Hd(A1 ∩ . . . ∩An)⊕r)

=
n∑

i=1

[
Hd(Ai) + rHd−1(∂Ai) +

d−2∑
m=0

rd−mbd−mΦm(Ai)

]

−
∑

i<j

[
Hd(Ai ∩Aj) + rHd−1(∂(Ai ∩Aj)) +

d−2∑
m=0

rd−mbd−mΦm(Ai ∩Aj)

]

+
∑

i<j<k


Hd(Ai ∩Aj ∩Ak) + rHd−1(∂(Ai ∩Aj ∩Ak))

+
d−2∑
m=0

rd−mbd−mΦm(Ai ∩Aj ∩Ak)

]

+ . . . + (−1)n+1
[Hd(A1 ∩ . . . ∩An) + rHd−1(∂(A1 ∩ . . . ∩An))

+
d−2∑
m=0

rd−mbd−mΦm(A1 ∩ . . . ∩An)

]

=
n∑

i=1

Hd(Ai)−
∑

i<j

Hd(Ai ∩Aj) +
∑

i<j<k

Hd(Ai ∩Aj ∩Ak)

+ . . . + (−1)n+1Hd(A1 ∩ . . . ∩An) (5.22)

+ r




n∑

i=1

Hd−1(∂Ai)−
∑

i<j

Hd−1(∂(Ai ∩Aj)) +
∑

i<j<k

Hd−1(∂(Ai ∩Aj ∩Ak))

+ . . . + (−1)n+1Hd−1(∂(A1 ∩ . . . ∩An))
]

(5.23)

+
d−2∑
m=0

rd−mbd−m




n∑

i=1

Φm(Ai)−
∑

i<j

Φm(Ai ∩Aj) +
∑

i<j<k

Φm(Ai ∩Aj ∩Ak)

+ . . . + (−1)n+1Φm(A1 ∩ . . . ∩An)] (5.24)

Now, we notice that:

• (5.22) = Hd(
n⋃

i=1

Ai).

• By relation (5.9) on the measure of the boundary of an intersection of sets,
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we have

(5.23)
r

=
n∑

i=1

Hd−1(∂Ai)

−
∑

i<j

[Hd−1(∂Ai ∩ intAj) +Hd−1(∂Aj ∩ intAi)]

+
∑

i<j<k

[Hd−1(∂Ai ∩ int(Aj ∩Ak)) +Hd−1(∂Aj ∩ int(Ai ∩Ak))

+Hd−1(∂Ak ∩ int(Ai ∩Aj))]

− · · ·

=
n∑

i=1


Hd−1(∂Ai)−

∑

j 6=i

Hd−1(∂Ai ∩ intAj) (5.25)

+
∑

j,k 6=i;j<k

Hd−1(∂Ai ∩ int(Aj ∩Ak))− · · ·

 .

Let us observe that

Hd−1(∂Ai ∩ (
⋃

j 6=i

intAj))

= Hd−1(
⋃

j 6=i

(∂Ai ∩ intAj))

=
∑

j 6=i

Hd−1(∂Ai ∩ intAj)−
∑

j,k 6=i;j<k

Hd−1(∂Ai ∩ intAj ∩ intAk)

+
∑

j,k,l 6=i;j<k<l

Hd−1(∂Ai ∩ intAj ∩ intAk ∩ intAl) − . . .

Therefore,

(5.25) =
n∑

i=1

[Hd−1(∂Ai)−Hd−1(∂Ai ∩ (
⋃

j 6=i

intAj))].

Since ∂Ai is given by the disjoint union of ∂Ai∩(
⋃

j 6=i intAj), ∂Ai∩∂(
⋃

j 6=i Aj),
and ∂Ai ∩ (

⋃
j 6=i Aj)C , and from assumption (ii) of the theorem it follows that

Hd−1(∂Ai ∩ ∂(
⋃

j 6=i Aj)) = 0. Summarizing we have that

(5.23)
r

=
n∑

i=1

Hd−1(∂Ai ∩ (
⋃

j 6=i

Aj)C)
(5.10)
= Hd−1(∂(

n⋃

i=1

Ai)).

• (5.24) = o(r).
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According to the above considerations, from (5.21) we obtain

Hd((
n⋃

i=1

Ai)⊕r)

≤ Hd(
n⋃

i=1

Ai) + rHd−1(∂(
n⋃

i=1

Ai)) + o(r)

+
∑

i<j<k

[Hd(Ei,j) + . . . +Hd(Ek,j)]

+
∑

i<j<k<l<m

[Hd(Ei,j) + . . . +Hd(Em,l)]

+ . . .

As in the previous proposition, we may claim that every Ei,j is a d − 1-
rectifiable closed set, and in particular it admits Minkowski content. By taking
the lim sup as r tends to zero we have

lim sup
r→0

Hd((
⋃n

i=1 Ai)⊕r)−Hd(
⋃n

i=1 Ai)
r

≤ Hd−1(∂(
n⋃

i=1

Ai))

+ 2
∑

i<j<k

[Hd−1(∂Ai ∩Aj⊕ε \ intAj) + . . . +Hd−1(∂Ak ∩Aj⊕ε \ intAj)]

+ 2
∑

i<j<k<l<m

[Hd−1(∂Ai ∩Aj⊕ε \ intAj) + . . . +Hd−1(∂Am ∩Al⊕ε \ intAl)]

+ . . .

for every ε > 0. In a similar way to the previous proposition, by taking the
limit for ε going to 0, by assumption (ii), we obtain

lim sup
r→0

Hd((
⋃n

i=1 Ai)⊕r)−Hd(
⋃n

i=1 Ai)
r

≤ Hd−1(∂(
n⋃

i=1

Ai)). (5.26)

For an estimation of the lim inf we proceed in analogous way.
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Hd((
n⋃

i=1

Ai)⊕r)

= Hd(
n⋃

i=1

Ai⊕r
)

=
n∑

i=1

Hd(Ai⊕r
)−

∑

i<j

Hd(Ai⊕r
∩Aj⊕r

) +
∑

i<j<k

Hd(Ai⊕r
∩Aj⊕r

∩Ak⊕r
)

+ . . . + (−1)n+1Hd(A1⊕r
∩ . . . ∩An⊕r

)
(5.19),(5.20)

≥
n∑

i=1

Hd(Ai⊕r
)

−
∑

i<j

[Hd((Ai ∩Aj)⊕r) +Hd(Ei,j) +Hd(Ej,i)]

+
∑

i<j<k

Hd((Ai ∩Aj ∩Ak)⊕r)

−
∑

i<j<k<l

[Hd((Ai ∩Aj ∩Ak ∩Al)⊕r) +Hd(Ei,j) + . . . +Hd(El,k)]

+ · · ·

=
n∑

i=1

Hd(Ai⊕r )−
∑

i<j

Hd((Ai ∩Aj)⊕r) +
∑

i<j<k

Hd((Ai ∩Aj ∩Ak)⊕r)

+ . . . + (−1)n+1Hd((A1 ∩ . . . ∩An)⊕r)

−
∑

i<j

[Hd(Ei,j) +Hd(Ej,i)]

−
∑

i<j<k<l

[Hd(Ei,j) + . . . +Hd(El,k)]

− · · ·

= Hd(
n⋃

i=1

Ai) + rHd−1(∂(
n⋃

i=1

Ai)) + o(r)

−
∑

i<j

[Hd(Ei,j) +Hd(Ej,i)]

−
∑

i<j<k<l

[Hd(Ei,j) + . . . +Hd(El,k)]

− · · ·

By taking the lim inf as r tends to 0, before, and the limit as ε tends to 0, then,
we obtain

lim inf
r→0

Hd((
⋃n

i=1 Ai)⊕r)−Hd(
⋃n

i=1 Ai)
r

≥ Hd−1(∂(
n⋃

i=1

Ai)). (5.27)

(5.26) and (5.27) imply the thesis. ¤

117



5.2 A first order Steiner formula for sets with
Lipschitz boundary

In this section we prove that sets with Lipschitz boundary satisfy a first order
Steiner formula.

5.2.1 Distance function and sets of finite perimeter

Let us recall some basic definitions and results concerning sets of finite perime-
ter, which will be an important ingredient here (for a complete treatment we
refer to [4] and references therein).

Let E be a subset of Rd; we denote by dE : Rd → R the signed distance
function, so defined:

dE(x) := dist(x,E)− dist(x,EC).

Note that dEC (x) = −dE(x), and, in particular,

{x : x ∈ ∂E⊕r} = {x : dist(x, ∂E) ≤ r} = {x : |dE(x)| ≤ r}. (5.28)

It is well known that dE is a Lipschitz function, almost everywhere differentiable
in Rd, with |∇dE(x)| = 1 for any differentiability point (see [3], p. 11).

We remind that, given a Lipschitz function f : Rd → Rk and an n-dimensional
domain E ⊆ Rd with n ≥ k, by Coarea formula we may reduce an integral on
E to a double integral, where the first integral is computed on the level set
E ∩{f = t} with respect to Hn−k, and the result is integrated in t with respect
to νk. (For further details see [4], § 2.12.)
In the particular case k = 1 and n = d, for any Borel function g : Rd → [0,∞],
it holds ([4], (2.74)):

∫

E

g(x)|∇f(x)|dx =
∫ +∞

−∞

(∫

E∩{f=t}
g(y)dHd−1(y)

)
dt. (5.29)

Thus, we may notice that, by choosing g(x) ≡ 1 and f = dE in the above
equation, we have

Hd(∂E⊕r) =
∫

∂E⊕r

dx

=
∫

∂E⊕r

|∇dE(x)|dx

(5.29)
=

∫ +∞

−∞
Hd−1({x : x ∈ ∂E⊕r} ∩ {x : dE(x) = t})dt

(5.28)
=

∫ r

−r

Hd−1({x : dE(x) = t})dt (5.30)

Similarly we have

Hd(E⊕r \ E) =
∫ r

0

Hd−1({x : dE(x) = t})dt. (5.31)
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Definition 5.13 Let (X, E) be a measure space. If µ is a measure, we define
its total variation |µ| for every E ∈ E as follows:

|µ(E)| := sup

{ ∞∑

i=0

|µ(Ei)| : Ei ∈ E pairwise disjoint, E =
∞⋃

i=0

Ei

}
.

It follows that |µ| is a positive finite measure ([4], p. 4), and µ is absolutely
continuous with respect to |µ|. As a consequence the following holds ([4], p. 14):

Proposition 5.14 (Polar decomposition) Let µ be a Rd-valued measure on
the measure space (X, E); then there exists a unique Sd−1-valued function f ∈
[L1(X, |µ|)]d (Sd−1 is the unit sphere in Rd) such that µ = f |µ|.

Definition 5.15 (Sets of finite perimeter) Let E be a measurable set of Rd.
For any open set D ⊆ Rd the perimeter of E in D, denoted by P(E,D), is the
variation of the characteristic function χE in D, i.e.

P(E,D) := sup
{∫

E

divφ dx : φ ∈ [C1
c (D)]d, ‖φ‖∞ ≤ 1

}
.

We say that E is a set of finite perimeter in D if P(E,D) < ∞.

In the sequel we will write P(E) instead of P(E,Rd)
The theory of sets of finite perimeter is closely connected to the theory of

functions of bounded variation (see [4]). We denote by BV (D) the family of
functions of bounded variations in the open set D.
In particular, if νd(E∩D) is finite, then χE ∈ L1(D), and we can say that E has
finite perimeter in D if and only if χE ∈ BV (D), and that P(E,D) coincides
with |DχE |, the total variation in D of the distributional derivative of χE .

Theorem 5.16 ([4], p. 143) For any set E of finite perimeter in D the distri-
butional derivative DχE is an Rd-valued finite Radon measure in D. Moreover,
P(E,D) = |DχE |(D) and a generalized Gauss-Green formula holds:

∫

E

divφ dx = −
∫

D
〈νE , φ〉 d|DχE | ∀φ ∈ [C1

c (D)]d,

where νE is the inner unit normal to E, and DχE = νE |DχE | is the polar
decomposition of DχE.

In dealing with sets with finite measure, it is typically used convergence
in measure; we recall that {Ei} converges to E in measure in D if νd(Ei∆E)
converges to 0 as i → ∞ (∆ is the symmetric difference of sets). In many
applications it will also be useful the so-called local convergence in measure, i.e.
convergence in measure in any open set A ⊂ D. These convergences correspond
to L1(D) and L1

loc(D) convergences of the characteristic functions.
The following properties of perimeter hold:

Theorem 5.17 ([4], p. 144)
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(a) The function D 7→ P(E,D) is the restriction to open sets of a Borel mea-
sure in Rd.

(b) E 7→ P(E,D) is lower semicontinuous with respect to local convergence in
measure in D.

(c) E 7→ P(E,D) is local, i.e. P(E,D) = P(F,D) whenever νd(D∩(E∆F )) =
0.

(d) P(E,D) = P(EC ,D) and

P(E ∪ F,D) + P(E ∩ F,D) ≤ P(E,D) + P(F,D).

We recall that a set A has Lipschitz boundary if locally ∂A can be seen as
the graph of a Lipschitz function.
In particular, the following result concerning the topological boundary can be
proved.

Proposition 5.18 ([4], p. 159) Any open set A ⊂ Rd satisfying Hd−1(∂A) < ∞
has finite perimeter in Rd and |DχA| ≤ Hd−1

|∂A .
Equality holds if A has Lipschitz boundary.

Remark 5.19 By the above proposition, and by property (c) of Theorem 5.17,
if E is a closed set with Lipschitz boundary, then |DχE | = Hd−1(∂E); by
Theorem 5.16 we have that P(E) = Hd−1(∂E).

5.2.2 A general theorem for the first order Steiner formula

Lemma 5.20 Let {An} and {Bn} be sequences in R. If

• lim sup
n→∞

(An + Bn) ≤ A + B,

• lim inf
n→∞

An ≥ A,

• lim inf
n→∞

Bn ≥ B,

then
lim

n→∞
An = A, lim

n→∞
Bn = B.

Proof. The following holds:

lim sup
n→∞

An + B ≤ lim sup
n→∞

An + lim inf
n→∞

Bn ≤ lim sup
n→∞

(An + Bn) ≤ A + B,

and so
lim sup

n→∞
An ≤ A.

Since by hypothesis lim inf
n→∞

An ≥ A, we have lim
n→∞

An = A.

The same holds for the sequence {Bn}. ¤
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Theorem 5.21 [1] Let E be a closed subset of Rd with Hd−1(∂E) < ∞, such
that

(i) P(E) = Hd−1(∂E),

(ii) ∂E admits Minkowski content.

Then

lim
r→0

Hd(E⊕r \ E)
r

= Hd−1(∂E).

Proof. Let

• Ar :=
1
r

∫ r

0

Hd−1({x : dE(x) = t})dt,

• Br :=
1
r

∫ 0

−r

Hd−1({x : dE(x) = t})dt,

• A = B := Hd−1(∂E).

Then we have

lim sup
r→0

(Ar + Br) = lim sup
r→0

1
r

∫ r

−r

Hd−1({x : dE(x) = t})dt

= lim
r→0

2 · 1
2r

∫ r

−r

Hd−1({x : dE(x) = t})dt

(5.30)
= 2 lim

r→0

Hd(∂E⊕r)
2r

(ii)
= 2Hd−1(∂E)

= A + B.

Further,

lim inf
r→0

Ar = lim inf
r→0

1
r

∫ r

0

Hd−1({x : dE(x) = t})dt

= lim inf
r→0

∫ 1

0

Hd−1({x : dE(x) = tr})dt;

by Fatou’s Lemma,

≥
∫ 1

0

lim inf
r→0

Hd−1({x : dE(x) = tr})dt;

since P(E) < ∞ it is clear that P({x : dE(x) < tr}) < ∞, thus by Theorem
5.16 and Proposition 5.18,

≥
∫ 1

0

lim inf
r→0

P({x : dE(x) < tr})dt;
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by property (b) in Theorem 5.17,

≥
∫ 1

0

P(E)dt

(i)
= Hd−1(E) · 1
= A.

Similarly:
lim inf

r→0
Br ≥ B.

By Lemma 5.20, we have

lim
r→0

Hd(E⊕r \ E)
r

(5.31)
= lim

r→0
Ar = A = Hd−1(∂E).

¤

Corollary 5.22 [1] Let E be a subset of Rd with Lipschitz boundary such that
Hd−1(∂E) < ∞; then

lim
r→0

Hd(E⊕r \ E)
r

= Hd−1(∂E).

Proof. It is clear that ∂E is a (d− 1)-rectifiable set, and so by Theorem 5.7 it
admits Minkowski content. By Remark 5.19 we know that P(E) = Hd−1(∂E),
thus the thesis follows by Theorem 5.21. ¤

Corollary 5.23 [1] Let E be a closed subset of Rd with Hd−1(∂E) < ∞, such
that

(i) P(E) = Hd−1(∂E),

(ii) ∂E admits Minkowski content.

Then, for any A ∈ BRd such that Hd−1(∂E ∩ ∂A) = 0,

lim
r→0

Hd(E⊕r \ E ∩A)
r

= Hd−1(∂E ∩A).

Proof. It is clear that, since ∂E admits Minkowski content, then for any closed
set C ⊂ Rd it holds

lim
r→0

Hd((∂E ∩ C)⊕r)
2r

= Hd−1(∂E ∩ C).

Thus, by Lemma 4.8 it follows that, for any A ∈ BRd such thatHd−1(∂E∩∂A) =
0, we have

lim
r→0

Hd(∂E⊕r ∩A)
2r

= Hd−1(∂E ∩A).

The proof can be concluded by repeating the same argument as in the proof
of Theorem 5.21, where now
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• Ar :=
1
r

∫ r

0

Hd−1({x ∈ A : dE(x) = t})dt,

• Br :=
1
r

∫ 0

−r

Hd−1({x ∈ A : dE(x) = t})dt,

• A = B := Hd−1(∂E ∩A).

¤

Remark 5.24 There exist closed sets E ⊂ Rd whose boundary is not Lips-
chitz, but such that they admit Minkowski content and P(E) = Hd−1(E), i.e.
satisfying hypotheses of Theorem 5.21.
A simple example is given by the union of two tangent balls (see also Appendix
B). Note also that in this case the first order Steiner formula is a consequence
of Theorem 5.12 as well.

5.3 A mean first order Steiner formula for ran-
dom closed sets

Let us consider a random closed set Θ satisfying a first order Steiner formula,
in other words it holds

lim
r→0

Hd(Θ(ω)⊕r \Θ(ω))
r

= Hd−1(∂Θ(ω)), for P-a.e. ω ∈ Ω. (5.32)

It is well known that almost sure convergence does not imply L1-convergence,
so that, in general, (5.32) does not imply

lim
r→0

E[Hd(Θ⊕r \Θ)]
r

= E[Hd−1(∂Θ)]. (5.33)

On the other hand, if the family of random variables Xr := Hd(Θ⊕r\Θ)
r is

uniformly integrable, or we may apply the Dominated Convergence Theorem,
we obtain (5.33).
Taking this fact into account, we consider the case in which Θ is given by a
finite union of random closed sets Ai with positive reach. Using Theorem 5.12,
it is easy to find sufficient conditions for Θ such that (5.33) holds.

Proposition 5.25 [1] Let A1, . . . An be random closed sets in K, compact sub-
set of Rd, such that

(i) for P-a.e. ω ∈ Ω, each possible intersection of the Ai(ω)’s is a set with
reach ≥ R > 0;

(ii) for P-a.e. ω ∈ Ω, Hd−1(∂Ai ∩ ∂Aj) = 0, ∀i 6= j;

(iii) ∀i = 1, . . . , n, it holds lim
r→0

E[Hd((∂Ai)⊕r)]
2r

= E[Hd−1(∂Ai)].
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Then, the random closed set Θ =
⋃n

i=1 Ai satisfies the mean first order Steiner
formula (5.33).

Proof. By proceeding in a similar way as in proof of Theorem 5.12, for any
fixed ε > 0 and r < R ∧ ε/2, we have

E[Hd(Θ⊕r)]

≤ E[Hd(Θ)] + rE[Hd−1(∂Θ)]

+
d−2∑
m=0

rd−mbd−mE[
n∑

i=1

Φm(Ai)−
∑

i<j

Φm(Ai ∩Aj) +
∑

i<j<k

Φm(Ai ∩Aj ∩Ak)

+ . . . + (−1)n+1Φm(A1 ∩ . . . ∩An)]

+
∑

i<j<k

E[Hd(Ei,j) + . . . +Hd(Ek,j)]

+
∑

i<j<k<l<m

E[Hd(Ei,j) + . . . +Hd(Em,l)]

+ . . .

where
Ei,j := (∂Ai ∩Aj⊕ε \ intAj)⊕r.

By Remark 5.10 in [31], ∀E ⊂ K with reach(E) ≥ R, we have that,

∀i = 0, . . . , d, ∃ki ∈ R+ such that |Φi(E)| ≤ |Φi|(E) ≤ ki,

where |Φi|(E) is the total variation of the measure Φ(E, · ) over K, and

ki = sup{|Φi|(F ) : F ⊂ K and reach(F ) ≥ R} < ∞.

As a consequence

d−2∑
m=0

rd−mbd−mE[
n∑

i=1

Φm(Ai)−
∑

i<j

Φm(Ai ∩Aj)

+
∑

i<j<k

Φm(Ai ∩Aj ∩Ak) + . . . + (−1)n+1Φm(A1 ∩ . . . ∩An)] = o(r)

By hypothesis (iii) we may claim that

lim sup
r→0

E[Hd(Θ⊕r)]− E[Hd(Θ)]
r

≤ E[Hd−1(∂Θ)]

+ 2
∑

i<j<k

E[Hd−1(∂Ai ∩Aj⊕ε \ intAj)] + . . . + E[Hd−1(∂Ak ∩Aj⊕ε \ intAj)]

+ 2
∑

i<j<k<l<m

E[Hd−1(∂Ai ∩Aj⊕ε \ intAj)] + . . . + E[Hd−1(∂Am ∩Al⊕ε \ intAl)]

+ . . .

This holds for any fixed ε > 0; thus, by taking the limit for ε going to 0, and
by Monotone Convergence Theorem, we obtain

lim sup
r→0

E[Hd(Θ⊕r)−Hd(Θ)]
r

≤ E[Hd−1(∂Θ)].
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Similarly we have

lim inf
r→0

E[Hd(Θ⊕r)−Hd(Θ)]
r

≥ E[Hd−1(∂Θ)],

and so the thesis follows. ¤

Note that sufficient conditions for hypothesis (iii) to hold are given in Theorem
4.10.

Remark 5.26 In the above theorem we have supposed that Θ is the union
of random sets Ai. Obviously we may have the same result even when Θ is
given by a random union, i.e. Θ =

⋃N
i=1 Ai, where N is a positive integer-

valued random variable. In this case we have to add suitable hypotheses on
the integrability of N in terms of its moments. These can be easily obtained by
evaluating E[Hd((

⋃N
i=1 Ai)⊕r)] by E[E[Hd((

⋃N
i=1 Ai)⊕r) |N ]], and proceeding as

in previous theorems.

In more general situations, e.g. when Θ can not be expressed as union of
random closed sets with positive reach satisfying the assumptions of Proposition
5.25, or some of such assumptions are not easy to verify, by Theorem 4.10 we
may claim again that (5.33) holds.
Indeed, let us observe that

Hd(Θ(ω)⊕r \Θ(ω))
r

≤ Hd(∂Θ(ω)⊕r)
r

= 2 · H
d(∂Θ(ω)⊕r)

2r
∀ω ∈ Ω, (5.34)

and by Theorem 4.10 we know sufficient conditions on ∂Θ so that we may apply
the Dominated Convergence Theorem and obtain (5.33).

Without loss of generalization, we may assume that ∂Θ is a compact random
set. Then we have the following general result:

Theorem 5.27 [1] Let Θ be a random closed set in Rd with boundary ∂Θ count-
ably Hd−1-rectifiable and compact, satisfying

lim
r→0

Hd(Θ⊕r(ω) \Θ(ω) ∩A)
r

= Hd−1(∂Θ(ω) ∩A) P-a.e. ω ∈ Ω,

with A ∈ BRd such that E[Hd−1(∂Θ∩ ∂A)] = 0. Let Γ : Ω −→ R be the function
so defined:

Γ(ω) := max{γ ≥ 0 : ∃ a probability measure η ¿ Hd−1 such that

η(Br(x)) ≥ γrd−1 ∀x ∈ ∂Θ(ω), r ∈ (0, 1)}.

If there exists a random variable Y with E[Y ] < ∞, such that 1
Γ(ω) ≤ Y (ω) for

P-a.e. ω ∈ Ω, then,

lim
r→0

E[Hd(Θ⊕r \Θ ∩A)]
r

= E[Hd−1(∂Θ ∩A)].
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Proof. We note that ∂Θ satisfies the hypotheses of Theorem 4.10. By the proof
of the quoted theorem we know that for P-a.e. ω ∈ Ω

Hd(∂Θ(ω)⊕r)
2r

≤ Y (ω)2d−14d bd

2
. (5.35)

Since

Hd((Θ⊕r(ω) \Θ(ω)) ∩A)
r

≤ Hd(Θ⊕r(ω) \Θ(ω))
r

≤ Hd(∂Θ⊕r(ω))
2r

,

by (5.35), applying the Dominated Convergence Theorem, the thesis follows. ¤

There are a lot of random closed sets satisfying hypotheses of Theorem 5.27.
Several examples of random sets Θ such that (5.35) holds are given in Section
4.3. Note that the well known case of Θ Boolean model of balls (or other
sufficiently regular objects) satisfies Theorem 5.27.
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Chapter 6

Time dependent random
closed sets

In this chapter we wish to analyze the case in which a random closed set Θ
may depend upon time as, for example, when it models the evolution due to a
growth process, so that we have a geometric random process {Θt, t ∈ R+}, such
that for any t ∈ R+, the random set Θt satisfies all the relevant assumptions
required in the previous sections.
Correspondingly the associated linear functional δΘt will also be a function of
time, and so we need to define partial derivatives of linear functionals depending
on more than one variable. In this way we shall provide evolution equations for
such space-time dependent linear functionals; in particular we will apply this to
stochastic birth-and-growth processes. (See [26, 24].)

6.1 Derivatives of linear functionals

Consider a linear functional L acting on the test space Sk of functions s in k

variables; we formally represent it as

(L, s) =:
∫

Rk

φ(x1, . . . , xk)s(x1, . . . , xk)d(x1, . . . , xk).

Let us denote by Lh
i the linear functional defined by

(Lh
i , s) =:

∫

Rk

φ(x1, . . . , xi + h, . . . , xk)s(x1, . . . , xk)d(x1, . . . , xk). (6.1)

We define the weak partial derivative of the functional L with respect to the
variable xi as follows (see also [33], p. 20).

Definition 6.1 We say that a linear functional L on the space Sk, admits a
weak partial derivative with respect to xi, denoted by ∂

∂xi
L, if and only if ∂

∂xi
L

is a linear functional on the same space Sk and
{

Lh
i −L
h

}
weakly* converges to

∂
∂xi

L, i.e.

lim
h→0

(
Lh

i − L

h
, s

)
=

(
∂

∂xi
L, s

)
for all s ∈ Sk.
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We may like to notice that, in the particular case of generalized functions, the
definition above coincides with the derivative of a generalized function depend-
ing on a parameter, given in [33] p. 148. Moreover, when S1 is the test space
C1

c (R,R) of all function of class C1 with compact support, Definition 6.2 coin-
cides with the usual derivative of a generalized function (see, e.g. [45]), that we
now recall.

Definition 6.2 Let L = L(x) be a generalized function on a test space K ⊆
C1

c (R,R). The derivative dL/dx of L is the functional defined by the formula
(

dL

dx
, f

)
:= −(L, f ′) ∀f ∈ K. (6.2)

The functional (6.2) is obviously linear and continuous, and hence is itself a
generalized function.
Usually, Definition 6.2 is suggested by the particular case when the generalized
function L is of the form

(L, f) :=
∫

R
φ(x)f(x)dx,

where φ is a function on R such that its derivative φ′ exists and is locally
integrable. Then it is natural to define the derivative of L as the functional

(
dL

dx
, f

)
:=

∫

R
φ′(x)f(x)dx.

Integrating by parts and using the fact that every test function f has a compact
support, one obtains that

(
dL

dx
, f

)
= −

∫

R
φ(x)f ′(x)dx = −(L, f ′).

Carrying this over to the singular case, we get the above definition.
Now we show that, by Definition 6.1, formally we may easily reobtain the defi-
nition in (6.2), directly also for a singular generalized function L.
We said that the usual representation of (L, f) is

∫
R φ(x)f(x)dx, where f ∈

C1
c (R,R) and φ is a fictitious function. Note that, by (6.1) with k = 1 and

Lh
1 = Lh,

(Lh, f) = (Lh(x), f(x)) =
∫

R
φ(x+h)f(x)dx =

∫

R
φ(x)f(x−h)dx = (L(x), f(x−h))

(this is known also as the translation of the generalized function L).
Now, we remember that for any α ∈ R, (αL, f) = (L,αf), and so, by Definition
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6.1, we have
(

dL

dx
, f

)
= lim

h→0

(
Lh − L

h
, f

)

= lim
h→0

[(
Lh(x)

h
, f(x)

)
−

(
L(x)

h
, f(x)

)]

= lim
h→0

[(
Lh(x),

f(x)
h

)
−

(
L(x),

f(x)
h

)]

= lim
h→0

[(
L(x),

f(x− h)
h

)
−

(
L(x),

f(x)
h

)]

= lim
h→0

(
L(x),

f(x− h)− f(x)
h

)

= − lim
h→0

(
L(x),

f(x− h)− f(x)
−h

)

(i)
= −(L(x), f ′(x))

= −(L, f ′)

where equation (i) follows by the hypothesis that f ∈ C1
c (R,R), and L is a

continuous functional. (A similar approach is given in [33] p. 20).
As a simple example, let us consider the Dirac delta function δ0; then by the

usual definition (6.2), we have
(

dδ0

dx
, f

)
= −(δ0, f

′) = −f ′(0).

We obtain the same result by applying Definition 6.1:
(

dδ0

dx
, f

)
= lim

h→0

∫

R

δ0(x + h)− δ0(x)
h

f(x)dx

= lim
h→0

[∫

R
δ0(x + h)

f(x)
h

dx−
∫

R
δ0(x)

f(x)
h

dx

]

= lim
h→0

[∫

R
δ−h(x)

f(x)
h

dx−
∫

R
δ0(x)

f(x)
h

dx

]

= − lim
h→0

f(−h)− f(0)
−h

= −f ′(0)

It is well known that the derivative of the Heaviside function

H(x) :=
{

1 if x ≥ 0
0 if x < 0

is the delta function δ0(x).
Similarly, if Hx0(x) = 1[x0,+∞), then its derivative is δx0(x).

6.1.1 Application to growth processes

Let us consider a geometric random process {Θt, t ∈ R+} satisfying the follow-
ing assumptions [17, 20]:
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(i) for any t ∈ R+, and any s > 0, Θt is well contained in Θt+s,
i.e. ∂Θt ⊂ intΘt+s;

(ii) for any t ∈ R+, Θt is a d-regular random closed set in Rd, and ∂Θt is a
(d− 1)-regular random closed set.

By assumption (i), we call {Θt} a growth process.
For any x ∈ Rd, we may introduce a time of capture of x, as the positive random
variable T (x) so defined:

T (x) := min{t ∈ R+ : x ∈ Θt}.

By assumption (i) it follows that

x ∈ intΘt if t > T (x),

x /∈ Θt if t < T (x),

so that

x ∈ ∂ΘT (x).

Let us introduce, on the test space Cc(R+× Rd,R), the following two linear
functionals

(T1, f) :=
∫

R+×Rd

δΘt(x)f(t, x)dtdx

and
(T2, f) :=

∫

R+×Rd

HT (x)(t)f(t, x)dtdx.

We know that

δΘt(x) =
{

1 ∀x ∈ intΘt

0 ∀x 6∈ Θt .

As a consequence we may easily check that, for any test function f , (T1, f) =
(T2, f), so that we may formally write

δΘt(x) = HT (x)(t),

where HT (x) is the Heaviside distribution associated with T (x), introduced
above. We know that its distributional derivative is the delta function δT (x); as
a consequence the following holds.

Proposition 6.3 For any test function f ∈ Cc(R+× Rd,R)
∫

R+×Rd

f(t, x)
∂

∂t
δΘt(x) dtdx =

∫

R+×Rd

f(t, x)δT (x)(t) dtdx =
∫

Rd

f(T (x), x) dx.

(6.3)
Formally we may write

∂

∂t
δΘt(x) = δT (x)(t).
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Proof. According to the previous definition,
∫

R+×Rd

f(t, x)
∂

∂t
δΘt(x) dtdx

= lim
∆t→0

1
∆t

∫

R+×Rd

f(t, x) [δΘt+∆t(x)− δΘt(x)] dtdx

= lim
∆t→0

1
∆t

∫

R+×Rd

f(t, x)
[
HT (x)(t + ∆t)−HT (x)(t)

]
dtdx

=
∫

Rd

dx

∫

R+

dtf(t, x)
∂HT (x)

∂t
(t)

=
∫

Rd

dx

∫

R+

dtf(t, x)δT (x)(t)

=
∫

Rd

f(T (x), x) dx.

¤

Consider the case in which T (x) is a continuous random variable with prob-
ability density function pT (x)(t). Then, by Remark 2.24, we may claim that, in
a distributional sense,

E
[

∂

∂t
δΘt

]
(x) = E[δT (x)](t) = pT (x)(t).

In fact, coherently with the definition of expected linear functional, and by
Proposition 6.3 we have

E

[∫

R+×Rd

f(t, x)
∂

∂t
δΘt(x) dxdt

]
= E

[∫
dxf(T (x), x)

]

=
∫

dx

∫
dtf(t, x)pT (x)(t).

We may observe that, in this case, even if for any realization Θt(ω) of Θt,
∂

∂t
δΘt(ω) is a singular generalized function, when we consider the expectation

we obtain a regular generalized function, i.e. a real integrable function. In
particular the derivative is the usual derivative of functions. Thus, by observing
that, since T (x) is the random time of capture of x, P(x ∈ Θt) = P(T (x) < t),
and E[δΘt ](x) = P(x ∈ Θt) (see Remark 2.24), the following holds too:

E
[

∂

∂t
δΘt

]
(x) = pT (x)(t) =

∂

∂t
P(x ∈ Θt) =

∂

∂t
E[δΘt ](x). (6.4)

Hence, E
[

∂

∂t
δΘt

]
(x) and

∂

∂t
E[δΘt ](x) coincide as functions, and, by the equa-

tion above, we have the formal exchange between derivative and expectation.
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6.2 Birth-and-growth processes

A birth-and-growth process in Rd is a dynamic germ-grain model [64, 36] whose
birth process is modelled as a marked point process (MPP) N = {(Ti, Xi)}i∈N
on R+ with marks in Rd (see Section 1.5.5), where Ti ∈ R+ represents the
random time of birth of the i-th germ (nucleus) and Xi ∈ Rd its random spatial
location [39, 64]. Once born, each germ (crystal) generates a grain which grows
at the surface (growth front), with a speed G(t, x) > 0 which may, in general,
be assumed space-time dependent.

Application areas include crystallization processes, tumor growth and angio-
genesis (see [47] and references therein, [66, 63]). All this kind of phenomena
include a space-time structured random process of birth (nucleation), and a
growth process that, as a first approximation, we consider deterministic.

6.2.1 The nucleation process

Consider a Borel set E ⊂ Rd, d ≥ 2, endowed with its Borel σ-algebra E , and a
marked point process N on R+ with marks in E. So, it is defined as a random
measure given by

N =
∞∑

n=1

ε(Tn,Xn),

where

• Tn is an R+-valued random variable representing the time of birth of the
n-th nucleus,

• Xn is an E-valued random variable representing the spatial location of the
nucleus born at time Tn,

• εt,x is the Dirac measure on E ×BR+ such that for any t1 < t2 and A ∈ E ,

εt,x([t1, t2]×A) =
{

1 if t ∈ [t1, t2], x ∈ A,
0 otherwise.

Hence, in particular, for any B ∈ BR+ and A ∈ E , we have

N(B ×A) = #{Tn ∈ B, Xn ∈ A},

i.e. it is the (random) number of germs born in the region A, during time B.
Note that,

N(B ×A) < ∞ (6.5)

for any B ∈ BR+ and A ∈ E bounded.
Besides, we suppose that the marginal process of N is simple (Section 1.5.1),
with E[N(dt× E)1N(dt×E)≥2] = o(∆t).

It is well known [16, 46] that, under general conditions, a marked point pro-
cess is characterized by its compensator, say ν(dt × dx), with respect to the
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internal history of the process (Section 1.5.5). Denoted by ν̃(dt) the compen-
sator of the marginal process Ñ , we know that there exists a stochastic kernel
k from Ω× R+ to E such that

ν(dt× dx) = k(t,dx)ν̃(dt). (6.6)

In many applications it is supposed that further nuclei cannot be born in an
already crystallized zone. When we want to emphasize this, we shall write

ν(dt× dx) = k(t,dx)ν̃(dt) = k0(t,dx)ν̃0(dt)(1− 1Θt−(x)),

where ν0(dt×dx) = k0(t, dx)ν̃0(dt) is the compensator of the process N0, called
the free-process, in which nuclei can be born anywhere. (See also [22]).

The Poisson case

In a great number of applications, it is supposed that N0 is a marked Poisson
process (see Definition 1.70). In this case it is well known that its compensator
is deterministic.
In particular, it is assumed that the MPP N0 is a space-time inhomogeneous
marked Poisson process with a given (deterministic) intensity

α(t, x), x ∈ E, t ≥ 0,

where α is a real valued measurable function on E×R+ such that α(·, t) ∈ L1(E),
for all t > 0 and such that

0 <

∫ T

0

dt

∫

E

α(t, x)dx < ∞

for any 0 < T < ∞.
If we want to exclude germs which are born within the region already occu-

pied by Θt, we shall consider the thinned stochastic intensity

ν(dt× dx) = α(t, x)(1− IΘt−(x))dtdx.

6.2.2 The growth process

Let Θt
Tn

(Xn) be the random closed set obtained as the evolution up to time
t > Tn of the germ born at time Tn in Xn, according to some growth model;
this will be the grain associated with the germ (Tn, Xn). In other words, if
Tn = s and Xn = x, then Θt

s(x) is the crystal born at time s and point x and
grown up to time t.

We call birth-and-growth process the family of random closed sets given by

Θt =
⋃

n:Tn≤t

Θt
Tn

(Xn), t ∈ R+.
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If a point x is crystallized at time t, then it generates the grain associated
to the germ (t, x). We may observe that, ∀s ≥ 0,

Θt+s =
⋃

n:Tn≤t+s

Θt+s
Tn

(Xn)

=
⋃

n:Tn≤t

Θt+s
Tn

(Xn) ∪
⋃

n:t<Tn≤t+s

Θt+s
Tn

(Xn)

= Θt ∪
⋃

x∈∂Θt

Θt+s
t (x) ∪

⋃

n:t<Tn≤t+s

Θt+s
Tn

(Xn).

In order to complete the definition of the birth-and-growth process we need
to define a growth model for any grain associated with each individual germ.
We assume here the normal growth model (see, e.g., [17]), according to which
at Hd−1-almost every point of the actual grain surface at time t (i.e. at Hd−1-
almost every x ∈ ∂Θt

Tn
(Xn)), growth occurs with a given strictly positive normal

velocity
v(t, x) = G(t, x)n(t, x), (6.7)

where G(t, x) is a given deterministic strictly positive “growth” field, and n(t, x)
is the unit outer normal at point x ∈ ∂Θt

T0
(X0). We assume that

0 < g0 ≤ G(t, x) ≤ G0 < ∞ ∀(t, x) ∈ R+× Rd,

for some g0, G0 ∈ R, and G(t, x) is sufficient regular (in particular G has to be
(globally) Lipschitz-continuous on R+× Rd) such that the evolution problem
given by (6.7) for the growth front ∂Θt

t0(x), with the initial condition that at
the birth time t0 the initial germ born in x0 is described by a spherical ball
of infinitesimal radius centered at x0, is well posed. (See e.g. [17]; the case of
regularity of G deriving from its coupling with a deterministic underlying field
has been analyzed in [65].)

Remark 6.4 1. Since at Hd−1-almost every x ∈ ∂ΘTn(Xn) there exists the
unit outer normal and, by remembering (6.5), Θt is a finite union of grains
for all t > 0, then there exists the tangent hyperplane to Θt at Hd−1-a.e.
x ∈ ∂Θt. As a consequence Θt and ∂Θt are finite unions of rectifiable sets
and satisfy (1.7).

2. In the case d = 2 an explicit form of (6.7) may be done by a parametriza-
tion of the growing crystals (see [47]). Let us consider the crystal

Θt
0 = {x(τ, γ)|τ ∈ (t0, t), γ ∈ [0, 2π)},

and its boundary, called the growing front,

∂Θt
0 = {x(t, γ)|γ ∈ [0, 2π)}.

Then, at any point x(t, γ) ∈ ∂Θt
0, the evolution problem is given by

ẋ(t, γ) = G(x(t, γ), t)n(t, γ),

ṅ(t, γ) = −∇G(x(t, γ), t) + (∇G(x(t, γ), t),n(t, γ))n(t, γ),
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with initial values

x(t0, γ), t) = x0,

n(t0, γ) = (cos γ, sin γ)T .

This shows that the growth is determined by the actual normal direction
of the growth front as well as by the growth rate and its gradient.

6.2.3 Hazard and survival functions

In a birth-and-growth process the random set Θt evolves in time, so that the
question arises about “WHEN” a point x ∈ E is reached (captured) by this
growing random set; or viceversa up to when a point x ∈ E survives capture?
In this respect the following definition is introduced.

Definition 6.5 The survival function of a point x at time t is the probability
that the point x is not yet covered (“captured”) by any crystal at time t:

S(t, x) := P(x 6∈ Θt).

The survival function of a point x may be studied in terms of the nonnegative
r.v. T (x) representing the capture time of x, defined in Section 6.1.1; in this
way it can be regarded as a typical problem of survival analysis, and then be
studied in terms of the nucleation process, taking the geometric aspects of the
crystallization process into account (see [22]).

In fact, let τ be a nonnegative r.v. with cumulative density function F ; then
τ may be considered as a random failure time, the function S(t) := P(τ > t) is
called the survival function of τ and

P(τ ∈ [t, t + ∆t) | τ ≥ t) =
P(t ≤ τ < t + ∆t)

P(τ ≥ t)

=
F (t + ∆t−)− F (t−)

1− F (t−)
.

If τ is a continuous r.v. with pdf f , then the following limit

h(t) := lim
∆t↓0

P(τ ∈ [t, t + ∆t) | τ ≥ t)
∆t

(6.8)

(with 0/0 := 0) exists and h(t) =
f(t)

1− F (t)
, i.e.

h(t) = − d
dt

ln S(t). (6.9)

h(t) is called the hazard function of τ .
Let us now consider the capture time T (x) of point x and observe that

P(T (x) > t) = P(x 6∈ Θt) = S(t, x).
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So S(·, x) is the survival function of the r.v. T (x) and, in order to study it in
terms of the MPP N , we must go back to the “causes” of capture of point x.
To this end it may be helpful to introduce the concept of causal cone (see e.g.
[43, 19]).

Definition 6.6 The causal cone C(t, x) of a point x at time t is the space-time
region in which at least one nucleation has to take place so that the point x is
covered by crystals at time t:

C(t, x) := {(s, y) ∈ [0, t]× E : x ∈ Θt
s(y)}.

We denote by Sx(s, t) the section of the causal cone C(t, x) at time s < t,

Sx(s, t) := {y ∈ E : (s, y) ∈ C(t, x)} = {y ∈ E : x ∈ Θt
s(y)}. (6.10)

In the case T (x) is an absolutely continuous random variable, by (6.9) we
have

S(t, x) = exp
{
−

∫ t

0

h(s, x)ds

}
,

where

h(t, x) = lim
∆t↓0

P(T (x) ∈ [t, t + ∆t) |T (x) ≥ t)
∆t

(6.11)

is the hazard function of T (x), as defined by (6.8).
By the continuity of T (x),

h(t, x) = lim
∆t↓0

P(T (x) ∈ (t, t + ∆t] |T (x) > t)
∆t

= lim
∆t↓0

P(x ∈ (Θt+∆t \Θt) |x 6∈ Θt)
∆t

= lim
∆t↓0

P(x ∈ Θt+∆t |x 6∈ Θt)
∆t

.

Definition 6.7 For all x ∈ Rd, the function h(·, x) given by

h(t, x) := lim
∆t↓0

P(x ∈ Θt+∆t |x 6∈ Θt)
∆t

is called the hazard function associated with point x.

Remark 6.8 If G is sufficiently regular such that it makes the evolution prob-
lem well posed, the causal cone C(t, x) is well-defined for any x, t, and the
sections Sx(s, t) are such that dim ∂Sx(s, t) < d for any x, s, t (see [19]), then
from the definition of C(t, x), it easily follows that

S(t, x) = P(N(C(t, x) = 0)).

If we consider a general compact set K ⊂ Rd, we may define the causal cone
C(t,K) of K at time t, in an analogous way as in Definition 6.6:

C(t, K) := {(s, y) ∈ [0, t]× E : K ∩Θt
s(y) 6= ∅}.

The same assumptions on the model guarantee that C(t,K) is well defined again.

136



In general cases (e.g. not necessarily Poissonian cases) expressions for the
survival and the hazard functions may be obtained in terms of the birth process
N and of the causal cone [22], but such expressions are quite complicated,
because they must take into account all the previous history of the process.
In particular, if the compensator ν̃ of the marginal process Ñ (see Section 6.2.1)
is discrete, then

S(t, x) =
∏

s∈[0,t]

[1− E(ν̃({s})k(s,Sx(s, t)) |N [C(s−,Sx(s−, t))] = 0)], (6.12)

where
∏

is the so-called product-integral. (For a complete and elementary
treatment of the basic theory of the product-integral see [35] and [5].)
While if ν̃ is continuous, then

S(t, x) = exp
{
−

∫ t

0

E(ν̃(ds)k(s,Sx(s, t)) |N [C(s,Sx(s, t))] = 0)
}

. (6.13)

Remark 6.9 For a general compact set K ⊂ Rd we may speak of S(t,K) :=
P(Θt ∩K = ∅) = 1− TΘt(K), as well, and (6.12) and (6.13) becomes

S(t,K) =
∏

s∈[0,t]

[1− E(ν̃({s})k(s,SK(s, t)) |N [C(s−,SK(s−, t))] = 0)],

S(t,K) = exp
{
−

∫ t

0

E(ν̃(ds)k(s,SK(s, t)) |N [C(s,Sx(s, t))] = 0)
}

,

respectively, where SK(s, t) denotes here the section at time s of the causal
cone C(t, K). Thus, by Choquet theorem (see Section 1.4.1) the probability
distribution of Θt is uniquely determined, so that, our modelling assumptions
on N and G really give rise to a time dependent random closed set Θt.
Clearly, if Θt is a random closed set for any fixed t ∈ R+, then also ∂Θt is so.

The Poissonian case

In the Poissonian case, the independence property of increments makes (6.13)
simpler.
In fact (see Section 1.5.5), the independence of increments implies that the
compensator of N is deterministic and coincides with its intensity measure Λ.
Moreover, we know that a Poisson process has continuous intensity measure;
thus by (6.13) it follows

S(t, x) = e−Λ(C(t,x)) (6.14)

We may further observe that (6.14) could be obtained as a direct consequence
of the following theorem [46]:

Theorem 6.10 Let Λ be a measure on R+×Rd such that Λ(·×Rd) is continuous
and locally bounded. Suppose that Φ is a marked Poisson process with mark
space Rd and intensity measure Λ. Then Φ (considered as a random measure
on R+× Rd) is a Poisson process with intensity measure Λ.
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Thus, If N is a marked Poisson process with intensity α(t, x), it is easily seen
that

S(t, x) = P(x 6∈ Θt) = P(N(C(t, x)) = 0) = e−Λ(C(t,x)),

where Λ(C(t, x)) is the volume of the causal cone with respect to the intensity
measure Λ of the Poisson process:

Λ(C(t, x)) =
∫

C(t,x)

α(s, y)dsdy.

In particular we have

h(t, x) = − ∂

∂t
ln S(t, x) =

∂

∂t
Λ(C(t, x)), (6.15)

provided that the derivative exists.
In [19] it is proved that, under sufficient regularity on G, Λ(C(t, x)) is differen-
tiable:

Proposition 6.11 If the nucleation process is given by a marked Poisson pro-
cess with intensity α(t, x), if G is Lipschitz-continuous with respect to the spatial
variable and there exist g0, G0 ∈ R+ such that

g0 := inf
t∈[0,T ], x∈Rd

G(t, x), G0 := sup
t∈[0,T ], x∈Rd

G(t, x),

then Λ(C(t, x)) is continuously differentiable with respect to t and

∂

∂t
Λ(C(t, x)) = G(t, x)

∫ t

0

∫

Rd

K(s, y; t, x)α(s, y)dy ds. (6.16)

with
K(s, y; t, x) :=

∫

{z∈Rd|τ(s,y;z)=t}
δ(z − x)da(z).

Here δ is the Dirac function, da(z) is a (d − 1)-dimensional surface element,
and τ(s, y; z) is the solution of the eikonal problem

|∂τ

∂y
(s, y, x)| = 1

G(s, y)
∂τ

∂s
(s, y, x)

|∂τ

∂x
(s, y, x)| = 1

G(τ(s, y, x), x)
.

6.2.4 A relation between hazard function and contact dis-
tribution function

From stochastic geometry we know that contact distributions are important
tools to describe certain aspects of random closed sets and can be easily es-
timated (see [36]). Now we show how the hazard function is related to the
spherical contact distribution function (see also [22]). Such a relation will be
useful in the following in order to provide an evolution equation for the mean
densities of Θt.
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Definition 6.12 The local spherical contact distribution function HS,Ξ of an
inhomogeneous random set Ξ is given by

HS,Ξ(r, x) := P(x ∈ Ξ⊕r |x 6∈ Ξ).

Proposition 6.13 Let N be a nucleation process as in previous assumptions,
with intensity measure Λ(dt×dx) = Λ̃(dt)Q(t, dx), such that Q(t, · ) is absolutely
continuous with respect to νd (d ≥ 2), and let the growth speed G of crystals be
constant. For any (t, x) ∈ R+× Rd fixed, we denote by H̃(·, t, x) the following
function

H̃(τ, t, x) := HS,Θt(Gτ, x),

where HS,Θt is the local spherical contact distribution function of the random
closed set Θt.
Then

h(t, x) =
∂

∂τ
H̃(τ, t, x)|τ=0 for a.e. x. (6.17)

Proof. We write the random set Θt+∆t as union of the set Θt grown up to time
t + ∆t and the crystals born during the interval (t, t + ∆t]:

Θt+∆t =
⋃

j
Tj≤t+∆t

Θt+∆t
Tj

(Xj)

=
⋃

j
Tj≤t

Θt+∆t
Tj

(Xj) ∪
⋃

j
t<Tj≤t+∆t

Θt+∆t
Tj

(Xj)

= Θt
⊕∆tG ∪

⋃

j
t<Tj≤t+∆t

Θt+∆t
Tj

(Xj).

Let C̃x(t, t + ∆t) be the subset of R+× Rd so defined:

C̃x(t, t + ∆t) := {(s, y) ∈ (t, t + ∆t]× Rd |x ∈ Θt+∆t
s (y)}.

Note that, since G is constant, for any fixed s ∈ (t, t + ∆t], the section of
C̃x(t, t+∆t) at time s is given by the ball B(t+∆t−s)G(x) of radius (t+∆t−s)G
and centre x. Thus, it follows that

νd+1(C̃x(t, t + ∆t)) =
∫ t+∆t

t

(∫

B(t+∆t−s)G(x)

dy

)
ds = O(∆t)d+1.

Moreover, since during an infinitesimal time interval ∆t at most only one nu-
cleation may occur, we have that

P(N(C̃x(t, t + ∆t)) > 0 |x 6∈ Θt) = E(N(C̃x(t, t + ∆t)) |x 6∈ Θt).
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As a consequence the following chain of equality holds:

P(x 6∈ Θt+∆t |x 6∈ Θt)

= P(x 6∈ (Θt
⊕∆tG ∪

⋃

j
t<Tj≤t+∆t

Θt+∆t
Tj

(Xj)) |x 6∈ Θt)

= P({x 6∈ Θt
⊕∆tG} ∩ {x 6∈

⋃

j
t<Tj≤t+∆t

Θt+∆t
Tj

(Xj)} |x 6∈ Θt)

= P(x 6∈ Θt
⊕∆tG |x 6∈ Θt)P(x 6∈

⋃

j
t<Tj≤t+∆t

Θt+∆t
Tj

(Xj) | {x 6∈ Θt} ∩ {x 6∈ (Θt
⊕∆tG})

= P(x 6∈ Θt
⊕∆tG |x 6∈ Θt)P(x 6∈

⋃

j
t<Tj≤t+∆t

Θt+∆t
Tj

(Xj) |x 6∈ Θt
⊕∆tG)

= [1−HS,Θt(G∆t, x)](P(N(C̃x(t, t + ∆t)) = 0 |x 6∈ Θt
⊕∆tG)

= [1− H̃(∆t, t, x)][1− P(N(C̃x(t, t + ∆t)) > 0 |x 6∈ Θt
⊕∆tG)]

= [1− H̃(∆t, t, x)][1− E(N(C̃x(t, t + ∆t)) |x 6∈ Θt
⊕∆tG) + o(∆t)].

By replacing in the definition of h(t, x), we obtain

h(t, x) = lim
∆t↓0

1
∆t
{1− [1− H̃(∆t, t, x)] · [1− E(N(C̃x(t, t + ∆t)) |x 6∈ Θt

⊕∆tG)]}.
(6.18)

Now observe that:

• since H̃(0, t, x) = 0,

lim
∆t↓0

H̃(∆t, t, x)
∆t

=
∂

∂τ
H̃(τ, t, x)|τ=0 ;

• since N(C̃x(t, t + ∆t)) is a nonnegative r.v., and we may assume that
P(x 6∈ Θt

⊕∆tG) 6= 0,

lim
∆t↓0

E(N(C̃x(t, t + ∆t)) |x 6∈ Θt
⊕∆tG)

∆t

= lim
∆t↓0

1
∆t

E(N(C̃x(t, t + ∆t))1{x 6∈ Θt
⊕∆tG})

P(x 6∈ Θt
⊕∆tG)

≤ 1
P(x 6∈ Θt

⊕∆tG)
lim
∆t↓0

E[N(C̃x(t, t + ∆t))]
∆t

=
1

P(x 6∈ Θt
⊕∆tG)

lim
∆t↓0

Λ(C̃x(t, t + ∆t))
∆t

.

We know that Λ(ds × dy) = Q(s,dy)Λ̃(ds), where Λ̃ is the intensity measure
of the marginal process and Q is a stochastic kernel from R+ to Rd. Since by
hypothesis Q(s, · ) is absolutely continuous with respect to the d-dimensional
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Lebesgue measure, then, for a.e. x ∈ Rd,

Λ(C̃x(t, t + ∆t)) =
∫ t+∆t

t

∫

B(t+∆t−s)G(x)

Q(s,dy)Λ̃(ds)

= O(∆t)d

∫ t+∆t

t

Λ̃(ds).

Since certainly
∫ t+∆t

t

Λ̃(ds) < ∞, we have Λ(C̃x(t, t + ∆t)) = O(∆t)d.

Therefore, ∀d ≥ 2

lim
∆t↓0

Λ(C̃x(t, t + ∆t))
∆t

= 0.

By (6.18) we obtain

h(t, x) =
∂

∂τ
H̃(τ, t, x)|τ=0

¤

Remarks:

1. Expression (6.17) may be intuitively explained in this way: capture of
point x during interval (t, t + ∆t] can be determined both by the growth
of Θt and by the birth of new crystals; the last one has a negligible weight
because of the simplicity of Ñ and the absolute continuity of mark distri-
bution.

2. If Λ ¿ νd+1, i.e. Λ̃ absolutely continuous, then Λ(C̃x(t, t + ∆t)) =
O(∆t)d+1 and (6.17) is true also for dimRd = 1.

Case G time dependent

Let us suppose that G, with the required regularity assumptions, is time depen-
dent. In this case H̃ is given by

H̃(τ, t, x) := HS,Θt

(∫ t+τ

t

G(s)ds, x

)
.

Now, for any s ∈ (t, t+∆t], the section of C̃x(t, t+∆t) at time s is given by the
ball centered in x with radius

∫ t+∆t

s
G(u)du. As a consequence, we have again

that Λ(C̃x(t, t + ∆t)) = O(∆t)d, and so

h(t, x) =
∂

∂τ
H̃(τ, t, x)|τ=0 = G(t)

∂

∂r
HS,Θt(r, x)|r=0 .

Case G space-time dependent

If G, with the required regularity assumptions, is space-and-time dependent,
then we can not define a function H̃ similarly as in the previous cases, because
Θt does not grow in a homogeneous way during a time interval (t, t + τ ].

But, as follows by the proof, the hazard function h(t, x) coincides with the
capture rate of x determined by the growth of Θt. In fact, also in this case
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Λ(C̃x(t, t + ∆t)) = O(∆t)d, since certainly the section of C̃x(t, t + ∆t) at s ∈
(t, t + ∆t] is a subset of B(t+∆t−s)GM

(x), where GM = maxu,y G(u, y).
So, if we denote by Θ(t+∆t) the random closed set Θt grown up to time t+∆t,
then

h(t, x) = lim
∆t↓0

P(x ∈ Θ(t + ∆t) |x 6∈ Θt)
∆t

. (6.19)

By the uniform continuity of G, for ∆t sufficiently small, during the interval
(t, t + ∆t] we may consider G = G(t, · ), so that it depends only on space.

Observe now that when the growth speed of crystals depends only on time
or space (i.e. G = G(t) or G = G(x)), then

x ∈ Θt
s(y) ⇐⇒ y ∈ Θt

s(x), (6.20)

while if G = G(t, x) it is not true in general.
Since every point y ∈ ∂Θt may be seen as nucleus of a crystal born at time

t, then x ∈ Θ(t+∆t) ⇐⇒ ∃y ∈ ∂Θt such that x ∈ Θt+∆t
t (y). By (6.20) we have

x ∈ Θ(t + ∆t) ⇐⇒ Θt ∩Θt+∆t
t (x) 6= ∅.

The continuity of G allows to replace Θt+∆t
t (x) with BG(t,x)∆t(x), thus

x ∈ Θ(t + ∆t) ⇐⇒ Θt ∩BG(t,x)∆t(x) 6= ∅,

and by (6.19) we obtain

h(t, x) = lim
∆t↓0

P(x ∈ Θt
⊕G(t,x)∆t |x 6∈ Θt)

∆t

= lim
∆t↓0

HS,Θt(G(t, x)∆t, x)
∆t

= G(t, x)
∂

∂r
HS,Θt(r, x)|r=0 . (6.21)

6.2.5 Continuity of the time of capture T (x)

Let x be a fixed point in Rd and T (x) be the positive random variable repre-
senting the time of capture of point x by the birth-and-growth process {Θt}.
It is clear that the continuity of T (x) depends on the birth process N and the
growth field G.

In [22] is shown that the continuity of T (x) is strictly related to the absolute
continuity of the mark distribution of the MPP N . More precisely, if for any
t ∈ R+ Q(t, ·) is the mark distribution at time t (see Section 1.5.5), from the
simplicity of the marginal process Ñ , we have, formally,

Q(t, B)Λ̃(dt) = Λ(dt×B)

= E(N(dt×B))

= P(N(dt×B) = 1)

= P(X1 ∈ B | Ñ(dt) = 1)P(Ñ(dt) = 1)

= P(X1 ∈ B | Ñ(dt) = 1)Λ̃(dt),
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where Λ and Λ̃ are the intensity measure of N and Ñ , respectively, and X1 is
the nucleus born during the infinitesimal interval dt.
Therefore the mark distribution Q(t, B) represents the probability that a nucleus
X1 ∈ B, given that it was born during [t, t + dt).

Proposition 6.14 If Q(s, ·) is absolutely continuous with respect to νd for a.e.
s ∈ R+, then T (x) is a continuous random variable.

Proof. The hypothesis of absolute continuity of Q(s, ·) implies that the prob-
ability that a nucleus is born in a lower dimensional set is 0; in particular
Q(s, ∂Sx(s, t)) = 0 since our regularity assumptions on the growth model imply
that dimH∂Sx(s, t) < d ∀s < t.
By absurd let T (x) not be a continuous r.v.; then there exists t ∈ R+ such that
P(T (x) = t) > 0. Observe that

P(T (x) = t) > 0 ⇔ P(N(∂C(t, x)) 6= 0) > 0 ⇔ E(N(∂C(t, x))) > 0.

But,

E(N(∂C(t, x))) =
∫ t

0

∫

∂Sx(s,t)

Q(s, dy)Λ̃(ds) = 0.

¤

Now, let us suppose that the compensator ν̃ of the marginal process Ñ is
continuous; by (6.13) we know that

P(T (x) ≤ t) = 1− exp
{
−

∫ t

0

E(ν̃(ds)k(s,Sx(s, t)) |N [C(s,Sx(s, t))] = 0)
}

,

so that we may claim that

Claim 6.15

T (x) admits pdf pT (x)

m

∃ ∂

∂t

∫ t

0

E(ν̃(ds)k(s,Sx(s, t)) |N [C(s,Sx(s, t))] = 0) (6.22)

Thus, a problem of interest is to find sufficient conditions on the birth-and-
growth process such that the integral in (6.22) is differentiable with respect to
t.
We may like to notice that if N is a marked Poisson process, such integral
coincides with the measure Λ(C(t, x)) of the causal cone with respect to the
intensity measure Λ.
By Proposition 6.11 we may claim that if N is given by a marked Poisson
process with intensity α(t, x), under the regularity assumptions on G, Λ(C(t, x))
is differentiable and so T (x) is an absolutely continuous random variable, i.e. it
admits a probability density function pT (x).
In particular, consider a marked Poisson process N with intensity measure

Λ(dt× dx) = λ(t)dtQ(t,dx)
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such that Q(t, ·) is a continuous probability measure for any fixed t ∈ R+. Then

∂

∂t
Λ(C(t, x)) =

∂

∂t

∫ t

0

∫

Sx(s,t)

λ(s)Q(s,dx) ds =
∂

∂t

∫ t

0

Q(s,Sx(s, t))λ(s)ds.

Note that Sx(t, t) = x, and the continuity of Q(t, ·) implies Q(t, x) = 0. So, if
the derivative of Q(s,Sx(s, t)) with respect to t exists for almost every time s,
and if it is integrable in [0, t], then we have that

∂

∂t
Λ(C(t, x)) =

∫ t

0

λ(s)
∂

∂t
Q(s,Sx(s, t))ds;

hence the absolute continuity of the random variable T (x) is related to the
existence of the time derivative ∂

∂tQ(s,Sx(s, t)).
Note that Q turns to be a function of the causal cone, since it depends on the
sections Sx(s, t), as expected.
As a simple example, let N be independent marking (see Section 1.5.5) with
mark space a bounded subset K of Rd and marks uniformly distributed in K,

so that Q(dx) =
1

νd(K)
dx. If the growth velocity G is constant, it is clear that,

for all s, t ∈ R+ and x ∈ K, Sx(t, x) = BG(t−s(x), hence we have that

∂

∂t
Λ(C(t, x)) =

∫ t

0

λ(s)
∂

∂t

bdG
d(t− s)d

νd(K)
ds =

(d− 1)bdG
d

νd(K)

∫ t

0

λ(s)(t− s)d−1ds;

therefore, if the intensity λ of the underlying Poisson point process Ñ is such
that the last integral exists for any t, we may conclude that the random variable
T (x) is absolutely continuous with pdf pT (x) given by

pT (x) = exp
{

bdG
d

νd(K)

∫ t

0

λ(s)(t− s)dds

}
(d− 1)bdG

d

νd(K)

∫ t

0

λ(s)(t− s)d−1ds.

6.2.6 An evolution equation for the mean densities

Let us consider a birth-and-growth process {Θt} with nucleation process N and
growth rate G satisfying the regularity assumptions introduced in the previous
sections, in order to have that:

1. for any t ∈ R+, and any s > 0, ∂Θt ⊂ intΘt+s;

2. for any t ∈ R+, Θt is a d-regular random closed set in Rd, and ∂Θt is a
(d− 1)-regular random closed set;

3. T (x) is a continuous random variable with pdf pT (x)(t);

4. for any bounded A ∈ BRd such that P(Hd−1(∂Θt ∩ ∂A) > 0) = 0,

lim
r→0

E[Hd(Θt
⊕r \Θt ∩A)]

r
= E[Hd−1(∂Θt ∩A)]. (6.23)

144



(We remind that assumptions 1. and 2. have been discussed in Section 6.1.1,
assumption 3. in the Section 6.2.5, while assumption 4. in Chapter 5).

Note that, in terms of weak* convergence of linear functionals, (6.23) be-
comes

lim
r→0

E[δΘt
⊕r

](x)− E[δΘt ](x)

r
= E[δ∂Θt ](x). (6.24)

By (6.11), we know that the continuity of T (x) implies that h(·, x) coincides
with the hazard function associated with T (x); as a consequence, since P(T (x) >

t) = P(x 6∈ Θt), the following holds:

h(t, x) =
pT (x)(t)
P(x 6∈ Θt)

. (6.25)

For any fixed t ∈ R+, let us consider the spherical contact distribution HS,Θt(·, x)
of the crystallized region Θt associated to a point x. By definition

HS,Θt(r, x) =
P(x ∈ (Θt

⊕r \Θt))
P(x 6∈ Θt)

, (6.26)

and so, for the birth-and-growth model we consider, by (6.21) it follows

h(t, x) =
G(t, x)
P(x 6∈ Θt)

∂

∂r
P(x ∈ (Θt

⊕r \Θt))|r=0 . (6.27)

Thus, we obtain that

∂

∂t
E[δΘt ](x)

(6.4)
= pT (x)(t)

(6.25)
= h(t, x)P(x 6∈ Θt)

(6.27)
= G(t, x)

∂

∂r
P(x ∈ (Θt

⊕r\Θt))|r=0 .

(6.28)
Now, we may notice that

∂

∂r
P(x ∈ (Θt

⊕r \Θt))|r=0 = lim
h→0

P(x ∈ Θt
⊕h)− P(x ∈ Θt)

h

= lim
h→0

P(x ∈ Θt
⊕h)− P(x ∈ Θt)

h

= lim
h→0

E[δΘt
⊕h

](x)− E[δΘt ](x)

h
(6.24)
= E[δ∂Θt ](x),

so that, by (6.28), we may claim that the following evolution equation holds for
the mean density E[δΘt ](x) :

∂

∂t
E[δΘt ](x) = G(t, x)E[δ∂Θt ](x), (6.29)

to be taken, as usual, in weak form.
We may summarize as follows.

Proposition 6.16 Under the above assumptions 1.-4., we have that the follow-
ing evolution equation (to be taken in weak form) holds for the mean density
E[δΘt ](x) :

∂

∂t
E[δΘt ](x) = G(t, x)E[δ∂Θt ](x). (6.30)
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Remark 6.17 Since for any fixed x ∈ Rd we said that the time of capture T (x)
is a continuous random variable with probability density function pT (x)(t), it
is clear by (6.28) that ∂

∂tE[δΘt ](x) is a classical real function. It follows that
E[δ∂Θt ](x) is a classical real function as well. As a consequence, E[δ∂Θt ](x) is
a version of the usual Radon-Nikodym derivative of the measure E[µ∂Θt ] with
respect to νd, and so we may claim that Θt is absolutely continuous (Section
3.2).

Remark 6.18 In the particular case of spherical growth, i.e. when G is con-
stant, it is clear that

lim
∆t→0

Hd(Θt+∆t(ω) \Θt(ω))
∆t

= lim
∆t→0

Hd(Θt
⊕G∆t(ω) \Θt(ω))

∆t

= G lim
r→0+

Hd(Θt
⊕r(ω) \Θt(ω))

r
,

and, for any t ∈ R+, Θt(ω) satisfies a first order Steiner formula, so that we
have

lim
∆t→0

Hd(Θt+∆t(ω))−Hd(Θt(ω)))
∆t

= GHd−1(∂Θt(ω)) .

In particular Θt satisfies Theorem 5.27 (and so a local mean first order Steiner
formula), and we may write, as expected,

∂

∂t
E[δΘt ](x) = GE[δ∂Θt ](x).

For the growth process Θt introduced in the previous sections, we may notice
that the evolution of the realization Θt(ω) may be described for a.e. ω ∈ Ω by
the following (weak) equation (e.g. [12, 17]):

∂

∂t
δΘt(x) = G(t, x)δ∂Θt(x). (6.31)

The advantage of this expression, even though to be understood in a weak sense
in terms of viscosity solutions, is in the fact that it makes explicit the local
dependence (both in time and space) upon the growth field G by means of
the (geometric) Dirac delta at a point x ∈ ∂Θt. In this way equation (6.30)
can be formally obtained by taking the expected value in (6.31), thanks to
the linearity of expectation, since we have assumed that G is a deterministic
function. (Obviously, it involves exchanges between limit and expectation, as in
(6.23) for example). We have shown that indeed, under the suitable regularity
assumptions on the process Θt, we may obtain (6.30) from (6.31) in a rigorous
way.

Remark 6.19 By Eq. (6.31), for t > t0 we have
∫

A

δΘt(x)dx =
∫

A

δΘt0 (x)dx +
∫ t

t0

∫

A

G(x, s)δ∂Θs(x)dxds.

Note that if, as particular case, G(t, x) ≡ 1 and A ≡ Rd, then

Θs = Θt0⊕s−t0 ∀s > t0,
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and so, by the change of variable s − t0 = y and denoting r = t − t0, we have
the well known following result (see 3.2.34 in [32], or [37]):

Hd(Θt0⊕r) = Hd(Θt0) +
∫ r

0

Hd−1(∂Θt0⊕y) dy.

Let us observe now that, since T (x) is a continuous random variable, then

P(x 6∈ Θt) = P(x 6∈ intΘt),

so that, by Definition 6.7, we have

h(t, x) = lim
∆t↓0

1
∆t

P(x ∈ Θt+∆t)− P(x ∈ Θt)
P(x 6∈ intΘt)

= lim
∆t↓0

P(x ∈ Θt+∆t |x 6∈ intΘt)− P(x ∈ Θt |x 6∈ intΘt)
∆t

= lim
∆t↓0

E[δΘt+∆t(x) |x 6∈ intΘt]− E[δΘt |x 6∈ intΘt]
∆t

=
∂

∂t
E[δΘt(x) |x 6∈ intΘt] (6.32)

By comparing (6.31) with (6.32), we may claim that

h(t, x) = G(t, x)E[δ∂Θt(x) |x 6∈ intΘt],

which leads to the interesting interpretation

∂

∂r
HS,Θt(r, x)|r=0 = E[δ∂Θt(x) |x 6∈ intΘt].

Moreover, it follows that

E[δ∂Θt ](x) =
∂

∂r
P(x ∈ (Θt

⊕r \Θt))|r=0

(6.26)
= P(x 6∈ Θt)

∂

∂r
HS,Θt(r, x)|r=0 .

6.2.7 Mean densities

The expected value of the generalized density δΘt is what is usually called crys-
tallinity, and denoted by

VV (t, x) := E[δΘt ](x),

while the density of the expected measure E[µ∂Θt ] is what is usually called mean
surface density, and denoted by

SV (t, x) := E[δ∂Θt ](x).

With these notations, the equation (6.30) becomes

∂

∂t
VV (t, x) = G(t, x)SV (t, x), (6.33)

In some cases (such as in Poisson birth processes, as we shall later discuss
as an example), it can be of interest to consider the following extended mean
densities.
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Definition 6.20 We call mean extended volume density at point x and time t

the quantity Vex(t, x) such that, for any B ∈ BRd ,

E[
∑

j:Tj≤t

νd(Θt
Tj

(Xj) ∩B)] =
∫

B

Vex(t, x)νd(dx).

It represents the mean of the sum of the volume densities, at time t, of the grains
supposed free to be born and grow.

Correspondingly,

Definition 6.21 We call mean extended surface density at point x and time t

the quantity Sex(t, x) such that, for any B ∈ BRd ,

E[
∑

j:Tj≤t

νd−1(∂Θt
Tj

(Xj) ∩B)] =
∫

B

Sex(t, x)νd(dx).

It represents the mean of the sum of the surface densities, at time t, of the grains
supposed free to be born and grow.

Under our assumptions on the growth model, we can claim, by linearity argu-
ments, that

∂

∂t
Vex(t, x) = G(t, x)Sex(t, x), (6.34)

to be taken, as usual, in weak form.
The complement to 1 of the crystallinity, also known as porosity and denoted

by px(t), represents the survival function S(t, x) of the point x at time t:

px(t) = 1− VV (t, x) = P(x 6∈ Θt) = P(T (x) > t).

We remember that in our assumptions T (x) is a continuous random variable
with probability density function pT (x)(t). So, by the previous sections, we have

pT (x)(t) =
∂

∂t
(1− px(t)) =

∂VV (t, x)
∂t

and
pT (x)(t) = px(t)h(t, x),

from which we immediately obtain

∂

∂t
VV (t, x) = (1− VV (t, x))h(t, x). (6.35)

This is an extension of the well known Avrami-Kolmogorov formula [43, 10],
which has been proven for space homogeneous birth and growth rates [54].

When results exposed in Chapter 4 apply to the random set Θt (in particular
when ∂Θt is absolutely continuous in mean), it is possible to give an approxi-
mation of the mean surface density SV .
Example: let us consider the particular case in which the growth rate G is
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constant. Then, for any fixed time t, Θt is the union of a finite and random
number of random balls in Rd:

Θt =
⋃

i:Ti≤t

BG(t−Ti)(Xi).

As a consequence of Theorem 4.10 we have that Proposition 4.5 applies, so that

lim
r→0

E[Hd((∂Θt)⊕r ∩A))]
2r

= E[Hd−1(∂Θt ∩A)].

If the random set ∂Θt turns out to be absolutely continuous in mean, then we
have

lim
r→0

∫

A

P(x ∈ ∂Θt
⊕r)

bd−nrd−n
dx =

∫

A

SV (t, x)dx.

As a simple example in which ∂Θt is absolutely continuous, but not stationary,
let us consider a nucleation process N given by an inhomogeneous Poisson point
process, with intensity α(t, x). We may prove this as follows:
By absurd, let E[Hd−1(∂Θt ∩ ·)] be not absolutely continuous with respect to
νd; then there exists A ⊂ Rd with νd(A) = 0 such that E[Hd−1(∂Θt ∩A)] > 0.
It is clear that

E[Hd−1(∂Θt ∩A)] > 0 ⇒ P(Hd−1(∂Θt ∩A) > 0) > 0,

and

P(Hd−1(∂Θt ∩A) > 0) ≤ P(∃(Tj , Xj) : Hd−1(∂BG(t−Tj)(Xj) ∩A) > 0).

As a consequence, we have

E[Hd−1(∂Θt ∩A)] > 0 ⇒ P(Φ(A) 6= 0) > 0,

where
A := {(s, y) ∈ [0, t]× Rd : Hd−1(∂BG(t−s)(y) ∩A) > 0)}.

Denoting by As := {y ∈ Rd : (s, y) ∈ A} the section of A at time s, and by
Ay := {s > 0 : (s, y) ∈ A} the section of A at y, we notice that ν1(Ay) = 0
for all y, because νd(A) = 0 (it suffices to use spherical coordinates centered
at y to obtain that ν1-a.e. ball with radius s centered at y intersects A in a
Hd−1-negligible set). Therefore we may apply Fubini’s theorem to get
∫ ∞

0

νd(As) ds =
∫ ∞

0

∫

Rd

χA dy ds =
∫

Rd

∫ ∞

0

χA ds dy =
∫

Rd

ν1(Ay) dy = 0.

It follows that νd(As) = 0 for ν1-almost every s ∈ [0, t], and so

E[Φ(A)] =
∫

A
α(s, y) dsdy =

∫ t

0

∫

As

α(s, y) dy ds = 0.

But this is an absurd, since

P(Φ(A) 6= 0) > 0 ⇒ E[Φ(A)] > 0.

149



Remark 6.22 (Random Johnson-Mehl tessellations) In a birth-and-growth
process as in the previous example, where N is a time inhomogeneous Poisson
marked point process, one may consider the associated random Johnson-Mehl
tessellation generated by the impingement of two grains which stop their growth
at points of contact (see [54]); briefly, the system of n-facets of a Johnson-Mehl
tessellation at time t > 0 is a random finite union of a system of random n-
regular sets F

(n)
i (t), 0 ≤ n ≤ d:

Ξt
n :=

⋃

i

F
(n)
i (t).

Again, it can be shown that Proposition 4.5 applies, so that we may approximate
mean n-facet densities, for all 0 ≤ n ≤ d.

The Poissonian case

We remember that, if the nucleation process N is a marked Poisson process
with intensity measure Λ and G satisfies the required regularity assumptions,
by (6.17) we have that

h(t, x) =
∂

∂t
Λ(C(t, x)).

As we will show in the next Section (see also [18]), the volume of the causal
cone can be expressed in terms of the extended volume density:

Theorem 6.23 Under the previous modelling assumptions on birth and on
growth, the following equality holds

Λ(C(t, x)) = Vex(t, x). (6.36)

As a consequence

h(t, x) =
∂

∂t
Vex(t, x)

so that
∂

∂t
VV (t, x) = (1− VV (t, x))

∂

∂t
Vex(t, x).

This equation is exactly the Kolmogorov-Avrami formula extended to a birth-
and-growth process with space-time inhomogeneous parameters of birth and of
growth [43, 10].

Finally, by direct comparison between (6.36), (6.16) and (6.34), we may
claim that

Sex(t, x) =
∫ t

0

∫

Rd

K(s, y; t, x)α(s, y)dy ds.

Consequently, by remembering (6.33) and (6.35), we obtain

SV (t, x) = (1− VV (t, x))Sex(t, x).

150



6.2.8 Some comparisons between Poissonian case and not

In terms of the mean densities VV , SV , Vex and Sex, and the hazard and contact
distribution functions we have introduced in the previous sections, we may ob-
serve the parallelism between the Poissonian case and the more general model
we consider. In particular it follows the geometric meaning of the derivative of
spherical contact distribution function in the Poissonian case.

We have seen that

G(t, x)SV (t, x) = G(t, x)E[δ∂Θt(x)]

=
∂

∂t
E[δΘt(x)]

= pT (x)(t)

= (1− VV (t, x))h(t, x)

= (1− VV (t, x))G(t, x)
∂

∂r
HS,Θt(r, x)|r=0 .

So we may observe that

• in the general model

SV (t, x) = (1− VV (t, x))
∂

∂r
HS,Θt(r, x)|r=0 ;

• in the Poissonian case

SV (t, x) = (1− VV (t, x))Sex(t, x).

By comparison, we may claim that in the Poissonian case

Sex(t, x) =
∂

∂r
HS,Θt(r, x)|r=0 . (6.37)

In fact, in terms of the hazard function, we know that in the Poissonian case

h(t, x) =
∂

∂t
ν0(C(t, x)) =

∂

∂t
Vex(x, t) = G(t, x)Sex(t, x),

and in our more general model

h(t, x) = G(t, x)
∂

∂r
HS,Θt(r, x)|r=0 .

Note that relation (6.37) is not true in general, but it holds only when the
nucleation process N is a marked Poisson point process. In fact it is a direct
consequence of

px(t) = e−Λ(C(t,x)) = e−Vex(t,x), (6.38)

and the relation above holds thanks to the fact that a Poisson marked point
process is a position-dependent marking process with the property of indepen-
dence of increments. (See Section 1.5.5.)
More precisely, we know that the compensator ν(dt× dx) of a marked Poisson
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point process is deterministic and continuous, and it coincides with the inten-
sity measure of the process; so, denoting by Q the kernel, and by Λ and Λ̃ the
intensity measure of N and of the underlying process Ñ , respectively, Eq. (6.6)
becomes in this case

ν(dt× dx) = Q(t,dx)Λ̃(dt) = Λ(dt× dx).

We may notice that the probability distribution of the birth time T of a nucleus
born during [0, t] is given by:

P(T ∈ ds) := P(Ñ(ds) = 1|Ñ([0, t]) = 1) =
Λ̃(ds)

Λ̃([0, t])
. (6.39)

Besides, the main property of a marked Poisson point process is that if n nuclei
were born during [0, t], then the n crystals Θt

Tj
(Xj) (i = 1, . . . , n) are indepen-

dent and identically distributed as Θt
T (X), where T has distribution (6.39) and

X is determined by Q.
By this, and remembering the probability generating function of a Poisson ran-
dom variable (in our case Ñ([0, t])), we can reobtain (6.38):

px(t) = P(x 6∈ Θt)

= P(
⋂

j:Tj≤t

{x 6∈ Θt
Tj

(Xj)})

=
+∞∑
n=1

P(
n⋂

j=1

{x 6∈ Θt
Tj

(Xj)} | Ñ([0, t]) = n)P(Ñ([0, t]) = n)

=
+∞∑
n=1

n∏

j=1

P(x 6∈ Θt
Tj

(Xj) | Ñ([0, t]) = n)P(Ñ([0, t]) = n)

=
+∞∑
n=1

[
P(x 6∈ Θt

T (X))
]n P(Ñ([0, t]) = n)

= EÑ (
[
P(x 6∈ Θt

T (X))
]Ñ([0,t]))

= exp{Λ̃([0, t])(P(x 6∈ Θt
T (X))− 1)}

= exp{−Λ̃([0, t])P(x ∈ Θt
T (X))}

= exp{−Λ(C(t, x))},
where the last equality follows by

Λ̃([0, t])P(x ∈ Θt
T (X))

(6.10)
= Λ̃([0, t])P(X ∈ Sx(T, t))

= Λ̃([0, t])
∫ t

0

P(X ∈ Sx(s, t)|T ∈ ds)P(T ∈ ds)

(6.39)
= Λ̃([0, t])

∫ t

0

Q(s,Sx(s, t))
Λ̃(ds)

Λ̃([0, t])

=
∫ t

0

∫

Sx(s,t)

Q(s, dy)Λ̃(ds)

= Λ(C(t, x)).
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In this way we have shown the role played by the above mentioned properties
of a Poisson marked point process. In a similar way, we give a proof of (6.36):
Proof of Theorem 6.23

Λ(C(t, x))

= Λ̃([0, t])P(x ∈ Θt
T (X))

= Λ̃([0, t] lim
r→0

E[νd(Θt
T (X) ∩Br(x))]

νd(Br(x))

= lim
r→0

Λ̃([0, t])
E[νd(Θt

T (X) ∩Br(x))]
νd(Br(x))

= lim
r→0

[ ∞∑
n=1

n P(Ñ([0, t]) = n)

]
E[νd(Θt

T (X) ∩Br(x))]
νd(Br(x))

= lim
r→0

∞∑
n=1

nE[νd(Θt
T (X) ∩Br(x))]

νd(Br(x))
P(Ñ([0, t]) = n)

= lim
r→0

∑∞
n=1

∑n
j=1 E[νd(Θt

Tj
(Xj) ∩Br(x))]P(Ñ([0, t]) = n)

νd(Br(x))

= lim
r→0

∑∞
n=1

∑n
j=1 E[νd(Θt

Tj
(Xj) ∩Br(x)) | Ñ([0, t]) = n]P(Ñ([0, t]) = n)

νd(Br(x))

= lim
r→0

∑∞
n=1 E[

∑n
j=1 νd(Θt

Tj
(Xj) ∩Br(x)) | Ñ([0, t]) = n]P(Ñ([0, t]) = n)

νd(Br(x))

= lim
r→0

E[E[
∑

j:Tj≤t νd(Θt
Tj

(Xj) ∩Br(x)) | Ñ([0, t])]]]

νd(Br(x))

= lim
r→0

E[
∑

j:Tj≤t νd(Θt
Tj

(Xj) ∩Br(x))]

νd(Br(x))
= Vex(t, x).

¤

The following examples show, intuitively, why in general

h(t, x) 6= ∂

∂t
Vex(t, x). (6.40)

Example 1. Let N1 be a nucleation process given by the birth of only one
nucleus with uniform distribution both in a spatial region E and in a time
interval [0, T ]. Consider also another nucleation process N2, such that it is
constituted by the birth of two nuclei, the first one is distributed as N1, and the
second one is born immediately after and in a point belonging to the interior
of the crystal associated to the first nucleus. Let us suppose that G(t, x) ≡ G

is constant. It is clear that the crystal associated to the second nucleus of N2

gives no contribution in the computing of the hazard function of a given point
x, but it must to be taken into account in the computing of Vex.
Hence, if we denote by h(1) and h(2), and by V

(1)
ex and V

(2)
ex the hazard function

and the extended volume density associated to the birth-and-growth process N1
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and N2, respectively, it is clear that

h(1)(t, x) = h(2)(t, x), but V (1)
ex (x, t) 6= V (2)

ex (x, t),

and, as a consequence, (6.40).

Example 2. An analogous example to the previous one, but where now we
assume that a new nucleus can not be born in an already crystallized region, is
the following. Let us consider again two nucleation processes N1 and N2 as in
Example 1, with the difference that, now, the second nucleus of N2 is born very
close to the boundary of the crystal associated to the first nucleus. Assume that
G is constant. Then, for any time t large enough, we have that

h(1)(t, x) ≈ h(2)(t, x), but V (2)
ex (x, t) À V (1)

ex (x, t).

Example 3. Let N1 be a nucleation process constituted by only one germ
(T, X), as in the above examples. Then

• Θt = Θt
T (X),

• ∑
j:Tj≤t νd(Θt

Tj
(Xj)) = νd(Θt

T (X)) = νd(Θt).

We can claim that Vex(t, x) is just the Radon-Nikodym derivative of the measure
E[

∑
j:Tj≤t νd(Θt

Tj
(Xj) ∩ · )], absolutely continuous with respect to νd because

of the uniform distribution of the germ (T,X) both in time and space.
Thus, we may observe that

Vex(t, x) = lim
r→0

E[νd(Θt
T (X) ∩Br(x))]

νd(Br(x))
= lim

r→0

E[νd(Θt ∩Br(x))]
νd(Br(x))

= P(x ∈ Θt).

So, in this case,

∂

∂t
Vex(t, x) =

∂

∂t
(1− px(t)) = − ∂

∂t
px(t) 6= ∂

∂t
ln px(t) = h(t, x).

Now we provide a relation between ∂
∂tVex(t, x) and the probabilities of cap-

ture of the given point x by one of the crystals Θt
Tj

(Xj), supposed free to be
born and grow.

Proposition 6.24 If the birth-and-growth process is such that the probability
that a point x is captured by more than one crystal during a time interval ∆t is
o(∆t), then

∂

∂t
Vex(t, x) = lim

∆t→0

P(∃j such that x ∈ Θt+∆t
Tj

(Xj) \Θt
Tj

(Xj))

∆t
.

Proof. By the linearity property of the expectation, and since for all ∆t > 0,
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Θt
Tj

(Xj) ⊂ Θt+∆t
Tj

(Xj) for any j:

∂

∂t
Vex(t, x)

= lim
∆t→0

lim
r→0

E[
∑

j:Tj≤t+∆t

νd(Θt+∆t
Tj

(Xj) ∩Br(x))−
∑

j:Tj≤t

νd(Θt
Tj

(Xj) ∩Br(x))]

∆t νd(Br(x))

= lim
∆t→0

lim
r→0

E[
∑

j:Tj≤t

νd(Θt+∆t
Tj

(Xj) \Θt
Tj

(Xj) ∩Br(x))]

∆t νd(Br(x))

+ lim
∆t→0

lim
r→0

E[
∑

j:t<Tj≤t+∆t

νd(Θt+∆t
Tj

(Xj) ∩Br(x))]

∆t νd(Br(x))
;

since during (t, t + ∆t] at most one nucleus can be born and, if Tj ∈ [t, t + ∆t],
νd(Θt+∆t

Tj
(Xj) ∩Br(x)) = O(∆td),

= lim
∆t→0

lim
r→0

E[
∑

j:Tj≤t νd(Θt+∆t
Tj

(Xj) \Θt
Tj

(Xj) ∩Br(x))]

∆t νd(Br(x))
(6.41)

= lim
∆t→0

1
∆t

lim
r→0

E[E[
∑

j:Tj≤t νd(Θt+∆t
Tj

(Xj) \Θt
Tj

(Xj) ∩Br(x)) | Ñ([0, t])]]

νd(Br(x))

Observe now that

E[E[
∑

j:Tj≤t νd(Θt+∆t
Tj

(Xj) \Θt
Tj

(Xj) ∩Br(x)) | Ñ([0, t])]]

νd(Br(x))

=

∑∞
n=1 E[

∑n
j=1 νd(Θt+∆t

Tj
(Xj) \Θt

Tj
(Xj) ∩Br(x)) | Ñ([0, t]) = n]P(Ñ([0, t]) = n)

νd(Br(x))

=
∞∑

n=1

n∑

j=1

E[νd(Θt+∆t
Tj

(Xj) \Θt
Tj

(Xj) ∩Br(x)) | Ñ([0, t]) = n]P(Ñ([0, t]) = n)

νd(Br(x))
;

and that

• lim
r→0

E[νd(Θt+∆t
Tj

(Xj) \Θt
Tj

(Xj) ∩Br(x)) | Ñ([0, t]) = n]

νd(Br(x))

= P(x ∈ Θt+∆t
Tj

(Xj) \Θt
Tj

(Xj) | Ñ([0, t]) = n),

• since
νd(Θt+∆t

Tj
(Xj) \Θt

Tj
(Xj) ∩Br(x))

νd(Br(x))
≤ νd(Br(x))

νd(Br(x))
= 1, then

E[νd(Θt+∆t
Tj

(Xj) \Θt
Tj

(Xj) ∩Br(x)) | Ñ([0, t]) = n]P(Ñ([0, t]) = n)

νd(Br(x))

≤ P(Ñ([0, t]) = n),

•
∞∑

n=1

n∑

j=1

P(Ñ([0, t]) = n) =
∞∑

n=1

nP(Ñ([0, t]) = n) = E[Ñ([0, t])] < ∞.
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Hence, it follows that

lim
r→0

∞∑
n=1

n∑

j=1

E[νd(Θt+∆t
Tj

(Xj) \Θt
Tj

(Xj) ∩Br(x)) | Ñ([0, t]) = n]P(Ñ([0, t]) = n)

νd(Br(x))

=
∞∑

n=1

n∑

j=1

lim
r→0

E[νd(Θt+∆t
Tj

(Xj) \Θt
Tj

(Xj) ∩Br(x)) | Ñ([0, t]) = n]P(Ñ([0, t]) = n)

νd(Br(x))

=
∞∑

n=1

n∑

j=1

P(x ∈ Θt+∆t
Tj

(Xj) \Θt
Tj

(Xj) | Ñ([0, t]) = n)P(Ñ([0, t]) = n). (6.42)

By observing that
n∑

j=1

P(x ∈ Θt+∆t
Tj

(Xj) \Θt
Tj

(Xj) | Ñ([0, t]) = n)

=
n∑

j=1

[
P({x ∈ Θt+∆t

Tj
(Xj) \Θt

Tj
(Xj)}

∩ {6 ∃k 6= j such that x ∈ Θt+∆t
Tk

(Xk) \Θt
Tk

(Xk)} | Ñ([0, t]) = n)

+P({x ∈ Θt+∆t
Tj

(Xj) \Θt
Tj

(Xj)}
∩ {∃k 6= j such that x ∈ Θt+∆t

Tk
(Xk) \Θt

Tk
(Xk)} | Ñ([0, t]) = n)

]

= P(∃!j ∈ {1, . . . , n} such that x ∈ Θt+∆t
Tj

(Xj) \Θt
Tj

(Xj) | Ñ([0, t]) = n)

+
n∑

j=1

o(∆t),

since by hypothesis we know that the probability that a point x is captured by
more than one crystal during a time interval ∆t is an o(∆t).
As a consequence, Eq. (6.42) becomes

∞∑
n=1

n∑

j=1

P(x ∈ Θt+∆t
Tj

(Xj) \Θt
Tj

(Xj) | Ñ([0, t]) = n)P(Ñ([0, t]) = n)

=
∞∑

n=1

P(∃!j ∈ {1, . . . , n} s.t. x ∈ Θt+∆t
Tj

(Xj) \Θt
Tj

(Xj) | Ñ([0, t]) = n)P(Ñ([0, t]) = n)

+ o(∆t)
∞∑

n=1

nP(Ñ([0, t]) = n)

= P(∃!j s.t. x ∈ Θt+∆t
Tj

(Xj) \Θt
Tj

(Xj)) + o(∆t)E(Ñ)

= P(#{j : x ∈ Θt+∆t
Tj

(Xj) \Θt
Tj

(Xj)} = 1) + o(∆t)E(Ñ)

= P(#{j : x ∈ Θt+∆t
Tj

(Xj) \Θt
Tj

(Xj)} ≥ 1)

− P(#{j : x ∈ Θt+∆t
Tj

(Xj) \Θt
Tj

(Xj)} ≥ 2) + o(∆t)E(Ñ)

= P(#{j : x ∈ Θt+∆t
Tj

(Xj) \Θt
Tj

(Xj)} ≥ 1) + o(∆t),

because, by hypothesis, P(#{j : x ∈ Θt+∆t
Tj

(Xj) \Θt
Tj

(Xj)} ≥ 2) = o(∆t), and

E(Ñ) < ∞.

156



In conclusion, by substituting the expressions above in Eq. (6.41), we obtain

∂

∂t
Vex(t, x) = lim

∆t→0

P(#{j : x ∈ Θt+∆t
Tj

(Xj) \Θt
Tj

(Xj)} ≥ 1)

∆t
+

o(∆t)
∆t

= lim
∆t→0

P(∃j such that x ∈ Θt+∆t
Tj

(Xj) \Θt
Tj

(Xj))

∆t
.

¤

About the probability of capture of a point by more than one crystal, as required
in the hypotheses of the above proposition, see also Remark 4.17, 2.

Remark 6.25 1. We remind that VV (t, x) := 1− px(t), and that

∂

∂t
VV (t, x) = lim

∆t→0

P(x ∈ Θt+∆t \Θt)
∆t

;

further, as we seen in Example 3, if we consider the nucleation process N1

such that only one nucleus (T, X) can be born, then

∂

∂t
Vex(t, x) =

∂

∂t
VV (t, x). (6.43)

Note that, in this case,

P(∃j such that x ∈ Θt+∆t
Tj

(Xj) \Θt
Tj

(Xj)) = P(x ∈ Θt+∆t
T (X) \Θt

T (X))

= P(x ∈ Θt+∆t \Θt),

and so we reobtain Eq. (6.43).

2. An intuitive explanation why Eq. (6.43) is not true in general is the
following:
in the definition of Vex, we suppose that the grains are free to be born and
grow, and so they may be considered “separately”. As a consequence

P(∃j such that x ∈ Θt+∆t
Tj

(Xj) \Θt
Tj

(Xj)) 6= P(x ∈ Θt+∆t \Θt),

because a point x could be covered by a grain during a time interval
[t, t + ∆t], even if at time t it has just been crystallized (i.e. x ∈ Θt).
In other words,

P(∃j such that x ∈ Θt+∆t
Tj

(Xj) \Θt
Tj

(Xj))

represents the probability that at least one nucleation takes place in the
region of the causal cone given by

C(t + ∆t, x) \ C(t, x);

while
P(x ∈ Θt+∆t \Θt)
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represents the probability that at least one nucleation takes place in the
region of the causal cone given by

C(t + ∆t, x) \ C(t, x)

and, simultaneously, that no one nucleus is born in C(t, x). Hence, if N is
the nucleation process, we may summarize as follows:

∂

∂t
Vex(t, x) = lim

∆t→0

P(N(AC(t + ∆t, x) \ C(t, x)) ≥ 1)
∆t

, (6.44)

∂

∂t
VV (t, x) lim

∆t→0

P(N(C(t + ∆t, x) \ C(t, x)) ≥ 1 ∩ N(C(t, x)) = 0)
∆t

.

(6.45)

We know that

h(t, x) = lim
∆t→0

P(x ∈ Θt+∆t|x /∈ Θt)
∆t

=
1

(1− VV (t, x))
∂

∂t
VV (t, x).

By (6.44) and (6.45), it is clear why in the Poissonian case the property of
independent increments plays a crucial role (note that [C(t + ∆t, x) \ C(t, x)] ∩
C(t, x) = ∅), and in the case of a process N1 with only one nucleus we have
Vex(t, x) = VV (t, x):
• Poisson case
In terms of the causal cone associated to the point x,

h(t, x) = lim
∆t→0

P(N(C(t + ∆t, x) \ C(t, x)) ≥ 1 |N(C(t, x)) = 0)
∆t

= lim
∆t→0

P(N(C(t + ∆t, x) \ C(t, x)) ≥ 1)
∆t

=
∂

∂t
Vex(t, x).

• Nucleation process N1

Since at most one nucleus can be born,

{N(C(t+∆t, x)\C(t, x)) ≥ 1 ∩N(C(t, x)) = 0} = {N(C(t+∆t, x)\C(t, x)) ≥ 1};
as a consequence

∂

∂t
VV (t, x) =

∂

∂t
Vex(t, x).

In conclusion, for a general nucleation process N we are not able to ex-
press VV in terms of Vex because we have not enough information about the
intersection of the two events

{N(C(t + ∆t, x) \ C(t, x)) ≥ 1} and {N(C(t, x)) = 0},
or their related properties.
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Appendix A

Rectifiable curves

This Appendix wants to be a simple survey of a particular case of rectifiable
sets, H1-rectifiable sets, as completion of Section 1.2.
We mainly refer to [30].

A curve (or Jordan curve) Γ is the image of a continuous injection ψ :
[a, b] → Rd, where [a, b] ⊂ R is a close interval. It follows that any curve is a
compact connected set; in particular it is a Borel set, and so is Hs-measurable.

The length of the curve Γ is defined as

L(Γ) := sup
m∑

i=1

|ψ(ti)− ψ(ti−1)|,

where the supremum is taken over all dissections a = t0 < t1 < . . . < tm = b of
[a, b].

Definition A.1 If L(Γ) < ∞ (i.e, ψ is of bounded variation), Γ is said recti-
fiable.

Proposition A.2 If Γ is a curve, then H1(Γ) = L(Γ).

As a consequence, if Γ is a rectifiable curve, then Hs(Γ) is infinity if s < 1 and
zero if s > 1.
In particular, a rectifiable curve is a H1-rectifiable set. More precisely, a H1-
rectifiable set is, to within a set of measure zero, a subset of a countable collec-
tion of rectifiable curves.

In Section 1.2 we have introduced the notion of approximate tangent plane,
as the unique plane on which the Hausdorff measure restricted to the set is
“asymptotically concentred”; in other words, the tangent plane to a countably
Hm-rectifiable set A at x is an m-dimensional plane π through x such that for
all ϕ > 0,

lim
r→0

Hm(A ∩Br(x) \ S(x, π, ϕ))
bmrm

= 0, (A.1)

where S(x, π, ϕ) denotes the set of y ∈ Rd with [y, x] making an angle of at
most ϕ with π.
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A rectifiable curve, and so a H1-rectifiable set, has an approximate tangent
plane at almost all of its points.
Obviously, in the case of rectifiable curves, the tangent plane at a point x is a
line through x in some direction δ. In this case we identify π by the direction
δ, so the limit in (A.1) becomes:

lim
r→0

H1(A ∩Br(x) \ S(x, δ, ϕ))
2r

= 0.

.
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Figure A.1: Direction δ of the tangent line at a point x0 of a rectifiable curve,
and the cone S(x0, δ, ϕ) associated.
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Figure A.2: The set A has a negligible part (i.e. with 1-density zero) in Br(x0)\
S(x0, δ, ϕ) as r → 0.

Remark A.3 If we call s-irregular aHs-measurable set A with 0 < Hs(A) < ∞
such that for Hs-a.e. x ∈ A is not satisfied D

s
(A, x) = Ds(A, x)=1, then the

following results hold [30]:

• an 1-irregular set is totally disconnected;

• the intersection of an 1-irregular set with a rectifiable curve is of measure
zero;

• any Hs-measurable set with 0 < Hs(A) < ∞ and 0 < s < 1 is irregular;

• A Hs-measurable set A with 0 < Hs(A) < ∞ in Rd is irregular unless s

is an integer.
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Appendix B

First order Steiner formula
for union of balls

In Chapter 5 we saw that a first order Steiner formula holds for unions of sets
with positive reach and for sets with Lipschitz boundary. Here we want to
evaluate this directly in the simple case of the union of two balls with different
radii. The generalization to a finite union of balls follows similarly.
Note that if {Θt}t is a birth-and-growth process as described in Section 6.2
with G constant, then almost every realization Θt(ω) is given by a finite union
of balls for any fixed t ∈ R+.
Let us consider two balls B1 and B2 in R3 with radius R and r, respectively:

B1 := BR(0)
B2 := Br((1, 0, 0));

the Minkowski addition with Ba(0) (a > 0) gives:
B1⊕a = BR+a(0)
B2⊕a = Br+a((1, 0, 0)).

Let B1 ∩B2 6= ∅. Note that if B1 and B2 are tangent, the set B1 ∪B2 has not
Lipschitz boundary.

We denote by hi(a), i = 1, 2, the height of the segment of the sphere Bi⊕a ,
and by X(a) the x-coordinate of the intersection of the two balls. (See Fig.B.1).
It follows that:

X(a) = 1
2 (1 + (R + a)2 − (r + a)2),

h1(a) = R + a−X(a)
h2(a) = X(a)− (1− r − a).

We remember that the surface of a segment of sphere with height h and radius
ρ is equal to 2πρh. As a consequence we have that

H2(∂(B1 ∪B2)) = 4πR2 − 2πRh1(0) + 4πr2 − 2πrh2(0)

= π(r3 + 2r2 −R2r + r + R3 + 2R2 −Rr2 + R).(B.1)

Now, we remind that the volume of a segment of sphere with height h and radius

161



.

........................

.........................

.........................

.........................

........................

.......................

.......................

........................

.........................
.........................

.........................................................................................................................
......................

...

.................
.......

..............
.........

............
...........

............
............

...........
...........
...

...........
...........
...

..........
..........
....

..........

..........

....

..........

..........

....

..........
..........
....

...........
...........
...

...........
...........
...

............
............

............
...........

..............
.........

.................
.......

......................
...

......................... ........................ ........................ ........................ ........................
.........................

.........................

........................

.......................

.......................

........................

.........................

.........................

........................

........................
.

........................

........................

.........................

.........................

.........................

........................

........................

.......................

.......................

........................

........................
.........................

.........................
...........................................................................................................................................................................

.......................
..

...................
.....

................
........

..............
.........

............
...........

............
............

...........
...........
..

...........
...........
...

...........
...........
...

...........
...........
...

..........

..........

....

..........

..........

....

..........

..........

....

..........

..........

....

...........
...........
...

...........
...........
...

...........
...........
...

...........
...........
..

............
............

............
...........

..............
.........

................
........

...................
.....

.......................
..

......................... ......................... ........................ ........................ ........................ ........................ .........................
.........................

.........................
........................

........................

.......................

.......................

........................

........................

.........................

.........................

.........................

........................

........................
. .......................................................................................................................................................................................................................................................................................................

.

.....................................................................................................................................................................................................................................................................................

B1 B2

0 1X
h2 h1

Figure B.1: Section of the intersection of two balls B1 and B2.

ρ is equal to π
3 h2(3ρ− h). As a consequence, we have that

H3(B1⊕a ∪B2⊕a) =
4
3
π(R + a)3 − π

3
(h1(a))2(3(R + a)− h1(a))

+
4
3
π(r + a)3 − π

3
(h2(a))2(3(r + a)− h2(a)),

H3(B1∪B2) =
4
3
πR3− π

3
(h1(0))2(3R−h1(0)) +

4
3
πr3− π

3
(h2(0))2(3r−h2(0)).

We obtain that

H3(B1⊕a ∪B2⊕a)−H3(B1 ∪B2)
a

= π(r3+2r2+ar2+R3+
4
3
a2+2R2+2Ra+R2a+r+a−2aRr+R+2ra−Rr2−R2r).

(B.2)

Now, taking the limit as a tends to zero, we obtain (B.1), i.e.

lim
a→0

H3(B1⊕a ∪B2⊕a)−H3(B1 ∪B2)
a

= H2(∂(B1 ∪B2)).

The tangent case is obtained by assuming R + r = 1; in this case (B.1) and
(B.2) are equal again, in particular

H2(∂(B1 ∪B2)) = 4π(2R2 + 1− 2R) = 4π(R2 + (1−R)2) = 4π(R2 + r2).
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